1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AttributeSelection.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.attributeSelection; |
---|
24 | |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.Option; |
---|
28 | import weka.core.OptionHandler; |
---|
29 | import weka.core.RevisionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | import weka.core.converters.ConverterUtils.DataSource; |
---|
33 | import weka.filters.Filter; |
---|
34 | import weka.filters.unsupervised.attribute.Remove; |
---|
35 | |
---|
36 | import java.beans.BeanInfo; |
---|
37 | import java.beans.IntrospectionException; |
---|
38 | import java.beans.Introspector; |
---|
39 | import java.beans.MethodDescriptor; |
---|
40 | import java.beans.PropertyDescriptor; |
---|
41 | import java.io.Serializable; |
---|
42 | import java.lang.reflect.Method; |
---|
43 | import java.util.Enumeration; |
---|
44 | import java.util.Random; |
---|
45 | |
---|
46 | /** |
---|
47 | * Attribute selection class. Takes the name of a search class and |
---|
48 | * an evaluation class on the command line. <p/> |
---|
49 | * |
---|
50 | * Valid options are: <p/> |
---|
51 | * |
---|
52 | * -h <br/> |
---|
53 | * Display help. <p/> |
---|
54 | * |
---|
55 | * -i <name of input file> <br/> |
---|
56 | * Specify the training data file. <p/> |
---|
57 | * |
---|
58 | * -c <class index> <br/> |
---|
59 | * The index of the attribute to use as the class. <p/> |
---|
60 | * |
---|
61 | * -s <search method> <br/> |
---|
62 | * The full class name of the search method followed by search method options |
---|
63 | * (if any).<br/> |
---|
64 | * Eg. -s "weka.attributeSelection.BestFirst -N 10" <p/> |
---|
65 | * |
---|
66 | * -x <number of folds> <br/> |
---|
67 | * Perform a cross validation. <p/> |
---|
68 | * |
---|
69 | * -n <random number seed> <br/> |
---|
70 | * Specify a random number seed. Use in conjuction with -x. (Default = 1). <p/> |
---|
71 | * |
---|
72 | * ------------------------------------------------------------------------ <p/> |
---|
73 | * |
---|
74 | * Example usage as the main of an attribute evaluator (called FunkyEvaluator): |
---|
75 | * <pre> |
---|
76 | * public static void main(String [] args) { |
---|
77 | * runEvaluator(new FunkyEvaluator(), args); |
---|
78 | * } |
---|
79 | * </pre> |
---|
80 | * <p/> |
---|
81 | * |
---|
82 | * ------------------------------------------------------------------------ <p/> |
---|
83 | * |
---|
84 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
85 | * @version $Revision: 1.47 $ |
---|
86 | */ |
---|
87 | public class AttributeSelection |
---|
88 | implements Serializable, RevisionHandler { |
---|
89 | |
---|
90 | /** for serialization */ |
---|
91 | static final long serialVersionUID = 4170171824147584330L; |
---|
92 | |
---|
93 | /** the instances to select attributes from */ |
---|
94 | private Instances m_trainInstances; |
---|
95 | |
---|
96 | /** the attribute/subset evaluator */ |
---|
97 | private ASEvaluation m_ASEvaluator; |
---|
98 | |
---|
99 | /** the search method */ |
---|
100 | private ASSearch m_searchMethod; |
---|
101 | |
---|
102 | /** the number of folds to use for cross validation */ |
---|
103 | private int m_numFolds; |
---|
104 | |
---|
105 | /** holds a string describing the results of the attribute selection */ |
---|
106 | private StringBuffer m_selectionResults; |
---|
107 | |
---|
108 | /** rank features (if allowed by the search method) */ |
---|
109 | private boolean m_doRank; |
---|
110 | |
---|
111 | /** do cross validation */ |
---|
112 | private boolean m_doXval; |
---|
113 | |
---|
114 | /** seed used to randomly shuffle instances for cross validation */ |
---|
115 | private int m_seed; |
---|
116 | |
---|
117 | /** number of attributes requested from ranked results */ |
---|
118 | private int m_numToSelect; |
---|
119 | |
---|
120 | /** the selected attributes */ |
---|
121 | private int [] m_selectedAttributeSet; |
---|
122 | |
---|
123 | /** the attribute indexes and associated merits if a ranking is produced */ |
---|
124 | private double [][] m_attributeRanking; |
---|
125 | |
---|
126 | /** if a feature selection run involves an attribute transformer */ |
---|
127 | private AttributeTransformer m_transformer = null; |
---|
128 | |
---|
129 | /** the attribute filter for processing instances with respect to |
---|
130 | the most recent feature selection run */ |
---|
131 | private Remove m_attributeFilter = null; |
---|
132 | |
---|
133 | /** hold statistics for repeated feature selection, such as |
---|
134 | under cross validation */ |
---|
135 | private double [][] m_rankResults = null; |
---|
136 | private double [] m_subsetResults = null; |
---|
137 | private int m_trials = 0; |
---|
138 | |
---|
139 | /** |
---|
140 | * Return the number of attributes selected from the most recent |
---|
141 | * run of attribute selection |
---|
142 | * @return the number of attributes selected |
---|
143 | */ |
---|
144 | public int numberAttributesSelected() throws Exception { |
---|
145 | int [] att = selectedAttributes(); |
---|
146 | return att.length-1; |
---|
147 | } |
---|
148 | |
---|
149 | /** |
---|
150 | * get the final selected set of attributes. |
---|
151 | * @return an array of attribute indexes |
---|
152 | * @exception Exception if attribute selection has not been performed yet |
---|
153 | */ |
---|
154 | public int [] selectedAttributes () throws Exception { |
---|
155 | if (m_selectedAttributeSet == null) { |
---|
156 | throw new Exception("Attribute selection has not been performed yet!"); |
---|
157 | } |
---|
158 | return m_selectedAttributeSet; |
---|
159 | } |
---|
160 | |
---|
161 | /** |
---|
162 | * get the final ranking of the attributes. |
---|
163 | * @return a two dimensional array of ranked attribute indexes and their |
---|
164 | * associated merit scores as doubles. |
---|
165 | * @exception Exception if a ranking has not been produced |
---|
166 | */ |
---|
167 | public double [][] rankedAttributes () throws Exception { |
---|
168 | if (m_attributeRanking == null) { |
---|
169 | throw new Exception("Ranking has not been performed"); |
---|
170 | } |
---|
171 | return m_attributeRanking; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * set the attribute/subset evaluator |
---|
176 | * @param evaluator the evaluator to use |
---|
177 | */ |
---|
178 | public void setEvaluator (ASEvaluation evaluator) { |
---|
179 | m_ASEvaluator = evaluator; |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * set the search method |
---|
184 | * @param search the search method to use |
---|
185 | */ |
---|
186 | public void setSearch (ASSearch search) { |
---|
187 | m_searchMethod = search; |
---|
188 | |
---|
189 | if (m_searchMethod instanceof RankedOutputSearch) { |
---|
190 | setRanking(((RankedOutputSearch)m_searchMethod).getGenerateRanking()); |
---|
191 | } |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * set the number of folds for cross validation |
---|
196 | * @param folds the number of folds |
---|
197 | */ |
---|
198 | public void setFolds (int folds) { |
---|
199 | m_numFolds = folds; |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * produce a ranking (if possible with the set search and evaluator) |
---|
204 | * @param r true if a ranking is to be produced |
---|
205 | */ |
---|
206 | public void setRanking (boolean r) { |
---|
207 | m_doRank = r; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * do a cross validation |
---|
212 | * @param x true if a cross validation is to be performed |
---|
213 | */ |
---|
214 | public void setXval (boolean x) { |
---|
215 | m_doXval = x; |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * set the seed for use in cross validation |
---|
220 | * @param s the seed |
---|
221 | */ |
---|
222 | public void setSeed (int s) { |
---|
223 | m_seed = s; |
---|
224 | } |
---|
225 | |
---|
226 | /** |
---|
227 | * get a description of the attribute selection |
---|
228 | * @return a String describing the results of attribute selection |
---|
229 | */ |
---|
230 | public String toResultsString() { |
---|
231 | return m_selectionResults.toString(); |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * reduce the dimensionality of a set of instances to include only those |
---|
236 | * attributes chosen by the last run of attribute selection. |
---|
237 | * @param in the instances to be reduced |
---|
238 | * @return a dimensionality reduced set of instances |
---|
239 | * @exception Exception if the instances can't be reduced |
---|
240 | */ |
---|
241 | public Instances reduceDimensionality(Instances in) throws Exception { |
---|
242 | if (m_attributeFilter == null) { |
---|
243 | throw new Exception("No feature selection has been performed yet!"); |
---|
244 | } |
---|
245 | |
---|
246 | if (m_transformer != null) { |
---|
247 | Instances transformed = new Instances(m_transformer.transformedHeader(), |
---|
248 | in.numInstances()); |
---|
249 | for (int i=0;i<in.numInstances();i++) { |
---|
250 | transformed.add(m_transformer.convertInstance(in.instance(i))); |
---|
251 | } |
---|
252 | return Filter.useFilter(transformed, m_attributeFilter); |
---|
253 | } |
---|
254 | |
---|
255 | return Filter.useFilter(in, m_attributeFilter); |
---|
256 | } |
---|
257 | |
---|
258 | /** |
---|
259 | * reduce the dimensionality of a single instance to include only those |
---|
260 | * attributes chosen by the last run of attribute selection. |
---|
261 | * @param in the instance to be reduced |
---|
262 | * @return a dimensionality reduced instance |
---|
263 | * @exception Exception if the instance can't be reduced |
---|
264 | */ |
---|
265 | public Instance reduceDimensionality(Instance in) throws Exception { |
---|
266 | if (m_attributeFilter == null) { |
---|
267 | throw new Exception("No feature selection has been performed yet!"); |
---|
268 | } |
---|
269 | if (m_transformer != null) { |
---|
270 | in = m_transformer.convertInstance(in); |
---|
271 | } |
---|
272 | m_attributeFilter.input(in); |
---|
273 | m_attributeFilter.batchFinished(); |
---|
274 | Instance result = m_attributeFilter.output(); |
---|
275 | return result; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * constructor. Sets defaults for each member varaible. Default |
---|
280 | * attribute evaluator is CfsSubsetEval; default search method is |
---|
281 | * BestFirst. |
---|
282 | */ |
---|
283 | public AttributeSelection () { |
---|
284 | setFolds(10); |
---|
285 | setRanking(false); |
---|
286 | setXval(false); |
---|
287 | setSeed(1); |
---|
288 | setEvaluator(new CfsSubsetEval()); |
---|
289 | setSearch(new GreedyStepwise()); |
---|
290 | m_selectionResults = new StringBuffer(); |
---|
291 | m_selectedAttributeSet = null; |
---|
292 | m_attributeRanking = null; |
---|
293 | } |
---|
294 | |
---|
295 | /** |
---|
296 | * Perform attribute selection with a particular evaluator and |
---|
297 | * a set of options specifying search method and input file etc. |
---|
298 | * |
---|
299 | * @param ASEvaluator an evaluator object |
---|
300 | * @param options an array of options, not only for the evaluator |
---|
301 | * but also the search method (if any) and an input data file |
---|
302 | * @return the results of attribute selection as a String |
---|
303 | * @exception Exception if no training file is set |
---|
304 | */ |
---|
305 | public static String SelectAttributes (ASEvaluation ASEvaluator, |
---|
306 | String[] options) |
---|
307 | throws Exception { |
---|
308 | String trainFileName, searchName; |
---|
309 | Instances train = null; |
---|
310 | ASSearch searchMethod = null; |
---|
311 | String[] optionsTmp = (String[]) options.clone(); |
---|
312 | boolean helpRequested = false; |
---|
313 | |
---|
314 | try { |
---|
315 | // get basic options (options the same for all attribute selectors |
---|
316 | trainFileName = Utils.getOption('i', options); |
---|
317 | helpRequested = Utils.getFlag('h', optionsTmp); |
---|
318 | |
---|
319 | if (helpRequested || (trainFileName.length() == 0)) { |
---|
320 | searchName = Utils.getOption('s', optionsTmp); |
---|
321 | if (searchName.length() != 0) { |
---|
322 | String[] searchOptions = Utils.splitOptions(searchName); |
---|
323 | searchMethod = (ASSearch)Class.forName(searchOptions[0]).newInstance(); |
---|
324 | } |
---|
325 | |
---|
326 | if (helpRequested) |
---|
327 | throw new Exception("Help requested."); |
---|
328 | else |
---|
329 | throw new Exception("No training file given."); |
---|
330 | } |
---|
331 | } |
---|
332 | catch (Exception e) { |
---|
333 | throw new Exception('\n' + e.getMessage() |
---|
334 | + makeOptionString(ASEvaluator, searchMethod)); |
---|
335 | } |
---|
336 | |
---|
337 | DataSource source = new DataSource(trainFileName); |
---|
338 | train = source.getDataSet(); |
---|
339 | return SelectAttributes(ASEvaluator, options, train); |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * returns a string summarizing the results of repeated attribute |
---|
344 | * selection runs on splits of a dataset. |
---|
345 | * @return a summary of attribute selection results |
---|
346 | * @exception Exception if no attribute selection has been performed. |
---|
347 | */ |
---|
348 | public String CVResultsString () throws Exception { |
---|
349 | StringBuffer CvString = new StringBuffer(); |
---|
350 | |
---|
351 | if ((m_subsetResults == null && m_rankResults == null) || |
---|
352 | ( m_trainInstances == null)) { |
---|
353 | throw new Exception("Attribute selection has not been performed yet!"); |
---|
354 | } |
---|
355 | |
---|
356 | int fieldWidth = (int)(Math.log(m_trainInstances.numAttributes()) +1.0); |
---|
357 | |
---|
358 | CvString.append("\n\n=== Attribute selection " + m_numFolds |
---|
359 | + " fold cross-validation "); |
---|
360 | |
---|
361 | if (!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) && |
---|
362 | !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator) && |
---|
363 | (m_trainInstances.classAttribute().isNominal())) { |
---|
364 | CvString.append("(stratified), seed: "); |
---|
365 | CvString.append(m_seed+" ===\n\n"); |
---|
366 | } |
---|
367 | else { |
---|
368 | CvString.append("seed: "+m_seed+" ===\n\n"); |
---|
369 | } |
---|
370 | |
---|
371 | if ((m_searchMethod instanceof RankedOutputSearch) && (m_doRank == true)) { |
---|
372 | CvString.append("average merit average rank attribute\n"); |
---|
373 | |
---|
374 | // calcualte means and std devs |
---|
375 | for (int i = 0; i < m_rankResults[0].length; i++) { |
---|
376 | m_rankResults[0][i] /= m_numFolds; // mean merit |
---|
377 | double var = m_rankResults[0][i]*m_rankResults[0][i]*m_numFolds; |
---|
378 | var = (m_rankResults[2][i] - var); |
---|
379 | var /= m_numFolds; |
---|
380 | |
---|
381 | if (var <= 0.0) { |
---|
382 | var = 0.0; |
---|
383 | m_rankResults[2][i] = 0; |
---|
384 | } |
---|
385 | else { |
---|
386 | m_rankResults[2][i] = Math.sqrt(var); |
---|
387 | } |
---|
388 | |
---|
389 | m_rankResults[1][i] /= m_numFolds; // mean rank |
---|
390 | var = m_rankResults[1][i]*m_rankResults[1][i]*m_numFolds; |
---|
391 | var = (m_rankResults[3][i] - var); |
---|
392 | var /= m_numFolds; |
---|
393 | |
---|
394 | if (var <= 0.0) { |
---|
395 | var = 0.0; |
---|
396 | m_rankResults[3][i] = 0; |
---|
397 | } |
---|
398 | else { |
---|
399 | m_rankResults[3][i] = Math.sqrt(var); |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | // now sort them by mean rank |
---|
404 | int[] s = Utils.sort(m_rankResults[1]); |
---|
405 | for (int i=0; i<s.length; i++) { |
---|
406 | if (m_rankResults[1][s[i]] > 0) { |
---|
407 | CvString.append(Utils.doubleToString(Math. |
---|
408 | abs(m_rankResults[0][s[i]]), |
---|
409 | 6, 3) |
---|
410 | + " +-" |
---|
411 | + Utils.doubleToString(m_rankResults[2][s[i]], 6, 3) |
---|
412 | + " " |
---|
413 | + Utils.doubleToString(m_rankResults[1][s[i]], |
---|
414 | fieldWidth+2, 1) |
---|
415 | + " +-" |
---|
416 | + Utils.doubleToString(m_rankResults[3][s[i]], 5, 2) |
---|
417 | +" " |
---|
418 | + Utils.doubleToString(((double)(s[i] + 1)), |
---|
419 | fieldWidth, 0) |
---|
420 | + " " |
---|
421 | + m_trainInstances.attribute(s[i]).name() |
---|
422 | + "\n"); |
---|
423 | } |
---|
424 | } |
---|
425 | } |
---|
426 | else { |
---|
427 | CvString.append("number of folds (%) attribute\n"); |
---|
428 | |
---|
429 | for (int i = 0; i < m_subsetResults.length; i++) { |
---|
430 | if ((m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) || |
---|
431 | (i != m_trainInstances.classIndex())) { |
---|
432 | CvString.append(Utils.doubleToString(m_subsetResults[i], 12, 0) |
---|
433 | + "(" |
---|
434 | + Utils.doubleToString((m_subsetResults[i] / |
---|
435 | m_numFolds * 100.0) |
---|
436 | , 3, 0) |
---|
437 | + " %) " |
---|
438 | + Utils.doubleToString(((double)(i + 1)), |
---|
439 | fieldWidth, 0) |
---|
440 | + " " |
---|
441 | + m_trainInstances.attribute(i).name() |
---|
442 | + "\n"); |
---|
443 | } |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | return CvString.toString(); |
---|
448 | } |
---|
449 | |
---|
450 | /** |
---|
451 | * Select attributes for a split of the data. Calling this function |
---|
452 | * updates the statistics on attribute selection. CVResultsString() |
---|
453 | * returns a string summarizing the results of repeated calls to |
---|
454 | * this function. Assumes that splits are from the same dataset--- |
---|
455 | * ie. have the same number and types of attributes as previous |
---|
456 | * splits. |
---|
457 | * |
---|
458 | * @param split the instances to select attributes from |
---|
459 | * @exception Exception if an error occurs |
---|
460 | */ |
---|
461 | public void selectAttributesCVSplit(Instances split) throws Exception { |
---|
462 | double[][] attributeRanking = null; |
---|
463 | |
---|
464 | // if the train instances are null then set equal to this split. |
---|
465 | // If this is the case then this function is more than likely being |
---|
466 | // called from outside this class in order to obtain CV statistics |
---|
467 | // and all we need m_trainIstances for is to get at attribute names |
---|
468 | // and types etc. |
---|
469 | if (m_trainInstances == null) { |
---|
470 | m_trainInstances = split; |
---|
471 | } |
---|
472 | |
---|
473 | // create space to hold statistics |
---|
474 | if (m_rankResults == null && m_subsetResults == null) { |
---|
475 | m_subsetResults = new double[split.numAttributes()]; |
---|
476 | m_rankResults = new double[4][split.numAttributes()]; |
---|
477 | } |
---|
478 | |
---|
479 | m_ASEvaluator.buildEvaluator(split); |
---|
480 | // Do the search |
---|
481 | int[] attributeSet = m_searchMethod.search(m_ASEvaluator, |
---|
482 | split); |
---|
483 | // Do any postprocessing that a attribute selection method might |
---|
484 | // require |
---|
485 | attributeSet = m_ASEvaluator.postProcess(attributeSet); |
---|
486 | |
---|
487 | if ((m_searchMethod instanceof RankedOutputSearch) && |
---|
488 | (m_doRank == true)) { |
---|
489 | attributeRanking = ((RankedOutputSearch)m_searchMethod). |
---|
490 | rankedAttributes(); |
---|
491 | |
---|
492 | // System.out.println(attributeRanking[0][1]); |
---|
493 | for (int j = 0; j < attributeRanking.length; j++) { |
---|
494 | // merit |
---|
495 | m_rankResults[0][(int)attributeRanking[j][0]] += |
---|
496 | attributeRanking[j][1]; |
---|
497 | // squared merit |
---|
498 | m_rankResults[2][(int)attributeRanking[j][0]] += |
---|
499 | (attributeRanking[j][1]*attributeRanking[j][1]); |
---|
500 | // rank |
---|
501 | m_rankResults[1][(int)attributeRanking[j][0]] += (j + 1); |
---|
502 | // squared rank |
---|
503 | m_rankResults[3][(int)attributeRanking[j][0]] += (j + 1)*(j + 1); |
---|
504 | // += (attributeRanking[j][0] * attributeRanking[j][0]); |
---|
505 | } |
---|
506 | } else { |
---|
507 | for (int j = 0; j < attributeSet.length; j++) { |
---|
508 | m_subsetResults[attributeSet[j]]++; |
---|
509 | } |
---|
510 | } |
---|
511 | |
---|
512 | m_trials++; |
---|
513 | } |
---|
514 | |
---|
515 | /** |
---|
516 | * Perform a cross validation for attribute selection. With subset |
---|
517 | * evaluators the number of times each attribute is selected over |
---|
518 | * the cross validation is reported. For attribute evaluators, the |
---|
519 | * average merit and average ranking + std deviation is reported for |
---|
520 | * each attribute. |
---|
521 | * |
---|
522 | * @return the results of cross validation as a String |
---|
523 | * @exception Exception if an error occurs during cross validation |
---|
524 | */ |
---|
525 | public String CrossValidateAttributes () throws Exception { |
---|
526 | Instances cvData = new Instances(m_trainInstances); |
---|
527 | Instances train; |
---|
528 | |
---|
529 | Random random = new Random(m_seed); |
---|
530 | cvData.randomize(random); |
---|
531 | |
---|
532 | if (!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) && |
---|
533 | !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator)) { |
---|
534 | if (cvData.classAttribute().isNominal()) { |
---|
535 | cvData.stratify(m_numFolds); |
---|
536 | } |
---|
537 | |
---|
538 | } |
---|
539 | |
---|
540 | for (int i = 0; i < m_numFolds; i++) { |
---|
541 | // Perform attribute selection |
---|
542 | train = cvData.trainCV(m_numFolds, i, random); |
---|
543 | selectAttributesCVSplit(train); |
---|
544 | } |
---|
545 | |
---|
546 | return CVResultsString(); |
---|
547 | } |
---|
548 | |
---|
549 | /** |
---|
550 | * Perform attribute selection on the supplied training instances. |
---|
551 | * |
---|
552 | * @param data the instances to select attributes from |
---|
553 | * @exception Exception if there is a problem during selection |
---|
554 | */ |
---|
555 | public void SelectAttributes (Instances data) throws Exception { |
---|
556 | int [] attributeSet; |
---|
557 | |
---|
558 | m_transformer = null; |
---|
559 | m_attributeFilter = null; |
---|
560 | m_trainInstances = data; |
---|
561 | |
---|
562 | if (m_doXval == true && (m_ASEvaluator instanceof AttributeTransformer)) { |
---|
563 | throw new Exception("Can't cross validate an attribute transformer."); |
---|
564 | } |
---|
565 | |
---|
566 | if (m_ASEvaluator instanceof SubsetEvaluator && |
---|
567 | m_searchMethod instanceof Ranker) { |
---|
568 | throw new Exception(m_ASEvaluator.getClass().getName() |
---|
569 | +" must use a search method other than Ranker"); |
---|
570 | } |
---|
571 | |
---|
572 | if (m_ASEvaluator instanceof AttributeEvaluator && |
---|
573 | !(m_searchMethod instanceof Ranker)) { |
---|
574 | // System.err.println("AttributeEvaluators must use a Ranker search " |
---|
575 | // +"method. Switching to Ranker..."); |
---|
576 | // m_searchMethod = new Ranker(); |
---|
577 | throw new Exception("AttributeEvaluators must use the Ranker search " |
---|
578 | + "method"); |
---|
579 | } |
---|
580 | |
---|
581 | if (m_searchMethod instanceof RankedOutputSearch) { |
---|
582 | m_doRank = ((RankedOutputSearch)m_searchMethod).getGenerateRanking(); |
---|
583 | } |
---|
584 | |
---|
585 | if (m_ASEvaluator instanceof UnsupervisedAttributeEvaluator || |
---|
586 | m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) { |
---|
587 | // unset the class index |
---|
588 | // m_trainInstances.setClassIndex(-1); |
---|
589 | } else { |
---|
590 | // check that a class index has been set |
---|
591 | if (m_trainInstances.classIndex() < 0) { |
---|
592 | m_trainInstances.setClassIndex(m_trainInstances.numAttributes()-1); |
---|
593 | } |
---|
594 | } |
---|
595 | |
---|
596 | // Initialize the attribute evaluator |
---|
597 | m_ASEvaluator.buildEvaluator(m_trainInstances); |
---|
598 | if (m_ASEvaluator instanceof AttributeTransformer) { |
---|
599 | m_trainInstances = |
---|
600 | ((AttributeTransformer)m_ASEvaluator).transformedHeader(); |
---|
601 | m_transformer = (AttributeTransformer)m_ASEvaluator; |
---|
602 | } |
---|
603 | int fieldWidth = (int)(Math.log(m_trainInstances.numAttributes()) +1.0); |
---|
604 | |
---|
605 | // Do the search |
---|
606 | attributeSet = m_searchMethod.search(m_ASEvaluator, |
---|
607 | m_trainInstances); |
---|
608 | |
---|
609 | // try and determine if the search method uses an attribute transformer--- |
---|
610 | // this is a bit of a hack to make things work properly with RankSearch |
---|
611 | // using PrincipalComponents as its attribute ranker |
---|
612 | try { |
---|
613 | BeanInfo bi = Introspector.getBeanInfo(m_searchMethod.getClass()); |
---|
614 | PropertyDescriptor properties[]; |
---|
615 | MethodDescriptor methods[]; |
---|
616 | // methods = bi.getMethodDescriptors(); |
---|
617 | properties = bi.getPropertyDescriptors(); |
---|
618 | for (int i=0;i<properties.length;i++) { |
---|
619 | String name = properties[i].getDisplayName(); |
---|
620 | Method meth = properties[i].getReadMethod(); |
---|
621 | Object retType = meth.getReturnType(); |
---|
622 | if (retType.equals(ASEvaluation.class)) { |
---|
623 | Class args [] = { }; |
---|
624 | ASEvaluation tempEval = (ASEvaluation)(meth.invoke(m_searchMethod, |
---|
625 | (Object[])args)); |
---|
626 | if (tempEval instanceof AttributeTransformer) { |
---|
627 | // grab the transformed data header |
---|
628 | m_trainInstances = |
---|
629 | ((AttributeTransformer)tempEval).transformedHeader(); |
---|
630 | m_transformer = (AttributeTransformer)tempEval; |
---|
631 | } |
---|
632 | } |
---|
633 | } |
---|
634 | } catch (IntrospectionException ex) { |
---|
635 | System.err.println("AttributeSelection: Couldn't " |
---|
636 | +"introspect"); |
---|
637 | } |
---|
638 | |
---|
639 | |
---|
640 | // Do any postprocessing that a attribute selection method might require |
---|
641 | attributeSet = m_ASEvaluator.postProcess(attributeSet); |
---|
642 | if (!m_doRank) { |
---|
643 | m_selectionResults.append(printSelectionResults()); |
---|
644 | } |
---|
645 | |
---|
646 | if ((m_searchMethod instanceof RankedOutputSearch) && m_doRank == true) { |
---|
647 | m_attributeRanking = |
---|
648 | ((RankedOutputSearch)m_searchMethod).rankedAttributes(); |
---|
649 | m_selectionResults.append(printSelectionResults()); |
---|
650 | m_selectionResults.append("Ranked attributes:\n"); |
---|
651 | |
---|
652 | // retrieve the number of attributes to retain |
---|
653 | m_numToSelect = |
---|
654 | ((RankedOutputSearch)m_searchMethod).getCalculatedNumToSelect(); |
---|
655 | |
---|
656 | // determine fieldwidth for merit |
---|
657 | int f_p=0; |
---|
658 | int w_p=0; |
---|
659 | |
---|
660 | for (int i = 0; i < m_numToSelect; i++) { |
---|
661 | double precision = (Math.abs(m_attributeRanking[i][1]) - |
---|
662 | (int)(Math.abs(m_attributeRanking[i][1]))); |
---|
663 | double intPart = (int)(Math.abs(m_attributeRanking[i][1])); |
---|
664 | |
---|
665 | if (precision > 0) { |
---|
666 | precision = Math.abs((Math.log(Math.abs(precision)) / |
---|
667 | Math.log(10)))+3; |
---|
668 | } |
---|
669 | if (precision > f_p) { |
---|
670 | f_p = (int)precision; |
---|
671 | } |
---|
672 | |
---|
673 | if (intPart == 0) { |
---|
674 | if (w_p < 2) { |
---|
675 | w_p = 2; |
---|
676 | } |
---|
677 | } else if ((Math.abs((Math.log(Math.abs(m_attributeRanking[i][1])) |
---|
678 | / Math.log(10)))+1) > w_p) { |
---|
679 | if (m_attributeRanking[i][1] > 0) { |
---|
680 | w_p = (int)Math.abs((Math.log(Math.abs(m_attributeRanking[i][1])) |
---|
681 | / Math.log(10)))+1; |
---|
682 | } |
---|
683 | } |
---|
684 | } |
---|
685 | |
---|
686 | for (int i = 0; i < m_numToSelect; i++) { |
---|
687 | m_selectionResults. |
---|
688 | append(Utils.doubleToString(m_attributeRanking[i][1], |
---|
689 | f_p+w_p+1,f_p) |
---|
690 | + Utils.doubleToString((m_attributeRanking[i][0] + 1), |
---|
691 | fieldWidth+1,0) |
---|
692 | + " " |
---|
693 | + m_trainInstances. |
---|
694 | attribute((int)m_attributeRanking[i][0]).name() |
---|
695 | + "\n"); |
---|
696 | } |
---|
697 | |
---|
698 | // set up the selected attributes array - usable by a filter or |
---|
699 | // whatever |
---|
700 | if (m_trainInstances.classIndex() >= 0) { |
---|
701 | if ((!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) |
---|
702 | && !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator)) || |
---|
703 | m_ASEvaluator instanceof AttributeTransformer) { |
---|
704 | // one more for the class |
---|
705 | m_selectedAttributeSet = new int[m_numToSelect + 1]; |
---|
706 | m_selectedAttributeSet[m_numToSelect] = |
---|
707 | m_trainInstances.classIndex(); |
---|
708 | } else { |
---|
709 | m_selectedAttributeSet = new int[m_numToSelect]; |
---|
710 | } |
---|
711 | } else { |
---|
712 | m_selectedAttributeSet = new int[m_numToSelect]; |
---|
713 | } |
---|
714 | |
---|
715 | m_selectionResults.append("\nSelected attributes: "); |
---|
716 | |
---|
717 | for (int i = 0; i < m_numToSelect; i++) { |
---|
718 | m_selectedAttributeSet[i] = (int)m_attributeRanking[i][0]; |
---|
719 | |
---|
720 | if (i == m_numToSelect - 1) { |
---|
721 | m_selectionResults.append(((int)m_attributeRanking[i][0] + 1) |
---|
722 | + " : " |
---|
723 | + (i + 1) |
---|
724 | + "\n"); |
---|
725 | } |
---|
726 | else { |
---|
727 | m_selectionResults.append(((int)m_attributeRanking[i][0] + 1)); |
---|
728 | m_selectionResults.append(","); |
---|
729 | } |
---|
730 | } |
---|
731 | } else { |
---|
732 | // set up the selected attributes array - usable by a filter or |
---|
733 | // whatever |
---|
734 | if ((!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) |
---|
735 | && !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator)) || |
---|
736 | m_trainInstances.classIndex() >= 0) |
---|
737 | // one more for the class |
---|
738 | { |
---|
739 | m_selectedAttributeSet = new int[attributeSet.length + 1]; |
---|
740 | m_selectedAttributeSet[attributeSet.length] = |
---|
741 | m_trainInstances.classIndex(); |
---|
742 | } |
---|
743 | else { |
---|
744 | m_selectedAttributeSet = new int[attributeSet.length]; |
---|
745 | } |
---|
746 | |
---|
747 | for (int i = 0; i < attributeSet.length; i++) { |
---|
748 | m_selectedAttributeSet[i] = attributeSet[i]; |
---|
749 | } |
---|
750 | |
---|
751 | m_selectionResults.append("Selected attributes: "); |
---|
752 | |
---|
753 | for (int i = 0; i < attributeSet.length; i++) { |
---|
754 | if (i == (attributeSet.length - 1)) { |
---|
755 | m_selectionResults.append((attributeSet[i] + 1) |
---|
756 | + " : " |
---|
757 | + attributeSet.length |
---|
758 | + "\n"); |
---|
759 | } |
---|
760 | else { |
---|
761 | m_selectionResults.append((attributeSet[i] + 1) + ","); |
---|
762 | } |
---|
763 | } |
---|
764 | |
---|
765 | for (int i=0;i<attributeSet.length;i++) { |
---|
766 | m_selectionResults.append(" " |
---|
767 | +m_trainInstances |
---|
768 | .attribute(attributeSet[i]).name() |
---|
769 | +"\n"); |
---|
770 | } |
---|
771 | } |
---|
772 | |
---|
773 | // Cross validation should be called from here |
---|
774 | if (m_doXval == true) { |
---|
775 | m_selectionResults.append(CrossValidateAttributes()); |
---|
776 | } |
---|
777 | |
---|
778 | // set up the attribute filter with the selected attributes |
---|
779 | if (m_selectedAttributeSet != null && !m_doXval) { |
---|
780 | m_attributeFilter = new Remove(); |
---|
781 | m_attributeFilter.setAttributeIndicesArray(m_selectedAttributeSet); |
---|
782 | m_attributeFilter.setInvertSelection(true); |
---|
783 | m_attributeFilter.setInputFormat(m_trainInstances); |
---|
784 | } |
---|
785 | |
---|
786 | // Save space |
---|
787 | m_trainInstances = new Instances(m_trainInstances, 0); |
---|
788 | } |
---|
789 | |
---|
790 | /** |
---|
791 | * Perform attribute selection with a particular evaluator and |
---|
792 | * a set of options specifying search method and options for the |
---|
793 | * search method and evaluator. |
---|
794 | * |
---|
795 | * @param ASEvaluator an evaluator object |
---|
796 | * @param options an array of options, not only for the evaluator |
---|
797 | * but also the search method (if any) and an input data file |
---|
798 | * @param train the input instances |
---|
799 | * @return the results of attribute selection as a String |
---|
800 | * @exception Exception if incorrect options are supplied |
---|
801 | */ |
---|
802 | public static String SelectAttributes (ASEvaluation ASEvaluator, |
---|
803 | String[] options, |
---|
804 | Instances train) |
---|
805 | throws Exception { |
---|
806 | int seed = 1, folds = 10; |
---|
807 | String foldsString, seedString, searchName; |
---|
808 | String classString; |
---|
809 | String searchClassName; |
---|
810 | String[] searchOptions = null; //new String [1]; |
---|
811 | ASSearch searchMethod = null; |
---|
812 | boolean doCrossVal = false; |
---|
813 | int classIndex = -1; |
---|
814 | boolean helpRequested = false; |
---|
815 | AttributeSelection trainSelector = new AttributeSelection(); |
---|
816 | |
---|
817 | try { |
---|
818 | if (Utils.getFlag('h', options)) { |
---|
819 | helpRequested = true; |
---|
820 | } |
---|
821 | |
---|
822 | // does data already have a class attribute set? |
---|
823 | if (train.classIndex() != -1) |
---|
824 | classIndex = train.classIndex() + 1; |
---|
825 | |
---|
826 | // get basic options (options the same for all attribute selectors |
---|
827 | classString = Utils.getOption('c', options); |
---|
828 | |
---|
829 | if (classString.length() != 0) { |
---|
830 | if (classString.equals("first")) { |
---|
831 | classIndex = 1; |
---|
832 | } else if (classString.equals("last")) { |
---|
833 | classIndex = train.numAttributes(); |
---|
834 | } else { |
---|
835 | classIndex = Integer.parseInt(classString); |
---|
836 | } |
---|
837 | } |
---|
838 | |
---|
839 | if ((classIndex != -1) && |
---|
840 | ((classIndex == 0) || (classIndex > train.numAttributes()))) { |
---|
841 | throw new Exception("Class index out of range."); |
---|
842 | } |
---|
843 | |
---|
844 | if (classIndex != -1) { |
---|
845 | train.setClassIndex(classIndex - 1); |
---|
846 | } |
---|
847 | else { |
---|
848 | // classIndex = train.numAttributes(); |
---|
849 | // train.setClassIndex(classIndex - 1); |
---|
850 | } |
---|
851 | |
---|
852 | foldsString = Utils.getOption('x', options); |
---|
853 | |
---|
854 | if (foldsString.length() != 0) { |
---|
855 | folds = Integer.parseInt(foldsString); |
---|
856 | doCrossVal = true; |
---|
857 | } |
---|
858 | |
---|
859 | trainSelector.setFolds(folds); |
---|
860 | trainSelector.setXval(doCrossVal); |
---|
861 | |
---|
862 | seedString = Utils.getOption('n', options); |
---|
863 | |
---|
864 | if (seedString.length() != 0) { |
---|
865 | seed = Integer.parseInt(seedString); |
---|
866 | } |
---|
867 | |
---|
868 | trainSelector.setSeed(seed); |
---|
869 | |
---|
870 | searchName = Utils.getOption('s', options); |
---|
871 | |
---|
872 | if ((searchName.length() == 0) && |
---|
873 | (!(ASEvaluator instanceof AttributeEvaluator))) { |
---|
874 | throw new Exception("No search method given."); |
---|
875 | } |
---|
876 | |
---|
877 | if (searchName.length() != 0) { |
---|
878 | searchName = searchName.trim(); |
---|
879 | // split off any search options |
---|
880 | int breakLoc = searchName.indexOf(' '); |
---|
881 | searchClassName = searchName; |
---|
882 | String searchOptionsString = ""; |
---|
883 | |
---|
884 | if (breakLoc != -1) { |
---|
885 | searchClassName = searchName.substring(0, breakLoc); |
---|
886 | searchOptionsString = searchName.substring(breakLoc).trim(); |
---|
887 | searchOptions = Utils.splitOptions(searchOptionsString); |
---|
888 | } |
---|
889 | } |
---|
890 | else { |
---|
891 | try { |
---|
892 | searchClassName = new String("weka.attributeSelection.Ranker"); |
---|
893 | searchMethod = (ASSearch)Class. |
---|
894 | forName(searchClassName).newInstance(); |
---|
895 | } |
---|
896 | catch (Exception e) { |
---|
897 | throw new Exception("Can't create Ranker object"); |
---|
898 | } |
---|
899 | } |
---|
900 | |
---|
901 | // if evaluator is a subset evaluator |
---|
902 | // create search method and set its options (if any) |
---|
903 | if (searchMethod == null) { |
---|
904 | searchMethod = ASSearch.forName(searchClassName, searchOptions); |
---|
905 | } |
---|
906 | |
---|
907 | // set the search method |
---|
908 | trainSelector.setSearch(searchMethod); |
---|
909 | } |
---|
910 | catch (Exception e) { |
---|
911 | throw new Exception('\n' + e.getMessage() |
---|
912 | + makeOptionString(ASEvaluator, searchMethod)); |
---|
913 | } |
---|
914 | |
---|
915 | try { |
---|
916 | // Set options for ASEvaluator |
---|
917 | if (ASEvaluator instanceof OptionHandler) { |
---|
918 | ((OptionHandler)ASEvaluator).setOptions(options); |
---|
919 | } |
---|
920 | |
---|
921 | /* // Set options for Search method |
---|
922 | if (searchMethod instanceof OptionHandler) |
---|
923 | { |
---|
924 | if (searchOptions != null) |
---|
925 | { |
---|
926 | ((OptionHandler)searchMethod).setOptions(searchOptions); |
---|
927 | } |
---|
928 | } |
---|
929 | Utils.checkForRemainingOptions(searchOptions); */ |
---|
930 | } |
---|
931 | catch (Exception e) { |
---|
932 | throw new Exception("\n" + e.getMessage() |
---|
933 | + makeOptionString(ASEvaluator, searchMethod)); |
---|
934 | } |
---|
935 | |
---|
936 | try { |
---|
937 | Utils.checkForRemainingOptions(options); |
---|
938 | } |
---|
939 | catch (Exception e) { |
---|
940 | throw new Exception('\n' + e.getMessage() |
---|
941 | + makeOptionString(ASEvaluator, searchMethod)); |
---|
942 | } |
---|
943 | |
---|
944 | if (helpRequested) { |
---|
945 | System.out.println(makeOptionString(ASEvaluator, searchMethod)); |
---|
946 | System.exit(0); |
---|
947 | } |
---|
948 | |
---|
949 | // set the attribute evaluator |
---|
950 | trainSelector.setEvaluator(ASEvaluator); |
---|
951 | |
---|
952 | // do the attribute selection |
---|
953 | trainSelector.SelectAttributes(train); |
---|
954 | |
---|
955 | // return the results string |
---|
956 | return trainSelector.toResultsString(); |
---|
957 | } |
---|
958 | |
---|
959 | |
---|
960 | /** |
---|
961 | * Assembles a text description of the attribute selection results. |
---|
962 | * |
---|
963 | * @return a string describing the results of attribute selection. |
---|
964 | */ |
---|
965 | private String printSelectionResults () { |
---|
966 | StringBuffer text = new StringBuffer(); |
---|
967 | text.append("\n\n=== Attribute Selection on all input data ===\n\n" |
---|
968 | + "Search Method:\n"); |
---|
969 | text.append(m_searchMethod.toString()); |
---|
970 | text.append("\nAttribute "); |
---|
971 | |
---|
972 | if (m_ASEvaluator instanceof SubsetEvaluator) { |
---|
973 | text.append("Subset Evaluator ("); |
---|
974 | } |
---|
975 | else { |
---|
976 | text.append("Evaluator ("); |
---|
977 | } |
---|
978 | |
---|
979 | if (!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) |
---|
980 | && !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator)) { |
---|
981 | text.append("supervised, "); |
---|
982 | text.append("Class ("); |
---|
983 | |
---|
984 | if (m_trainInstances.attribute(m_trainInstances.classIndex()) |
---|
985 | .isNumeric()) { |
---|
986 | text.append("numeric): "); |
---|
987 | } |
---|
988 | else { |
---|
989 | text.append("nominal): "); |
---|
990 | } |
---|
991 | |
---|
992 | text.append((m_trainInstances.classIndex() + 1) |
---|
993 | + " " |
---|
994 | + m_trainInstances.attribute(m_trainInstances |
---|
995 | .classIndex()).name() |
---|
996 | + "):\n"); |
---|
997 | } |
---|
998 | else { |
---|
999 | text.append("unsupervised):\n"); |
---|
1000 | } |
---|
1001 | |
---|
1002 | text.append(m_ASEvaluator.toString() + "\n"); |
---|
1003 | return text.toString(); |
---|
1004 | } |
---|
1005 | |
---|
1006 | |
---|
1007 | /** |
---|
1008 | * Make up the help string giving all the command line options |
---|
1009 | * |
---|
1010 | * @param ASEvaluator the attribute evaluator to include options for |
---|
1011 | * @param searchMethod the search method to include options for |
---|
1012 | * @return a string detailing the valid command line options |
---|
1013 | * @throws Exception if something goes wrong |
---|
1014 | */ |
---|
1015 | private static String makeOptionString (ASEvaluation ASEvaluator, |
---|
1016 | ASSearch searchMethod) |
---|
1017 | throws Exception { |
---|
1018 | |
---|
1019 | StringBuffer optionsText = new StringBuffer(""); |
---|
1020 | // General options |
---|
1021 | optionsText.append("\n\nGeneral options:\n\n"); |
---|
1022 | optionsText.append("-h\n\tdisplay this help\n"); |
---|
1023 | optionsText.append("-i <name of input file>\n"); |
---|
1024 | optionsText.append("\tSets training file.\n"); |
---|
1025 | optionsText.append("-c <class index>\n"); |
---|
1026 | optionsText.append("\tSets the class index for supervised attribute\n"); |
---|
1027 | optionsText.append("\tselection. Default=last column.\n"); |
---|
1028 | optionsText.append("-s <class name>\n"); |
---|
1029 | optionsText.append("\tSets search method for subset evaluators.\n"); |
---|
1030 | optionsText.append("-x <number of folds>\n"); |
---|
1031 | optionsText.append("\tPerform a cross validation.\n"); |
---|
1032 | optionsText.append("-n <random number seed>\n"); |
---|
1033 | optionsText.append("\tUse in conjunction with -x.\n"); |
---|
1034 | |
---|
1035 | // Get attribute evaluator-specific options |
---|
1036 | if (ASEvaluator instanceof OptionHandler) { |
---|
1037 | optionsText.append("\nOptions specific to " |
---|
1038 | + ASEvaluator.getClass().getName() |
---|
1039 | + ":\n\n"); |
---|
1040 | Enumeration enu = ((OptionHandler)ASEvaluator).listOptions(); |
---|
1041 | |
---|
1042 | while (enu.hasMoreElements()) { |
---|
1043 | Option option = (Option)enu.nextElement(); |
---|
1044 | optionsText.append(option.synopsis() + '\n'); |
---|
1045 | optionsText.append(option.description() + "\n"); |
---|
1046 | } |
---|
1047 | } |
---|
1048 | |
---|
1049 | if (searchMethod != null) { |
---|
1050 | if (searchMethod instanceof OptionHandler) { |
---|
1051 | optionsText.append("\nOptions specific to " |
---|
1052 | + searchMethod.getClass().getName() |
---|
1053 | + ":\n\n"); |
---|
1054 | Enumeration enu = ((OptionHandler)searchMethod).listOptions(); |
---|
1055 | |
---|
1056 | while (enu.hasMoreElements()) { |
---|
1057 | Option option = (Option)enu.nextElement(); |
---|
1058 | optionsText.append(option.synopsis() + '\n'); |
---|
1059 | optionsText.append(option.description() + "\n"); |
---|
1060 | } |
---|
1061 | } |
---|
1062 | } |
---|
1063 | else { |
---|
1064 | if (ASEvaluator instanceof SubsetEvaluator) { |
---|
1065 | System.out.println("No search method given."); |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | return optionsText.toString(); |
---|
1070 | } |
---|
1071 | |
---|
1072 | |
---|
1073 | /** |
---|
1074 | * Main method for testing this class. |
---|
1075 | * |
---|
1076 | * @param args the options |
---|
1077 | */ |
---|
1078 | public static void main (String[] args) { |
---|
1079 | try { |
---|
1080 | if (args.length == 0) { |
---|
1081 | throw new Exception("The first argument must be the name of an " |
---|
1082 | + "attribute/subset evaluator"); |
---|
1083 | } |
---|
1084 | |
---|
1085 | String EvaluatorName = args[0]; |
---|
1086 | args[0] = ""; |
---|
1087 | ASEvaluation newEval = ASEvaluation.forName(EvaluatorName, null); |
---|
1088 | System.out.println(SelectAttributes(newEval, args)); |
---|
1089 | } |
---|
1090 | catch (Exception e) { |
---|
1091 | System.out.println(e.getMessage()); |
---|
1092 | } |
---|
1093 | } |
---|
1094 | |
---|
1095 | /** |
---|
1096 | * Returns the revision string. |
---|
1097 | * |
---|
1098 | * @return the revision |
---|
1099 | */ |
---|
1100 | public String getRevision() { |
---|
1101 | return RevisionUtils.extract("$Revision: 1.47 $"); |
---|
1102 | } |
---|
1103 | } |
---|