[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * RuleGeneration.java |
---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.associations; |
---|
| 24 | |
---|
| 25 | import weka.core.FastVector; |
---|
| 26 | import weka.core.Instances; |
---|
| 27 | import weka.core.RevisionHandler; |
---|
| 28 | import weka.core.RevisionUtils; |
---|
| 29 | import weka.core.Statistics; |
---|
| 30 | import weka.core.Utils; |
---|
| 31 | |
---|
| 32 | import java.io.Serializable; |
---|
| 33 | import java.util.Hashtable; |
---|
| 34 | import java.util.TreeSet; |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | * Class implementing the rule generation procedure of the predictive apriori algorithm. |
---|
| 38 | * |
---|
| 39 | * Reference: T. Scheffer (2001). <i>Finding Association Rules That Trade Support |
---|
| 40 | * Optimally against Confidence</i>. Proc of the 5th European Conf. |
---|
| 41 | * on Principles and Practice of Knowledge Discovery in Databases (PKDD'01), |
---|
| 42 | * pp. 424-435. Freiburg, Germany: Springer-Verlag. <p> |
---|
| 43 | * |
---|
| 44 | * The implementation follows the paper expect for adding a rule to the output of the |
---|
| 45 | * <i>n</i> best rules. A rule is added if: |
---|
| 46 | * the expected predictive accuracy of this rule is among the <i>n</i> best and it is |
---|
| 47 | * not subsumed by a rule with at least the same expected predictive accuracy |
---|
| 48 | * (out of an unpublished manuscript from T. Scheffer). |
---|
| 49 | * |
---|
| 50 | * @author Stefan Mutter (mutter@cs.waikato.ac.nz) |
---|
| 51 | * @version $Revision: 1.4 $ */ |
---|
| 52 | public class RuleGeneration |
---|
| 53 | implements Serializable, RevisionHandler { |
---|
| 54 | |
---|
| 55 | /** for serialization */ |
---|
| 56 | private static final long serialVersionUID = -8927041669872491432L; |
---|
| 57 | |
---|
| 58 | /** The items stored as an array of of integer. */ |
---|
| 59 | protected int[] m_items; |
---|
| 60 | |
---|
| 61 | /** Counter for how many transactions contain this item set. */ |
---|
| 62 | protected int m_counter; |
---|
| 63 | |
---|
| 64 | /** The total number of transactions */ |
---|
| 65 | protected int m_totalTransactions; |
---|
| 66 | |
---|
| 67 | /** Flag indicating whether the list fo the best rules has changed. */ |
---|
| 68 | protected boolean m_change = false; |
---|
| 69 | |
---|
| 70 | /** The minimum expected predictive accuracy that is needed to be a candidate for the list of the best rules. */ |
---|
| 71 | protected double m_expectation; |
---|
| 72 | |
---|
| 73 | /** Threshold. If the support of the premise is higher the binomial distrubution is approximated by a normal one. */ |
---|
| 74 | protected static final int MAX_N = 300; |
---|
| 75 | |
---|
| 76 | /** The minimum support a rule needs to be a candidate for the list of the best rules. */ |
---|
| 77 | protected int m_minRuleCount; |
---|
| 78 | |
---|
| 79 | /** Sorted array of the mied points of the intervals used for prior estimation. */ |
---|
| 80 | protected double[] m_midPoints; |
---|
| 81 | |
---|
| 82 | /** Hashtable conatining the estimated prior probabilities. */ |
---|
| 83 | protected Hashtable m_priors; |
---|
| 84 | |
---|
| 85 | /** The list of the actual <i>n</i> best rules. */ |
---|
| 86 | protected TreeSet m_best; |
---|
| 87 | |
---|
| 88 | /** Integer indicating the generation time of a rule. */ |
---|
| 89 | protected int m_count; |
---|
| 90 | |
---|
| 91 | /** The instances. */ |
---|
| 92 | protected Instances m_instances; |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | /** |
---|
| 96 | * Constructor |
---|
| 97 | * @param itemSet item set for that rules should be generated. |
---|
| 98 | * The item set will form the premise of the rules. |
---|
| 99 | */ |
---|
| 100 | public RuleGeneration(ItemSet itemSet){ |
---|
| 101 | |
---|
| 102 | m_totalTransactions = itemSet.m_totalTransactions; |
---|
| 103 | m_counter = itemSet.m_counter; |
---|
| 104 | m_items = itemSet.m_items; |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * calculates the probability using a binomial distribution. |
---|
| 110 | * If the support of the premise is too large this distribution |
---|
| 111 | * is approximated by a normal distribution. |
---|
| 112 | * @param accuracy the accuracy value |
---|
| 113 | * @param ruleCount the support of the whole rule |
---|
| 114 | * @param premiseCount the support of the premise |
---|
| 115 | * @return the probability value |
---|
| 116 | */ |
---|
| 117 | public static final double binomialDistribution(double accuracy, double ruleCount, double premiseCount){ |
---|
| 118 | |
---|
| 119 | double mu, sigma; |
---|
| 120 | |
---|
| 121 | if(premiseCount < MAX_N) |
---|
| 122 | return Math.pow(2,(Utils.log2(Math.pow(accuracy,ruleCount))+Utils.log2(Math.pow((1.0-accuracy),(premiseCount-ruleCount)))+PriorEstimation.logbinomialCoefficient((int)premiseCount,(int)ruleCount))); |
---|
| 123 | else{ |
---|
| 124 | mu = premiseCount * accuracy; |
---|
| 125 | sigma = Math.sqrt((premiseCount * (1.0 - accuracy))*accuracy); |
---|
| 126 | return Statistics.normalProbability(((ruleCount+0.5)-mu)/(sigma*Math.sqrt(2))); |
---|
| 127 | } |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /** |
---|
| 131 | * calculates the expected predctive accuracy of a rule |
---|
| 132 | * @param ruleCount the support of the rule |
---|
| 133 | * @param premiseCount the premise support of the rule |
---|
| 134 | * @param midPoints array with all mid points |
---|
| 135 | * @param priors hashtable containing the prior probabilities |
---|
| 136 | * @return the expected predictive accuracy |
---|
| 137 | */ |
---|
| 138 | public static final double expectation(double ruleCount, int premiseCount,double[] midPoints, Hashtable priors){ |
---|
| 139 | |
---|
| 140 | double numerator = 0, denominator = 0; |
---|
| 141 | for(int i = 0;i < midPoints.length; i++){ |
---|
| 142 | Double actualPrior = (Double)priors.get(new Double(midPoints[i])); |
---|
| 143 | if(actualPrior != null){ |
---|
| 144 | if(actualPrior.doubleValue() != 0){ |
---|
| 145 | double addend = actualPrior.doubleValue() * binomialDistribution(midPoints[i], ruleCount, (double)premiseCount); |
---|
| 146 | denominator += addend; |
---|
| 147 | numerator += addend*midPoints[i]; |
---|
| 148 | } |
---|
| 149 | } |
---|
| 150 | } |
---|
| 151 | if(denominator <= 0 || Double.isNaN(denominator)) |
---|
| 152 | System.out.println("RuleItem denominator: "+denominator); |
---|
| 153 | if(numerator <= 0 || Double.isNaN(numerator)) |
---|
| 154 | System.out.println("RuleItem numerator: "+numerator); |
---|
| 155 | return numerator/denominator; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /** |
---|
| 159 | * Generates all rules for an item set. The item set is the premise. |
---|
| 160 | * @param numRules the number of association rules the use wants to mine. |
---|
| 161 | * This number equals the size <i>n</i> of the list of the |
---|
| 162 | * best rules. |
---|
| 163 | * @param midPoints the mid points of the intervals |
---|
| 164 | * @param priors Hashtable that contains the prior probabilities |
---|
| 165 | * @param expectation the minimum value of the expected predictive accuracy |
---|
| 166 | * that is needed to get into the list of the best rules |
---|
| 167 | * @param instances the instances for which association rules are generated |
---|
| 168 | * @param best the list of the <i>n</i> best rules. |
---|
| 169 | * The list is implemented as a TreeSet |
---|
| 170 | * @param genTime the maximum time of generation |
---|
| 171 | * @return all the rules with minimum confidence for the given item set |
---|
| 172 | */ |
---|
| 173 | public TreeSet generateRules(int numRules, double[] midPoints, Hashtable priors, double expectation, Instances instances,TreeSet best,int genTime) { |
---|
| 174 | |
---|
| 175 | boolean redundant = false; |
---|
| 176 | FastVector consequences = new FastVector(), consequencesMinusOne = new FastVector(); |
---|
| 177 | ItemSet premise; |
---|
| 178 | int s = 0; |
---|
| 179 | RuleItem current = null, old; |
---|
| 180 | |
---|
| 181 | Hashtable hashtable; |
---|
| 182 | |
---|
| 183 | m_change = false; |
---|
| 184 | m_midPoints = midPoints; |
---|
| 185 | m_priors = priors; |
---|
| 186 | m_best = best; |
---|
| 187 | m_expectation = expectation; |
---|
| 188 | m_count = genTime; |
---|
| 189 | m_instances = instances; |
---|
| 190 | |
---|
| 191 | //create rule body |
---|
| 192 | premise =null; |
---|
| 193 | premise = new ItemSet(m_totalTransactions); |
---|
| 194 | premise.m_items = new int[m_items.length]; |
---|
| 195 | System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length); |
---|
| 196 | premise.m_counter = m_counter; |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | do{ |
---|
| 200 | m_minRuleCount = 1; |
---|
| 201 | while(expectation((double)m_minRuleCount,premise.m_counter,m_midPoints,m_priors) <= m_expectation){ |
---|
| 202 | m_minRuleCount++; |
---|
| 203 | if(m_minRuleCount > premise.m_counter) |
---|
| 204 | return m_best; |
---|
| 205 | } |
---|
| 206 | redundant = false; |
---|
| 207 | for(int i = 0; i < instances.numAttributes();i++){ |
---|
| 208 | if(i == 0){ |
---|
| 209 | for(int j = 0; j < m_items.length;j++) |
---|
| 210 | if(m_items[j] == -1) |
---|
| 211 | consequences = singleConsequence(instances, j,consequences); |
---|
| 212 | if(premise == null || consequences.size() == 0) |
---|
| 213 | return m_best; |
---|
| 214 | } |
---|
| 215 | FastVector allRuleItems = new FastVector(); |
---|
| 216 | int index = 0; |
---|
| 217 | do { |
---|
| 218 | int h = 0; |
---|
| 219 | while(h < consequences.size()){ |
---|
| 220 | RuleItem dummie = new RuleItem(); |
---|
| 221 | current = dummie.generateRuleItem(premise,(ItemSet)consequences.elementAt(h),instances,m_count,m_minRuleCount,m_midPoints,m_priors); |
---|
| 222 | if(current != null){ |
---|
| 223 | allRuleItems.addElement(current); |
---|
| 224 | h++; |
---|
| 225 | } |
---|
| 226 | else |
---|
| 227 | consequences.removeElementAt(h); |
---|
| 228 | } |
---|
| 229 | if(index == i) |
---|
| 230 | break; |
---|
| 231 | consequencesMinusOne = consequences; |
---|
| 232 | consequences = ItemSet.mergeAllItemSets(consequencesMinusOne, index, instances.numInstances()); |
---|
| 233 | hashtable = ItemSet.getHashtable(consequencesMinusOne, consequencesMinusOne.size()); |
---|
| 234 | consequences = ItemSet.pruneItemSets(consequences, hashtable); |
---|
| 235 | index++; |
---|
| 236 | } while (consequences.size() > 0); |
---|
| 237 | for(int h = 0;h < allRuleItems.size();h++){ |
---|
| 238 | current = (RuleItem)allRuleItems.elementAt(h); |
---|
| 239 | m_count++; |
---|
| 240 | if(m_best.size() < numRules){ |
---|
| 241 | m_change =true; |
---|
| 242 | redundant = removeRedundant(current); |
---|
| 243 | } |
---|
| 244 | else{ |
---|
| 245 | if(current.accuracy() > m_expectation){ |
---|
| 246 | m_expectation = ((RuleItem)(m_best.first())).accuracy(); |
---|
| 247 | boolean remove = m_best.remove(m_best.first()); |
---|
| 248 | m_change = true; |
---|
| 249 | redundant = removeRedundant(current); |
---|
| 250 | m_expectation = ((RuleItem)(m_best.first())).accuracy(); |
---|
| 251 | while(expectation((double)m_minRuleCount, (current.premise()).m_counter,m_midPoints,m_priors) < m_expectation){ |
---|
| 252 | m_minRuleCount++; |
---|
| 253 | if(m_minRuleCount > (current.premise()).m_counter) |
---|
| 254 | break; |
---|
| 255 | } |
---|
| 256 | } |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | } |
---|
| 261 | }while(redundant); |
---|
| 262 | return m_best; |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | /** |
---|
| 266 | * Methods that decides whether or not rule a subsumes rule b. |
---|
| 267 | * The defintion of subsumption is: |
---|
| 268 | * Rule a subsumes rule b, if a subsumes b |
---|
| 269 | * AND |
---|
| 270 | * a has got least the same expected predictive accuracy as b. |
---|
| 271 | * @param a an association rule stored as a RuleItem |
---|
| 272 | * @param b an association rule stored as a RuleItem |
---|
| 273 | * @return true if rule a subsumes rule b or false otherwise. |
---|
| 274 | */ |
---|
| 275 | public static boolean aSubsumesB(RuleItem a, RuleItem b){ |
---|
| 276 | |
---|
| 277 | if(a.m_accuracy < b.m_accuracy) |
---|
| 278 | return false; |
---|
| 279 | for(int k = 0; k < a.premise().m_items.length;k++){ |
---|
| 280 | if(a.premise().m_items[k] != b.premise().m_items[k]){ |
---|
| 281 | if((a.premise().m_items[k] != -1 && b.premise().m_items[k] != -1) || b.premise().m_items[k] == -1) |
---|
| 282 | return false; |
---|
| 283 | } |
---|
| 284 | if(a.consequence().m_items[k] != b.consequence().m_items[k]){ |
---|
| 285 | if((a.consequence().m_items[k] != -1 && b.consequence().m_items[k] != -1) || a.consequence().m_items[k] == -1) |
---|
| 286 | return false; |
---|
| 287 | } |
---|
| 288 | } |
---|
| 289 | return true; |
---|
| 290 | |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | /** |
---|
| 294 | * generates a consequence of length 1 for an association rule. |
---|
| 295 | * @param instances the instances under consideration |
---|
| 296 | * @param attNum an item that does not occur in the premise |
---|
| 297 | * @param consequences FastVector that possibly already contains other consequences of length 1 |
---|
| 298 | * @return FastVector with consequences of length 1 |
---|
| 299 | */ |
---|
| 300 | public static FastVector singleConsequence(Instances instances, int attNum, FastVector consequences){ |
---|
| 301 | |
---|
| 302 | ItemSet consequence; |
---|
| 303 | |
---|
| 304 | for (int i = 0; i < instances.numAttributes(); i++) { |
---|
| 305 | if( i == attNum){ |
---|
| 306 | for (int j = 0; j < instances.attribute(i).numValues(); j++) { |
---|
| 307 | consequence = new ItemSet(instances.numInstances()); |
---|
| 308 | consequence.m_items = new int[instances.numAttributes()]; |
---|
| 309 | for (int k = 0; k < instances.numAttributes(); k++) |
---|
| 310 | consequence.m_items[k] = -1; |
---|
| 311 | consequence.m_items[i] = j; |
---|
| 312 | consequences.addElement(consequence); |
---|
| 313 | } |
---|
| 314 | } |
---|
| 315 | } |
---|
| 316 | return consequences; |
---|
| 317 | |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | /** |
---|
| 321 | * Method that removes redundant rules out of the list of the best rules. |
---|
| 322 | * A rule is in that list if: |
---|
| 323 | * the expected predictive accuracy of this rule is among the best and it is |
---|
| 324 | * not subsumed by a rule with at least the same expected predictive accuracy |
---|
| 325 | * @param toInsert the rule that should be inserted into the list |
---|
| 326 | * @return true if the method has changed the list, false otherwise |
---|
| 327 | */ |
---|
| 328 | public boolean removeRedundant(RuleItem toInsert){ |
---|
| 329 | |
---|
| 330 | boolean redundant = false, fSubsumesT = false, tSubsumesF = false; |
---|
| 331 | RuleItem first; |
---|
| 332 | int subsumes = 0; |
---|
| 333 | Object [] best = m_best.toArray(); |
---|
| 334 | for(int i=0; i < best.length; i++){ |
---|
| 335 | first = (RuleItem)best[i]; |
---|
| 336 | fSubsumesT = aSubsumesB(first,toInsert); |
---|
| 337 | tSubsumesF = aSubsumesB(toInsert, first); |
---|
| 338 | if(fSubsumesT){ |
---|
| 339 | subsumes = 1; |
---|
| 340 | break; |
---|
| 341 | } |
---|
| 342 | else{ |
---|
| 343 | if(tSubsumesF){ |
---|
| 344 | boolean remove = m_best.remove(first); |
---|
| 345 | subsumes = 2; |
---|
| 346 | redundant =true; |
---|
| 347 | } |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | if(subsumes == 0 || subsumes == 2) |
---|
| 351 | m_best.add(toInsert); |
---|
| 352 | return redundant; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | /** |
---|
| 356 | * Gets the actual maximum value of the generation time |
---|
| 357 | * @return the actual maximum value of the generation time |
---|
| 358 | */ |
---|
| 359 | public int count(){ |
---|
| 360 | |
---|
| 361 | return m_count; |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | /** |
---|
| 365 | * Gets if the list fo the best rules has been changed |
---|
| 366 | * @return whether or not the list fo the best rules has been changed |
---|
| 367 | */ |
---|
| 368 | public boolean change(){ |
---|
| 369 | |
---|
| 370 | return m_change; |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * Returns the revision string. |
---|
| 375 | * |
---|
| 376 | * @return the revision |
---|
| 377 | */ |
---|
| 378 | public String getRevision() { |
---|
| 379 | return RevisionUtils.extract("$Revision: 1.4 $"); |
---|
| 380 | } |
---|
| 381 | } |
---|