1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PredictiveApriori.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.associations; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.OptionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.TechnicalInformation; |
---|
32 | import weka.core.TechnicalInformationHandler; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.Capabilities.Capability; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformation.Type; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Hashtable; |
---|
40 | import java.util.TreeSet; |
---|
41 | import java.util.Vector; |
---|
42 | |
---|
43 | /** |
---|
44 | <!-- globalinfo-start --> |
---|
45 | * Class implementing the predictive apriori algorithm to mine association rules.<br/> |
---|
46 | * It searches with an increasing support threshold for the best 'n' rules concerning a support-based corrected confidence value.<br/> |
---|
47 | * <br/> |
---|
48 | * For more information see:<br/> |
---|
49 | * <br/> |
---|
50 | * Tobias Scheffer: Finding Association Rules That Trade Support Optimally against Confidence. In: 5th European Conference on Principles of Data Mining and Knowledge Discovery, 424-435, 2001.<br/> |
---|
51 | * <br/> |
---|
52 | * The implementation follows the paper expect for adding a rule to the output of the 'n' best rules. A rule is added if:<br/> |
---|
53 | * the expected predictive accuracy of this rule is among the 'n' best and it is not subsumed by a rule with at least the same expected predictive accuracy (out of an unpublished manuscript from T. Scheffer). |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- technical-bibtex-start --> |
---|
58 | * BibTeX: |
---|
59 | * <pre> |
---|
60 | * @inproceedings{Scheffer2001, |
---|
61 | * author = {Tobias Scheffer}, |
---|
62 | * booktitle = {5th European Conference on Principles of Data Mining and Knowledge Discovery}, |
---|
63 | * pages = {424-435}, |
---|
64 | * publisher = {Springer}, |
---|
65 | * title = {Finding Association Rules That Trade Support Optimally against Confidence}, |
---|
66 | * year = {2001} |
---|
67 | * } |
---|
68 | * </pre> |
---|
69 | * <p/> |
---|
70 | <!-- technical-bibtex-end --> |
---|
71 | * |
---|
72 | <!-- options-start --> |
---|
73 | * Valid options are: <p/> |
---|
74 | * |
---|
75 | * <pre> -N <required number of rules output> |
---|
76 | * The required number of rules. (default = 100)</pre> |
---|
77 | * |
---|
78 | * <pre> -A |
---|
79 | * If set class association rules are mined. (default = no)</pre> |
---|
80 | * |
---|
81 | * <pre> -c <the class index> |
---|
82 | * The class index. (default = last)</pre> |
---|
83 | * |
---|
84 | <!-- options-end --> |
---|
85 | * |
---|
86 | * @author Stefan Mutter (mutter@cs.waikato.ac.nz) |
---|
87 | * @version $Revision: 5444 $ */ |
---|
88 | |
---|
89 | public class PredictiveApriori |
---|
90 | extends AbstractAssociator |
---|
91 | implements OptionHandler, CARuleMiner, TechnicalInformationHandler { |
---|
92 | |
---|
93 | /** for serialization */ |
---|
94 | static final long serialVersionUID = 8109088846865075341L; |
---|
95 | |
---|
96 | /** The minimum support. */ |
---|
97 | protected int m_premiseCount; |
---|
98 | |
---|
99 | /** The maximum number of rules that are output. */ |
---|
100 | protected int m_numRules; |
---|
101 | |
---|
102 | /** The number of rules created for the prior estimation. */ |
---|
103 | protected static final int m_numRandRules = 1000; |
---|
104 | |
---|
105 | /** The number of intervals used for the prior estimation. */ |
---|
106 | protected static final int m_numIntervals = 100; |
---|
107 | |
---|
108 | /** The set of all sets of itemsets. */ |
---|
109 | protected FastVector m_Ls; |
---|
110 | |
---|
111 | /** The same information stored in hash tables. */ |
---|
112 | protected FastVector m_hashtables; |
---|
113 | |
---|
114 | /** The list of all generated rules. */ |
---|
115 | protected FastVector[] m_allTheRules; |
---|
116 | |
---|
117 | /** The instances (transactions) to be used for generating |
---|
118 | the association rules. */ |
---|
119 | protected Instances m_instances; |
---|
120 | |
---|
121 | /** The hashtable containing the prior probabilities. */ |
---|
122 | protected Hashtable m_priors; |
---|
123 | |
---|
124 | /** The mid points of the intervals used for the prior estimation. */ |
---|
125 | protected double[] m_midPoints; |
---|
126 | |
---|
127 | /** The expected predictive accuracy a rule needs to be a candidate for the output. */ |
---|
128 | protected double m_expectation; |
---|
129 | |
---|
130 | /** The n best rules. */ |
---|
131 | protected TreeSet m_best; |
---|
132 | |
---|
133 | /** Flag keeping track if the list of the n best rules has changed. */ |
---|
134 | protected boolean m_bestChanged; |
---|
135 | |
---|
136 | /** Counter for the time of generation for an association rule. */ |
---|
137 | protected int m_count; |
---|
138 | |
---|
139 | /** The prior estimator. */ |
---|
140 | protected PriorEstimation m_priorEstimator; |
---|
141 | |
---|
142 | /** The class index. */ |
---|
143 | protected int m_classIndex; |
---|
144 | |
---|
145 | /** Flag indicating whether class association rules are mined. */ |
---|
146 | protected boolean m_car; |
---|
147 | |
---|
148 | /** |
---|
149 | * Returns a string describing this associator |
---|
150 | * @return a description of the evaluator suitable for |
---|
151 | * displaying in the explorer/experimenter gui |
---|
152 | */ |
---|
153 | public String globalInfo() { |
---|
154 | return |
---|
155 | "Class implementing the predictive apriori algorithm to mine " |
---|
156 | + "association rules.\n" |
---|
157 | + "It searches with an increasing support threshold for the best 'n' " |
---|
158 | + "rules concerning a support-based corrected confidence value.\n\n" |
---|
159 | + "For more information see:\n\n" |
---|
160 | + getTechnicalInformation().toString() + "\n\n" |
---|
161 | + "The implementation follows the paper expect for adding a rule to the " |
---|
162 | + "output of the 'n' best rules. A rule is added if:\n" |
---|
163 | + "the expected predictive accuracy of this rule is among the 'n' best " |
---|
164 | + "and it is not subsumed by a rule with at least the same expected " |
---|
165 | + "predictive accuracy (out of an unpublished manuscript from T. " |
---|
166 | + "Scheffer)."; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Returns an instance of a TechnicalInformation object, containing |
---|
171 | * detailed information about the technical background of this class, |
---|
172 | * e.g., paper reference or book this class is based on. |
---|
173 | * |
---|
174 | * @return the technical information about this class |
---|
175 | */ |
---|
176 | public TechnicalInformation getTechnicalInformation() { |
---|
177 | TechnicalInformation result; |
---|
178 | |
---|
179 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
180 | result.setValue(Field.AUTHOR, "Tobias Scheffer"); |
---|
181 | result.setValue(Field.TITLE, "Finding Association Rules That Trade Support Optimally against Confidence"); |
---|
182 | result.setValue(Field.BOOKTITLE, "5th European Conference on Principles of Data Mining and Knowledge Discovery"); |
---|
183 | result.setValue(Field.YEAR, "2001"); |
---|
184 | result.setValue(Field.PAGES, "424-435"); |
---|
185 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
186 | |
---|
187 | return result; |
---|
188 | } |
---|
189 | |
---|
190 | /** |
---|
191 | * Constructor that allows to sets default values for the |
---|
192 | * minimum confidence and the maximum number of rules |
---|
193 | * the minimum confidence. |
---|
194 | */ |
---|
195 | public PredictiveApriori() { |
---|
196 | |
---|
197 | resetOptions(); |
---|
198 | } |
---|
199 | |
---|
200 | /** |
---|
201 | * Resets the options to the default values. |
---|
202 | */ |
---|
203 | public void resetOptions() { |
---|
204 | |
---|
205 | m_numRules = 105; |
---|
206 | m_premiseCount = 1; |
---|
207 | m_best = new TreeSet(); |
---|
208 | m_bestChanged = false; |
---|
209 | m_expectation = 0; |
---|
210 | m_count = 1; |
---|
211 | m_car = false; |
---|
212 | m_classIndex = -1; |
---|
213 | m_priors = new Hashtable(); |
---|
214 | |
---|
215 | |
---|
216 | |
---|
217 | } |
---|
218 | |
---|
219 | /** |
---|
220 | * Returns default capabilities of the classifier. |
---|
221 | * |
---|
222 | * @return the capabilities of this classifier |
---|
223 | */ |
---|
224 | public Capabilities getCapabilities() { |
---|
225 | Capabilities result = super.getCapabilities(); |
---|
226 | result.disableAll(); |
---|
227 | |
---|
228 | // attributes |
---|
229 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
230 | result.enable(Capability.MISSING_VALUES); |
---|
231 | |
---|
232 | // class |
---|
233 | result.enable(Capability.NOMINAL_CLASS); |
---|
234 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
235 | |
---|
236 | return result; |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Method that generates all large itemsets with a minimum support, and from |
---|
241 | * these all association rules. |
---|
242 | * |
---|
243 | * @param instances the instances to be used for generating the associations |
---|
244 | * @throws Exception if rules can't be built successfully |
---|
245 | */ |
---|
246 | public void buildAssociations(Instances instances) throws Exception { |
---|
247 | |
---|
248 | int temp = m_premiseCount, exactNumber = m_numRules-5; |
---|
249 | |
---|
250 | m_premiseCount = 1; |
---|
251 | m_best = new TreeSet(); |
---|
252 | m_bestChanged = false; |
---|
253 | m_expectation = 0; |
---|
254 | m_count = 1; |
---|
255 | m_instances = new Instances(instances); |
---|
256 | |
---|
257 | if (m_classIndex == -1) |
---|
258 | m_instances.setClassIndex(m_instances.numAttributes()-1); |
---|
259 | else if (m_classIndex < m_instances.numAttributes() && m_classIndex >= 0) |
---|
260 | m_instances.setClassIndex(m_classIndex); |
---|
261 | else |
---|
262 | throw new Exception("Invalid class index."); |
---|
263 | |
---|
264 | // can associator handle the data? |
---|
265 | getCapabilities().testWithFail(m_instances); |
---|
266 | |
---|
267 | //prior estimation |
---|
268 | m_priorEstimator = new PriorEstimation(m_instances,m_numRandRules,m_numIntervals,m_car); |
---|
269 | m_priors = m_priorEstimator.estimatePrior(); |
---|
270 | m_midPoints = m_priorEstimator.getMidPoints(); |
---|
271 | |
---|
272 | m_Ls = new FastVector(); |
---|
273 | m_hashtables = new FastVector(); |
---|
274 | |
---|
275 | for(int i =1; i < m_instances.numAttributes();i++){ |
---|
276 | m_bestChanged = false; |
---|
277 | if(!m_car){ |
---|
278 | // find large item sets |
---|
279 | findLargeItemSets(i); |
---|
280 | |
---|
281 | //find association rules (rule generation procedure) |
---|
282 | findRulesQuickly(); |
---|
283 | } |
---|
284 | else{ |
---|
285 | findLargeCarItemSets(i); |
---|
286 | findCaRulesQuickly(); |
---|
287 | } |
---|
288 | |
---|
289 | if(m_bestChanged){ |
---|
290 | temp =m_premiseCount; |
---|
291 | while(RuleGeneration.expectation(m_premiseCount, m_premiseCount,m_midPoints,m_priors) <= m_expectation){ |
---|
292 | m_premiseCount++; |
---|
293 | if(m_premiseCount > m_instances.numInstances()) |
---|
294 | break; |
---|
295 | } |
---|
296 | } |
---|
297 | if(m_premiseCount > m_instances.numInstances()){ |
---|
298 | |
---|
299 | // Reserve space for variables |
---|
300 | m_allTheRules = new FastVector[3]; |
---|
301 | m_allTheRules[0] = new FastVector(); |
---|
302 | m_allTheRules[1] = new FastVector(); |
---|
303 | m_allTheRules[2] = new FastVector(); |
---|
304 | |
---|
305 | int k = 0; |
---|
306 | while(m_best.size()>0 && exactNumber > 0){ |
---|
307 | m_allTheRules[0].insertElementAt((ItemSet)((RuleItem)m_best.last()).premise(),k); |
---|
308 | m_allTheRules[1].insertElementAt((ItemSet)((RuleItem)m_best.last()).consequence(),k); |
---|
309 | m_allTheRules[2].insertElementAt(new Double(((RuleItem)m_best.last()).accuracy()),k); |
---|
310 | m_best.remove(m_best.last()); |
---|
311 | k++; |
---|
312 | exactNumber--; |
---|
313 | } |
---|
314 | return; |
---|
315 | } |
---|
316 | |
---|
317 | if(temp != m_premiseCount && m_Ls.size() > 0){ |
---|
318 | FastVector kSets = (FastVector)m_Ls.lastElement(); |
---|
319 | m_Ls.removeElementAt(m_Ls.size()-1); |
---|
320 | kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); |
---|
321 | m_Ls.addElement(kSets); |
---|
322 | } |
---|
323 | } |
---|
324 | |
---|
325 | // Reserve space for variables |
---|
326 | m_allTheRules = new FastVector[3]; |
---|
327 | m_allTheRules[0] = new FastVector(); |
---|
328 | m_allTheRules[1] = new FastVector(); |
---|
329 | m_allTheRules[2] = new FastVector(); |
---|
330 | |
---|
331 | int k = 0; |
---|
332 | while(m_best.size()>0 && exactNumber > 0){ |
---|
333 | m_allTheRules[0].insertElementAt((ItemSet)((RuleItem)m_best.last()).premise(),k); |
---|
334 | m_allTheRules[1].insertElementAt((ItemSet)((RuleItem)m_best.last()).consequence(),k); |
---|
335 | m_allTheRules[2].insertElementAt(new Double(((RuleItem)m_best.last()).accuracy()),k); |
---|
336 | m_best.remove(m_best.last()); |
---|
337 | k++; |
---|
338 | exactNumber--; |
---|
339 | } |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Method that mines the n best class association rules. |
---|
344 | * @return an sorted array of FastVector (depending on the expected predictive accuracy) containing the rules and metric information |
---|
345 | * @param data the instances for which class association rules should be mined |
---|
346 | * @throws Exception if rules can't be built successfully |
---|
347 | */ |
---|
348 | public FastVector[] mineCARs(Instances data) throws Exception{ |
---|
349 | |
---|
350 | m_car = true; |
---|
351 | m_best = new TreeSet(); |
---|
352 | m_premiseCount = 1; |
---|
353 | m_bestChanged = false; |
---|
354 | m_expectation = 0; |
---|
355 | m_count = 1; |
---|
356 | buildAssociations(data); |
---|
357 | FastVector[] allCARRules = new FastVector[3]; |
---|
358 | allCARRules[0] = new FastVector(); |
---|
359 | allCARRules[1] = new FastVector(); |
---|
360 | allCARRules[2] = new FastVector(); |
---|
361 | for(int k =0; k < m_allTheRules[0].size();k++){ |
---|
362 | int[] newPremiseArray = new int[m_instances.numAttributes()-1]; |
---|
363 | int help = 0; |
---|
364 | for(int j = 0;j < m_instances.numAttributes();j++){ |
---|
365 | if(j != m_instances.classIndex()){ |
---|
366 | newPremiseArray[help] = ((ItemSet)m_allTheRules[0].elementAt(k)).itemAt(j); |
---|
367 | help++; |
---|
368 | } |
---|
369 | } |
---|
370 | ItemSet newPremise = new ItemSet(m_instances.numInstances(), newPremiseArray); |
---|
371 | newPremise.setCounter (((ItemSet)m_allTheRules[0].elementAt(k)).counter()); |
---|
372 | allCARRules[0].addElement(newPremise); |
---|
373 | int[] newConsArray = new int[1]; |
---|
374 | newConsArray[0] =((ItemSet)m_allTheRules[1].elementAt(k)).itemAt(m_instances.classIndex()); |
---|
375 | ItemSet newCons = new ItemSet(m_instances.numInstances(), newConsArray); |
---|
376 | newCons.setCounter(((ItemSet)m_allTheRules[1].elementAt(k)).counter()); |
---|
377 | allCARRules[1].addElement(newCons); |
---|
378 | allCARRules[2].addElement(m_allTheRules[2].elementAt(k)); |
---|
379 | } |
---|
380 | |
---|
381 | return allCARRules; |
---|
382 | } |
---|
383 | |
---|
384 | /** |
---|
385 | * Gets the instances without the class attribute |
---|
386 | * @return instances without class attribute |
---|
387 | */ |
---|
388 | public Instances getInstancesNoClass() { |
---|
389 | |
---|
390 | Instances noClass = null; |
---|
391 | try{ |
---|
392 | noClass = LabeledItemSet.divide(m_instances,false); |
---|
393 | } |
---|
394 | catch(Exception e){ |
---|
395 | e.printStackTrace(); |
---|
396 | System.out.println("\n"+e.getMessage()); |
---|
397 | } |
---|
398 | //System.out.println(noClass); |
---|
399 | return noClass; |
---|
400 | } |
---|
401 | |
---|
402 | /** |
---|
403 | * Gets the class attribute of all instances |
---|
404 | * @return Instances containing only the class attribute |
---|
405 | */ |
---|
406 | public Instances getInstancesOnlyClass() { |
---|
407 | |
---|
408 | Instances onlyClass = null; |
---|
409 | try{ |
---|
410 | onlyClass = LabeledItemSet.divide(m_instances,true); |
---|
411 | } |
---|
412 | catch(Exception e){ |
---|
413 | e.printStackTrace(); |
---|
414 | System.out.println("\n"+e.getMessage()); |
---|
415 | } |
---|
416 | return onlyClass; |
---|
417 | |
---|
418 | } |
---|
419 | |
---|
420 | /** |
---|
421 | * Returns an enumeration describing the available options. |
---|
422 | * |
---|
423 | * @return an enumeration of all the available options. |
---|
424 | */ |
---|
425 | public Enumeration listOptions() { |
---|
426 | |
---|
427 | String string1 = "\tThe required number of rules. (default = " + (m_numRules-5) + ")", |
---|
428 | string2 = "\tIf set class association rules are mined. (default = no)", |
---|
429 | string3 = "\tThe class index. (default = last)"; |
---|
430 | FastVector newVector = new FastVector(3); |
---|
431 | |
---|
432 | newVector.addElement(new Option(string1, "N", 1, |
---|
433 | "-N <required number of rules output>")); |
---|
434 | newVector.addElement(new Option(string2, "A", 0, |
---|
435 | "-A")); |
---|
436 | newVector.addElement(new Option(string3, "c", 1, |
---|
437 | "-c <the class index>")); |
---|
438 | return newVector.elements(); |
---|
439 | } |
---|
440 | |
---|
441 | |
---|
442 | /** |
---|
443 | * Parses a given list of options. <p/> |
---|
444 | * |
---|
445 | <!-- options-start --> |
---|
446 | * Valid options are: <p/> |
---|
447 | * |
---|
448 | * <pre> -N <required number of rules output> |
---|
449 | * The required number of rules. (default = 100)</pre> |
---|
450 | * |
---|
451 | * <pre> -A |
---|
452 | * If set class association rules are mined. (default = no)</pre> |
---|
453 | * |
---|
454 | * <pre> -c <the class index> |
---|
455 | * The class index. (default = last)</pre> |
---|
456 | * |
---|
457 | <!-- options-end --> |
---|
458 | * |
---|
459 | * @param options the list of options as an array of strings |
---|
460 | * @throws Exception if an option is not supported |
---|
461 | */ |
---|
462 | public void setOptions(String[] options) throws Exception { |
---|
463 | |
---|
464 | resetOptions(); |
---|
465 | |
---|
466 | String numRulesString = Utils.getOption('N', options); |
---|
467 | if (numRulesString.length() != 0) |
---|
468 | m_numRules = Integer.parseInt(numRulesString)+5; |
---|
469 | else |
---|
470 | m_numRules = Integer.MAX_VALUE; |
---|
471 | |
---|
472 | String classIndexString = Utils.getOption('c',options); |
---|
473 | if (classIndexString.length() != 0) |
---|
474 | m_classIndex = Integer.parseInt(classIndexString); |
---|
475 | |
---|
476 | m_car = Utils.getFlag('A', options); |
---|
477 | } |
---|
478 | |
---|
479 | /** |
---|
480 | * Gets the current settings of the PredictiveApriori object. |
---|
481 | * |
---|
482 | * @return an array of strings suitable for passing to setOptions |
---|
483 | */ |
---|
484 | public String [] getOptions() { |
---|
485 | Vector result; |
---|
486 | |
---|
487 | result = new Vector(); |
---|
488 | |
---|
489 | result.add("-N"); |
---|
490 | result.add("" + (m_numRules-5)); |
---|
491 | |
---|
492 | if (m_car) |
---|
493 | result.add("-A"); |
---|
494 | |
---|
495 | result.add("-c"); |
---|
496 | result.add("" + m_classIndex); |
---|
497 | |
---|
498 | return (String[]) result.toArray(new String[result.size()]); |
---|
499 | } |
---|
500 | |
---|
501 | |
---|
502 | /** |
---|
503 | * Outputs the association rules. |
---|
504 | * |
---|
505 | * @return a string representation of the model |
---|
506 | */ |
---|
507 | public String toString() { |
---|
508 | |
---|
509 | StringBuffer text = new StringBuffer(); |
---|
510 | |
---|
511 | if (m_allTheRules[0].size() == 0) |
---|
512 | return "\nNo large itemsets and rules found!\n"; |
---|
513 | text.append("\nPredictiveApriori\n===================\n\n"); |
---|
514 | text.append("\nBest rules found:\n\n"); |
---|
515 | |
---|
516 | for (int i = 0; i < m_allTheRules[0].size(); i++) { |
---|
517 | text.append(Utils.doubleToString((double)i+1, |
---|
518 | (int)(Math.log(m_numRules)/Math.log(10)+1),0)+ |
---|
519 | ". " + ((ItemSet)m_allTheRules[0].elementAt(i)). |
---|
520 | toString(m_instances) |
---|
521 | + " ==> " + ((ItemSet)m_allTheRules[1].elementAt(i)). |
---|
522 | toString(m_instances) +" acc:("+ |
---|
523 | Utils.doubleToString(((Double)m_allTheRules[2]. |
---|
524 | elementAt(i)).doubleValue(),5)+")"); |
---|
525 | |
---|
526 | text.append('\n'); |
---|
527 | } |
---|
528 | |
---|
529 | |
---|
530 | return text.toString(); |
---|
531 | } |
---|
532 | |
---|
533 | |
---|
534 | /** |
---|
535 | * Returns the tip text for this property |
---|
536 | * @return tip text for this property suitable for |
---|
537 | * displaying in the explorer/experimenter gui |
---|
538 | */ |
---|
539 | public String numRulesTipText() { |
---|
540 | return "Number of rules to find."; |
---|
541 | } |
---|
542 | |
---|
543 | /** |
---|
544 | * Get the value of the number of required rules. |
---|
545 | * |
---|
546 | * @return Value of the number of required rules. |
---|
547 | */ |
---|
548 | public int getNumRules() { |
---|
549 | |
---|
550 | return m_numRules-5; |
---|
551 | } |
---|
552 | |
---|
553 | /** |
---|
554 | * Set the value of required rules. |
---|
555 | * |
---|
556 | * @param v Value to assign to number of required rules. |
---|
557 | */ |
---|
558 | public void setNumRules(int v) { |
---|
559 | |
---|
560 | m_numRules = v+5; |
---|
561 | } |
---|
562 | |
---|
563 | /** |
---|
564 | * Sets the class index |
---|
565 | * @param index the index of the class attribute |
---|
566 | */ |
---|
567 | public void setClassIndex(int index){ |
---|
568 | |
---|
569 | m_classIndex = index; |
---|
570 | } |
---|
571 | |
---|
572 | /** |
---|
573 | * Gets the index of the class attribute |
---|
574 | * @return the index of the class attribute |
---|
575 | */ |
---|
576 | public int getClassIndex(){ |
---|
577 | |
---|
578 | return m_classIndex; |
---|
579 | } |
---|
580 | |
---|
581 | /** |
---|
582 | * Returns the tip text for this property |
---|
583 | * @return tip text for this property suitable for |
---|
584 | * displaying in the explorer/experimenter gui |
---|
585 | */ |
---|
586 | public String classIndexTipText() { |
---|
587 | return "Index of the class attribute.\n If set to -1, the last attribute will be taken as the class attribute."; |
---|
588 | } |
---|
589 | |
---|
590 | /** |
---|
591 | * Sets class association rule mining |
---|
592 | * @param flag if class association rules are mined, false otherwise |
---|
593 | */ |
---|
594 | public void setCar(boolean flag){ |
---|
595 | |
---|
596 | m_car = flag; |
---|
597 | } |
---|
598 | |
---|
599 | /** |
---|
600 | * Gets whether class association ruels are mined |
---|
601 | * @return true if class association rules are mined, false otherwise |
---|
602 | */ |
---|
603 | public boolean getCar(){ |
---|
604 | |
---|
605 | return m_car; |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Returns the tip text for this property |
---|
610 | * @return tip text for this property suitable for |
---|
611 | * displaying in the explorer/experimenter gui |
---|
612 | */ |
---|
613 | public String carTipText() { |
---|
614 | return "If enabled class association rules are mined instead of (general) association rules."; |
---|
615 | } |
---|
616 | |
---|
617 | /** |
---|
618 | * Returns the metric string for the chosen metric type. |
---|
619 | * Predictive apriori uses the estimated predictive accuracy. |
---|
620 | * Therefore the metric string is "acc". |
---|
621 | * @return string "acc" |
---|
622 | */ |
---|
623 | public String metricString() { |
---|
624 | |
---|
625 | return "acc"; |
---|
626 | } |
---|
627 | |
---|
628 | |
---|
629 | /** |
---|
630 | * Method that finds all large itemsets for the given set of instances. |
---|
631 | * |
---|
632 | * @param index the instances to be used |
---|
633 | * @throws Exception if an attribute is numeric |
---|
634 | */ |
---|
635 | private void findLargeItemSets(int index) throws Exception { |
---|
636 | |
---|
637 | FastVector kMinusOneSets, kSets = new FastVector(); |
---|
638 | Hashtable hashtable; |
---|
639 | int i = 0; |
---|
640 | // Find large itemsets |
---|
641 | //of length 1 |
---|
642 | if(index == 1){ |
---|
643 | kSets = ItemSet.singletons(m_instances); |
---|
644 | ItemSet.upDateCounters(kSets, m_instances); |
---|
645 | kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); |
---|
646 | if (kSets.size() == 0) |
---|
647 | return; |
---|
648 | m_Ls.addElement(kSets); |
---|
649 | } |
---|
650 | //of length > 1 |
---|
651 | if(index >1){ |
---|
652 | if(m_Ls.size() > 0) |
---|
653 | kSets = (FastVector)m_Ls.lastElement(); |
---|
654 | m_Ls.removeAllElements(); |
---|
655 | i = index-2; |
---|
656 | kMinusOneSets = kSets; |
---|
657 | kSets = ItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); |
---|
658 | hashtable = ItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); |
---|
659 | m_hashtables.addElement(hashtable); |
---|
660 | kSets = ItemSet.pruneItemSets(kSets, hashtable); |
---|
661 | ItemSet.upDateCounters(kSets, m_instances); |
---|
662 | kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); |
---|
663 | if(kSets.size() == 0) |
---|
664 | return; |
---|
665 | m_Ls.addElement(kSets); |
---|
666 | } |
---|
667 | } |
---|
668 | |
---|
669 | |
---|
670 | |
---|
671 | |
---|
672 | /** |
---|
673 | * Method that finds all association rules. |
---|
674 | * |
---|
675 | * @throws Exception if an attribute is numeric |
---|
676 | */ |
---|
677 | private void findRulesQuickly() throws Exception { |
---|
678 | |
---|
679 | RuleGeneration currentItemSet; |
---|
680 | |
---|
681 | // Build rules |
---|
682 | for (int j = 0; j < m_Ls.size(); j++) { |
---|
683 | FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); |
---|
684 | Enumeration enumItemSets = currentItemSets.elements(); |
---|
685 | while (enumItemSets.hasMoreElements()) { |
---|
686 | currentItemSet = new RuleGeneration((ItemSet)enumItemSets.nextElement()); |
---|
687 | m_best = currentItemSet.generateRules(m_numRules-5, m_midPoints,m_priors,m_expectation, |
---|
688 | m_instances,m_best,m_count); |
---|
689 | |
---|
690 | m_count = currentItemSet.m_count; |
---|
691 | if(!m_bestChanged && currentItemSet.m_change) |
---|
692 | m_bestChanged = true; |
---|
693 | //update minimum expected predictive accuracy to get into the n best |
---|
694 | if(m_best.size() >= m_numRules-5) |
---|
695 | m_expectation = ((RuleItem)m_best.first()).accuracy(); |
---|
696 | else m_expectation =0; |
---|
697 | } |
---|
698 | } |
---|
699 | } |
---|
700 | |
---|
701 | |
---|
702 | /** |
---|
703 | * Method that finds all large itemsets for class association rule mining for the given set of instances. |
---|
704 | * @param index the size of the large item sets |
---|
705 | * @throws Exception if an attribute is numeric |
---|
706 | */ |
---|
707 | private void findLargeCarItemSets(int index) throws Exception { |
---|
708 | |
---|
709 | FastVector kMinusOneSets, kSets = new FastVector(); |
---|
710 | Hashtable hashtable; |
---|
711 | int i = 0; |
---|
712 | // Find large itemsets |
---|
713 | if(index == 1){ |
---|
714 | kSets = CaRuleGeneration.singletons(m_instances); |
---|
715 | ItemSet.upDateCounters(kSets, m_instances); |
---|
716 | kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); |
---|
717 | if (kSets.size() == 0) |
---|
718 | return; |
---|
719 | m_Ls.addElement(kSets); |
---|
720 | } |
---|
721 | |
---|
722 | if(index >1){ |
---|
723 | if(m_Ls.size() > 0) |
---|
724 | kSets = (FastVector)m_Ls.lastElement(); |
---|
725 | m_Ls.removeAllElements(); |
---|
726 | i = index-2; |
---|
727 | kMinusOneSets = kSets; |
---|
728 | kSets = ItemSet.mergeAllItemSets(kMinusOneSets, i, m_instances.numInstances()); |
---|
729 | hashtable = ItemSet.getHashtable(kMinusOneSets, kMinusOneSets.size()); |
---|
730 | m_hashtables.addElement(hashtable); |
---|
731 | kSets = ItemSet.pruneItemSets(kSets, hashtable); |
---|
732 | ItemSet.upDateCounters(kSets, m_instances); |
---|
733 | kSets = ItemSet.deleteItemSets(kSets, m_premiseCount,Integer.MAX_VALUE); |
---|
734 | if(kSets.size() == 0) |
---|
735 | return; |
---|
736 | m_Ls.addElement(kSets); |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | /** |
---|
741 | * Method that finds all class association rules. |
---|
742 | * |
---|
743 | * @throws Exception if an attribute is numeric |
---|
744 | */ |
---|
745 | private void findCaRulesQuickly() throws Exception { |
---|
746 | |
---|
747 | CaRuleGeneration currentLItemSet; |
---|
748 | // Build rules |
---|
749 | for (int j = 0; j < m_Ls.size(); j++) { |
---|
750 | FastVector currentItemSets = (FastVector)m_Ls.elementAt(j); |
---|
751 | Enumeration enumItemSets = currentItemSets.elements(); |
---|
752 | while (enumItemSets.hasMoreElements()) { |
---|
753 | currentLItemSet = new CaRuleGeneration((ItemSet)enumItemSets.nextElement()); |
---|
754 | m_best = currentLItemSet.generateRules(m_numRules-5, m_midPoints,m_priors,m_expectation, |
---|
755 | m_instances,m_best,m_count); |
---|
756 | m_count = currentLItemSet.count(); |
---|
757 | if(!m_bestChanged && currentLItemSet.change()) |
---|
758 | m_bestChanged = true; |
---|
759 | if(m_best.size() == m_numRules-5) |
---|
760 | m_expectation = ((RuleItem)m_best.first()).accuracy(); |
---|
761 | else |
---|
762 | m_expectation = 0; |
---|
763 | } |
---|
764 | } |
---|
765 | } |
---|
766 | |
---|
767 | /** |
---|
768 | * returns all the rules |
---|
769 | * |
---|
770 | * @return all the rules |
---|
771 | * @see #m_allTheRules |
---|
772 | */ |
---|
773 | public FastVector[] getAllTheRules() { |
---|
774 | return m_allTheRules; |
---|
775 | } |
---|
776 | |
---|
777 | /** |
---|
778 | * Returns the revision string. |
---|
779 | * |
---|
780 | * @return the revision |
---|
781 | */ |
---|
782 | public String getRevision() { |
---|
783 | return RevisionUtils.extract("$Revision: 5444 $"); |
---|
784 | } |
---|
785 | |
---|
786 | /** |
---|
787 | * Main method. |
---|
788 | * |
---|
789 | * @param args the commandline parameters |
---|
790 | */ |
---|
791 | public static void main(String[] args) { |
---|
792 | runAssociator(new PredictiveApriori(), args); |
---|
793 | } |
---|
794 | } |
---|
795 | |
---|