[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * HotSpot.java |
---|
| 19 | * Copyright (C) 2008 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.associations; |
---|
| 24 | |
---|
| 25 | import java.util.PriorityQueue; |
---|
| 26 | import java.util.HashMap; |
---|
| 27 | import java.util.ArrayList; |
---|
| 28 | import java.util.Vector; |
---|
| 29 | import java.util.Enumeration; |
---|
| 30 | import java.io.Serializable; |
---|
| 31 | import weka.core.Instances; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Attribute; |
---|
| 34 | import weka.core.Utils; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.SingleIndex; |
---|
| 38 | import weka.core.Drawable; |
---|
| 39 | import weka.core.Capabilities.Capability; |
---|
| 40 | import weka.core.Capabilities; |
---|
| 41 | import weka.core.CapabilitiesHandler; |
---|
| 42 | import weka.core.RevisionHandler; |
---|
| 43 | import weka.core.RevisionUtils; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | <!-- globalinfo-start --> |
---|
| 47 | * HotSpot learns a set of rules (displayed in a tree-like structure) that maximize/minimize a target variable/value of interest. With a nominal target, one might want to look for segments of the data where there is a high probability of a minority value occuring (given the constraint of a minimum support). For a numeric target, one might be interested in finding segments where this is higher on average than in the whole data set. For example, in a health insurance scenario, find which health insurance groups are at the highest risk (have the highest claim ratio), or, which groups have the highest average insurance payout. |
---|
| 48 | * <p/> |
---|
| 49 | <!-- globalinfo-end --> |
---|
| 50 | * |
---|
| 51 | <!-- options-start --> |
---|
| 52 | * Valid options are: <p/> |
---|
| 53 | * |
---|
| 54 | * <pre> -c <num | first | last> |
---|
| 55 | * The target index. (default = last)</pre> |
---|
| 56 | * |
---|
| 57 | * <pre> -V <num | first | last> |
---|
| 58 | * The target value (nominal target only, default = first)</pre> |
---|
| 59 | * |
---|
| 60 | * <pre> -L |
---|
| 61 | * Minimize rather than maximize.</pre> |
---|
| 62 | * |
---|
| 63 | * <pre> -S <num> |
---|
| 64 | * Minimum value count (nominal target)/segment size (numeric target). |
---|
| 65 | * Values between 0 and 1 are |
---|
| 66 | * interpreted as a percentage of |
---|
| 67 | * the total population; values > 1 are |
---|
| 68 | * interpreted as an absolute number of |
---|
| 69 | * instances (default = 0.3)</pre> |
---|
| 70 | * |
---|
| 71 | * <pre> -M <num> |
---|
| 72 | * Maximum branching factor (default = 2)</pre> |
---|
| 73 | * |
---|
| 74 | * <pre> -I <num> |
---|
| 75 | * Minimum improvement in target value in order |
---|
| 76 | * to add a new branch/test (default = 0.01 (1%))</pre> |
---|
| 77 | * |
---|
| 78 | * <pre> -D |
---|
| 79 | * Output debugging info (duplicate rule lookup |
---|
| 80 | * hash table stats)</pre> |
---|
| 81 | * |
---|
| 82 | <!-- options-end --> |
---|
| 83 | * |
---|
| 84 | * @author Mark Hall (mhall{[at]}pentaho{[dot]}org |
---|
| 85 | * @version $Revision: 6081 $ |
---|
| 86 | */ |
---|
| 87 | public class HotSpot |
---|
| 88 | implements Associator, OptionHandler, RevisionHandler, |
---|
| 89 | CapabilitiesHandler, Drawable, Serializable { |
---|
| 90 | |
---|
| 91 | static final long serialVersionUID = 42972325096347677L; |
---|
| 92 | |
---|
| 93 | /** index of the target attribute */ |
---|
| 94 | protected SingleIndex m_targetSI = new SingleIndex("last"); |
---|
| 95 | protected int m_target; |
---|
| 96 | |
---|
| 97 | /** Support as a fraction of the total training set */ |
---|
| 98 | protected double m_support; |
---|
| 99 | |
---|
| 100 | /** Support as an instance count */ |
---|
| 101 | private int m_supportCount; |
---|
| 102 | |
---|
| 103 | /** The global value of the attribute of interest (mean or probability) */ |
---|
| 104 | protected double m_globalTarget; |
---|
| 105 | |
---|
| 106 | /** The minimum improvement necessary to justify adding a test */ |
---|
| 107 | protected double m_minImprovement; |
---|
| 108 | |
---|
| 109 | /** Actual global support of the target value (discrete target only) */ |
---|
| 110 | protected int m_globalSupport; |
---|
| 111 | |
---|
| 112 | /** For discrete target, the index of the value of interest */ |
---|
| 113 | protected SingleIndex m_targetIndexSI = new SingleIndex("first"); |
---|
| 114 | protected int m_targetIndex; |
---|
| 115 | |
---|
| 116 | /** At each level of the tree consider at most this number extensions */ |
---|
| 117 | protected int m_maxBranchingFactor; |
---|
| 118 | |
---|
| 119 | /** Number of instances in the full data */ |
---|
| 120 | protected int m_numInstances; |
---|
| 121 | |
---|
| 122 | /** The head of the tree */ |
---|
| 123 | protected HotNode m_head; |
---|
| 124 | |
---|
| 125 | /** Header of the training data */ |
---|
| 126 | protected Instances m_header; |
---|
| 127 | |
---|
| 128 | /** Debugging stuff */ |
---|
| 129 | protected int m_lookups = 0; |
---|
| 130 | protected int m_insertions = 0; |
---|
| 131 | protected int m_hits = 0; |
---|
| 132 | |
---|
| 133 | protected boolean m_debug; |
---|
| 134 | |
---|
| 135 | /** Minimize, rather than maximize the target */ |
---|
| 136 | protected boolean m_minimize; |
---|
| 137 | |
---|
| 138 | /** Error messages relating to too large/small support values */ |
---|
| 139 | protected String m_errorMessage; |
---|
| 140 | |
---|
| 141 | /** Rule lookup table */ |
---|
| 142 | protected HashMap<HotSpotHashKey, String> m_ruleLookup; |
---|
| 143 | |
---|
| 144 | /** |
---|
| 145 | * Constructor |
---|
| 146 | */ |
---|
| 147 | public HotSpot() { |
---|
| 148 | resetOptions(); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Returns a string describing this classifier |
---|
| 153 | * @return a description of the classifier suitable for |
---|
| 154 | * displaying in the explorer/experimenter gui |
---|
| 155 | */ |
---|
| 156 | public String globalInfo() { |
---|
| 157 | return "HotSpot learns a set of rules (displayed in a tree-like structure) " |
---|
| 158 | + "that maximize/minimize a target variable/value of interest. " |
---|
| 159 | + "With a nominal target, one might want to look for segments of the " |
---|
| 160 | + "data where there is a high probability of a minority value occuring (" |
---|
| 161 | + "given the constraint of a minimum support). For a numeric target, " |
---|
| 162 | + "one might be interested in finding segments where this is higher " |
---|
| 163 | + "on average than in the whole data set. For example, in a health " |
---|
| 164 | + "insurance scenario, find which health insurance groups are at " |
---|
| 165 | + "the highest risk (have the highest claim ratio), or, which groups " |
---|
| 166 | + "have the highest average insurance payout."; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | /** |
---|
| 170 | * Returns default capabilities of HotSpot |
---|
| 171 | * |
---|
| 172 | * @return the capabilities of HotSpot |
---|
| 173 | */ |
---|
| 174 | public Capabilities getCapabilities() { |
---|
| 175 | Capabilities result = new Capabilities(this); |
---|
| 176 | result.disableAll(); |
---|
| 177 | |
---|
| 178 | // attributes |
---|
| 179 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 180 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 181 | result.enable(Capability.MISSING_VALUES); |
---|
| 182 | |
---|
| 183 | // class |
---|
| 184 | result.enable(Capability.NO_CLASS); |
---|
| 185 | //result.enable(Capability.NUMERIC_CLASS); |
---|
| 186 | // result.enable(Capability.NOMINAL_CLASS); |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | return result; |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | /** |
---|
| 193 | * Hash key class for sets of attribute, value tests |
---|
| 194 | */ |
---|
| 195 | protected class HotSpotHashKey { |
---|
| 196 | // split values, one for each attribute (0 indicates att not used). |
---|
| 197 | // for nominal indexes, 1 is added so that 0 can indicate not used. |
---|
| 198 | protected double[] m_splitValues; |
---|
| 199 | |
---|
| 200 | // 0 = not used, 1 = "<=", 2 = "=", 3 = ">" |
---|
| 201 | protected byte[] m_testTypes; |
---|
| 202 | |
---|
| 203 | protected boolean m_computed = false; |
---|
| 204 | protected int m_key; |
---|
| 205 | |
---|
| 206 | public HotSpotHashKey(double[] splitValues, byte[] testTypes) { |
---|
| 207 | m_splitValues = splitValues.clone(); |
---|
| 208 | m_testTypes = testTypes.clone(); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | public boolean equals(Object b) { |
---|
| 212 | if ((b == null) || !(b.getClass().equals(this.getClass()))) { |
---|
| 213 | return false; |
---|
| 214 | } |
---|
| 215 | HotSpotHashKey comp = (HotSpotHashKey)b; |
---|
| 216 | boolean ok = true; |
---|
| 217 | for (int i = 0; i < m_splitValues.length; i++) { |
---|
| 218 | if (m_splitValues[i] != comp.m_splitValues[i] || |
---|
| 219 | m_testTypes[i] != comp.m_testTypes[i]) { |
---|
| 220 | ok = false; |
---|
| 221 | break; |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | return ok; |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | public int hashCode() { |
---|
| 228 | |
---|
| 229 | if (m_computed) { |
---|
| 230 | return m_key; |
---|
| 231 | } else { |
---|
| 232 | int hv = 0; |
---|
| 233 | for (int i = 0; i < m_splitValues.length; i++) { |
---|
| 234 | hv += (m_splitValues[i] * 5 * i); |
---|
| 235 | hv += (m_testTypes[i] * i * 3); |
---|
| 236 | } |
---|
| 237 | m_computed = true; |
---|
| 238 | |
---|
| 239 | m_key = hv; |
---|
| 240 | } |
---|
| 241 | return m_key; |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | /** |
---|
| 246 | * Build the tree |
---|
| 247 | * |
---|
| 248 | * @param instances the training instances |
---|
| 249 | * @throws Exception if something goes wrong |
---|
| 250 | */ |
---|
| 251 | public void buildAssociations(Instances instances) throws Exception { |
---|
| 252 | |
---|
| 253 | // can associator handle the data? |
---|
| 254 | getCapabilities().testWithFail(instances); |
---|
| 255 | |
---|
| 256 | m_errorMessage = null; |
---|
| 257 | m_targetSI.setUpper(instances.numAttributes() - 1); |
---|
| 258 | m_target = m_targetSI.getIndex(); |
---|
| 259 | Instances inst = new Instances(instances); |
---|
| 260 | inst.setClassIndex(m_target); |
---|
| 261 | inst.deleteWithMissingClass(); |
---|
| 262 | |
---|
| 263 | if (inst.attribute(m_target).isNominal()) { |
---|
| 264 | m_targetIndexSI.setUpper(inst.attribute(m_target).numValues() - 1); |
---|
| 265 | m_targetIndex = m_targetIndexSI.getIndex(); |
---|
| 266 | } else { |
---|
| 267 | m_targetIndexSI.setUpper(1); // just to stop this SingleIndex from moaning |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | if (m_support <= 0) { |
---|
| 271 | throw new Exception("Support must be greater than zero."); |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | m_numInstances = inst.numInstances(); |
---|
| 275 | if (m_support >= 1) { |
---|
| 276 | m_supportCount = (int)m_support; |
---|
| 277 | m_support = m_support / (double)m_numInstances; |
---|
| 278 | } |
---|
| 279 | m_supportCount = (int)Math.floor((m_support * m_numInstances) + 0.5d); |
---|
| 280 | // m_supportCount = (int)(m_support * m_numInstances); |
---|
| 281 | if (m_supportCount < 1) { |
---|
| 282 | m_supportCount = 1; |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | m_header = new Instances(inst, 0); |
---|
| 286 | |
---|
| 287 | if (inst.attribute(m_target).isNumeric()) { |
---|
| 288 | if (m_supportCount > m_numInstances) { |
---|
| 289 | m_errorMessage = "Error: support set to more instances than there are in the data!"; |
---|
| 290 | return; |
---|
| 291 | } |
---|
| 292 | m_globalTarget = inst.meanOrMode(m_target); |
---|
| 293 | } else { |
---|
| 294 | double[] probs = new double[inst.attributeStats(m_target).nominalCounts.length]; |
---|
| 295 | for (int i = 0; i < probs.length; i++) { |
---|
| 296 | probs[i] = (double)inst.attributeStats(m_target).nominalCounts[i]; |
---|
| 297 | } |
---|
| 298 | m_globalSupport = (int)probs[m_targetIndex]; |
---|
| 299 | // check that global support is greater than min support |
---|
| 300 | if (m_globalSupport < m_supportCount) { |
---|
| 301 | m_errorMessage = "Error: minimum support " + m_supportCount |
---|
| 302 | + " is too high. Target value " |
---|
| 303 | + m_header.attribute(m_target).value(m_targetIndex) + " has support " |
---|
| 304 | + m_globalSupport + "."; |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | Utils.normalize(probs); |
---|
| 308 | m_globalTarget = probs[m_targetIndex]; |
---|
| 309 | /* System.err.println("Global target " + m_globalTarget); |
---|
| 310 | System.err.println("Min support count " + m_supportCount); */ |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | m_ruleLookup = new HashMap<HotSpotHashKey, String>(); |
---|
| 314 | double[] splitVals = new double[m_header.numAttributes()]; |
---|
| 315 | byte[] tests = new byte[m_header.numAttributes()]; |
---|
| 316 | |
---|
| 317 | m_head = new HotNode(inst, m_globalTarget, splitVals, tests); |
---|
| 318 | // m_head = new HotNode(inst, m_globalTarget); |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | /** |
---|
| 322 | * Return the tree as a string |
---|
| 323 | * |
---|
| 324 | * @return a String containing the tree |
---|
| 325 | */ |
---|
| 326 | public String toString() { |
---|
| 327 | StringBuffer buff = new StringBuffer(); |
---|
| 328 | buff.append("\nHot Spot\n========"); |
---|
| 329 | if (m_errorMessage != null) { |
---|
| 330 | buff.append("\n\n" + m_errorMessage + "\n\n"); |
---|
| 331 | return buff.toString(); |
---|
| 332 | } |
---|
| 333 | if (m_head == null) { |
---|
| 334 | buff.append("No model built!"); |
---|
| 335 | return buff.toString(); |
---|
| 336 | } |
---|
| 337 | buff.append("\nTotal population: "); |
---|
| 338 | buff.append("" + m_numInstances + " instances"); |
---|
| 339 | buff.append("\nTarget attribute: " + m_header.attribute(m_target).name()); |
---|
| 340 | if (m_header.attribute(m_target).isNominal()) { |
---|
| 341 | buff.append("\nTarget value: " + m_header.attribute(m_target).value(m_targetIndex)); |
---|
| 342 | buff.append(" [value count in total population: " + m_globalSupport + " instances (" |
---|
| 343 | + Utils.doubleToString((m_globalTarget * 100.0), 2) + "%)]"); |
---|
| 344 | |
---|
| 345 | buff.append("\nMinimum value count for segments: "); |
---|
| 346 | } else { |
---|
| 347 | buff.append("\nMinimum segment size: "); |
---|
| 348 | } |
---|
| 349 | buff.append("" + m_supportCount + " instances (" |
---|
| 350 | + Utils.doubleToString((m_support * 100.0), 2) |
---|
| 351 | + "% of total population)"); |
---|
| 352 | buff.append("\nMaximum branching factor: " + m_maxBranchingFactor); |
---|
| 353 | buff.append("\nMinimum improvement in target: " |
---|
| 354 | + Utils.doubleToString((m_minImprovement * 100.0), 2) + "%"); |
---|
| 355 | |
---|
| 356 | buff.append("\n\n"); |
---|
| 357 | buff.append(m_header.attribute(m_target).name()); |
---|
| 358 | if (m_header.attribute(m_target).isNumeric()) { |
---|
| 359 | buff.append(" (" + Utils.doubleToString(m_globalTarget, 4) + ")"); |
---|
| 360 | } else { |
---|
| 361 | buff.append("=" + m_header.attribute(m_target).value(m_targetIndex) + " ("); |
---|
| 362 | buff.append("" + Utils.doubleToString((m_globalTarget * 100.0), 2) + "% ["); |
---|
| 363 | buff.append("" + m_globalSupport |
---|
| 364 | + "/" + m_numInstances + "])"); |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | m_head.dumpTree(0, buff); |
---|
| 368 | buff.append("\n"); |
---|
| 369 | if (m_debug) { |
---|
| 370 | buff.append("\n=== Duplicate rule lookup hashtable stats ===\n"); |
---|
| 371 | buff.append("Insertions: "+ m_insertions); |
---|
| 372 | buff.append("\nLookups : "+ m_lookups); |
---|
| 373 | buff.append("\nHits: "+ m_hits); |
---|
| 374 | buff.append("\n"); |
---|
| 375 | } |
---|
| 376 | return buff.toString(); |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | public String graph() throws Exception { |
---|
| 380 | System.err.println("Here"); |
---|
| 381 | m_head.assignIDs(-1); |
---|
| 382 | |
---|
| 383 | StringBuffer text = new StringBuffer(); |
---|
| 384 | |
---|
| 385 | text.append("digraph HotSpot {\n"); |
---|
| 386 | text.append("rankdir=LR;\n"); |
---|
| 387 | text.append("N0 [label=\"" |
---|
| 388 | + m_header.attribute(m_target).name()); |
---|
| 389 | |
---|
| 390 | if (m_header.attribute(m_target).isNumeric()) { |
---|
| 391 | text.append("\\n(" + Utils.doubleToString(m_globalTarget, 4) + ")"); |
---|
| 392 | } else { |
---|
| 393 | text.append("=" + m_header.attribute(m_target).value(m_targetIndex) + "\\n("); |
---|
| 394 | text.append("" + Utils.doubleToString((m_globalTarget * 100.0), 2) + "% ["); |
---|
| 395 | text.append("" + m_globalSupport |
---|
| 396 | + "/" + m_numInstances + "])"); |
---|
| 397 | } |
---|
| 398 | text.append("\" shape=plaintext]\n"); |
---|
| 399 | |
---|
| 400 | m_head.graphHotSpot(text); |
---|
| 401 | |
---|
| 402 | text.append("}\n"); |
---|
| 403 | return text.toString(); |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | /** |
---|
| 407 | * Inner class representing a node/leaf in the tree |
---|
| 408 | */ |
---|
| 409 | protected class HotNode implements Serializable { |
---|
| 410 | /** |
---|
| 411 | * An inner class holding data on a particular attribute value test |
---|
| 412 | */ |
---|
| 413 | protected class HotTestDetails |
---|
| 414 | implements Comparable<HotTestDetails>, |
---|
| 415 | Serializable { |
---|
| 416 | public double m_merit; |
---|
| 417 | public int m_support; |
---|
| 418 | public int m_subsetSize; |
---|
| 419 | public int m_splitAttIndex; |
---|
| 420 | public double m_splitValue; |
---|
| 421 | public boolean m_lessThan; |
---|
| 422 | |
---|
| 423 | public HotTestDetails(int attIndex, |
---|
| 424 | double splitVal, |
---|
| 425 | boolean lessThan, |
---|
| 426 | int support, |
---|
| 427 | int subsetSize, |
---|
| 428 | double merit) { |
---|
| 429 | m_merit = merit; |
---|
| 430 | m_splitAttIndex = attIndex; |
---|
| 431 | m_splitValue = splitVal; |
---|
| 432 | m_lessThan = lessThan; |
---|
| 433 | m_support = support; |
---|
| 434 | m_subsetSize = subsetSize; |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | // reverse order for maximize as PriorityQueue has the least element at the head |
---|
| 438 | public int compareTo(HotTestDetails comp) { |
---|
| 439 | int result = 0; |
---|
| 440 | if (m_minimize) { |
---|
| 441 | if (m_merit == comp.m_merit) { |
---|
| 442 | // larger support is better |
---|
| 443 | if (m_support == comp.m_support) { |
---|
| 444 | } else if (m_support > comp.m_support) { |
---|
| 445 | result = -1; |
---|
| 446 | } else { |
---|
| 447 | result = 1; |
---|
| 448 | } |
---|
| 449 | } else if (m_merit < comp.m_merit) { |
---|
| 450 | result = -1; |
---|
| 451 | } else { |
---|
| 452 | result = 1; |
---|
| 453 | } |
---|
| 454 | } else { |
---|
| 455 | if (m_merit == comp.m_merit) { |
---|
| 456 | // larger support is better |
---|
| 457 | if (m_support == comp.m_support) { |
---|
| 458 | } else if (m_support > comp.m_support) { |
---|
| 459 | result = -1; |
---|
| 460 | } else { |
---|
| 461 | result = 1; |
---|
| 462 | } |
---|
| 463 | } else if (m_merit < comp.m_merit) { |
---|
| 464 | result = 1; |
---|
| 465 | } else { |
---|
| 466 | result = -1; |
---|
| 467 | } |
---|
| 468 | } |
---|
| 469 | return result; |
---|
| 470 | } |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | // the instances at this node |
---|
| 474 | protected Instances m_insts; |
---|
| 475 | |
---|
| 476 | // the value (to beat) of the target for these instances |
---|
| 477 | protected double m_targetValue; |
---|
| 478 | |
---|
| 479 | // child nodes |
---|
| 480 | protected HotNode[] m_children; |
---|
| 481 | protected HotTestDetails[] m_testDetails; |
---|
| 482 | |
---|
| 483 | public int m_id; |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Constructor |
---|
| 487 | * |
---|
| 488 | * @param insts the instances at this node |
---|
| 489 | * @param targetValue the target value |
---|
| 490 | * @param splitVals the values of attributes split on so far down this branch |
---|
| 491 | * @param tests the types of tests corresponding to the split values (<=, =, >) |
---|
| 492 | */ |
---|
| 493 | public HotNode(Instances insts, |
---|
| 494 | double targetValue, |
---|
| 495 | double[] splitVals, |
---|
| 496 | byte[] tests) { |
---|
| 497 | m_insts = insts; |
---|
| 498 | m_targetValue = targetValue; |
---|
| 499 | PriorityQueue<HotTestDetails> splitQueue = new PriorityQueue<HotTestDetails>(); |
---|
| 500 | |
---|
| 501 | // Consider each attribute |
---|
| 502 | for (int i = 0; i < m_insts.numAttributes(); i++) { |
---|
| 503 | if (i != m_target) { |
---|
| 504 | if (m_insts.attribute(i).isNominal()) { |
---|
| 505 | evaluateNominal(i, splitQueue); |
---|
| 506 | } else { |
---|
| 507 | evaluateNumeric(i, splitQueue); |
---|
| 508 | } |
---|
| 509 | } |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | if (splitQueue.size() > 0) { |
---|
| 513 | int queueSize = splitQueue.size(); |
---|
| 514 | |
---|
| 515 | // count how many of the potential children are unique |
---|
| 516 | ArrayList<HotTestDetails> newCandidates = new ArrayList<HotTestDetails>(); |
---|
| 517 | ArrayList<HotSpotHashKey> keyList = new ArrayList<HotSpotHashKey>(); |
---|
| 518 | |
---|
| 519 | for (int i = 0; i < queueSize; i++) { |
---|
| 520 | if (newCandidates.size() < m_maxBranchingFactor) { |
---|
| 521 | HotTestDetails temp = splitQueue.poll(); |
---|
| 522 | double[] newSplitVals = splitVals.clone(); |
---|
| 523 | byte[] newTests = tests.clone(); |
---|
| 524 | newSplitVals[temp.m_splitAttIndex] = temp.m_splitValue + 1; |
---|
| 525 | newTests[temp.m_splitAttIndex] = |
---|
| 526 | (m_header.attribute(temp.m_splitAttIndex).isNominal()) |
---|
| 527 | ? (byte)2 // == |
---|
| 528 | : (temp.m_lessThan) |
---|
| 529 | ? (byte)1 |
---|
| 530 | : (byte)3; |
---|
| 531 | HotSpotHashKey key = new HotSpotHashKey(newSplitVals, newTests); |
---|
| 532 | m_lookups++; |
---|
| 533 | if (!m_ruleLookup.containsKey(key)) { |
---|
| 534 | // insert it into the hash table |
---|
| 535 | m_ruleLookup.put(key, ""); |
---|
| 536 | newCandidates.add(temp); |
---|
| 537 | keyList.add(key); |
---|
| 538 | m_insertions++; |
---|
| 539 | } else { |
---|
| 540 | m_hits++; |
---|
| 541 | } |
---|
| 542 | } else { |
---|
| 543 | break; |
---|
| 544 | } |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | m_children = new HotNode[(newCandidates.size() < m_maxBranchingFactor) |
---|
| 548 | ? newCandidates.size() |
---|
| 549 | : m_maxBranchingFactor]; |
---|
| 550 | // save the details of the tests at this node |
---|
| 551 | m_testDetails = new HotTestDetails[m_children.length]; |
---|
| 552 | for (int i = 0; i < m_children.length; i++) { |
---|
| 553 | m_testDetails[i] = newCandidates.get(i); |
---|
| 554 | } |
---|
| 555 | |
---|
| 556 | // save memory |
---|
| 557 | splitQueue = null; |
---|
| 558 | newCandidates = null; |
---|
| 559 | m_insts = new Instances(m_insts, 0); |
---|
| 560 | |
---|
| 561 | // process the children |
---|
| 562 | for (int i = 0; i < m_children.length; i++) { |
---|
| 563 | Instances subset = subset(insts, m_testDetails[i]); |
---|
| 564 | HotSpotHashKey tempKey = keyList.get(i); |
---|
| 565 | m_children[i] = new HotNode(subset, m_testDetails[i].m_merit, |
---|
| 566 | tempKey.m_splitValues, tempKey.m_testTypes); |
---|
| 567 | |
---|
| 568 | } |
---|
| 569 | } |
---|
| 570 | } |
---|
| 571 | |
---|
| 572 | /** |
---|
| 573 | * Create a subset of instances that correspond to the supplied test details |
---|
| 574 | * |
---|
| 575 | * @param insts the instances to create the subset from |
---|
| 576 | * @param test the details of the split |
---|
| 577 | */ |
---|
| 578 | private Instances subset(Instances insts, HotTestDetails test) { |
---|
| 579 | Instances sub = new Instances(insts, insts.numInstances()); |
---|
| 580 | for (int i = 0; i < insts.numInstances(); i++) { |
---|
| 581 | Instance temp = insts.instance(i); |
---|
| 582 | if (!temp.isMissing(test.m_splitAttIndex)) { |
---|
| 583 | if (insts.attribute(test.m_splitAttIndex).isNominal()) { |
---|
| 584 | if (temp.value(test.m_splitAttIndex) == test.m_splitValue) { |
---|
| 585 | sub.add(temp); |
---|
| 586 | } |
---|
| 587 | } else { |
---|
| 588 | if (test.m_lessThan) { |
---|
| 589 | if (temp.value(test.m_splitAttIndex) <= test.m_splitValue) { |
---|
| 590 | sub.add(temp); |
---|
| 591 | } |
---|
| 592 | } else { |
---|
| 593 | if (temp.value(test.m_splitAttIndex) > test.m_splitValue) { |
---|
| 594 | sub.add(temp); |
---|
| 595 | } |
---|
| 596 | } |
---|
| 597 | } |
---|
| 598 | } |
---|
| 599 | } |
---|
| 600 | sub.compactify(); |
---|
| 601 | return sub; |
---|
| 602 | } |
---|
| 603 | |
---|
| 604 | /** |
---|
| 605 | * Evaluate a numeric attribute for a potential split |
---|
| 606 | * |
---|
| 607 | * @param attIndex the index of the attribute |
---|
| 608 | * @param pq the priority queue of candidtate splits |
---|
| 609 | */ |
---|
| 610 | private void evaluateNumeric(int attIndex, PriorityQueue<HotTestDetails> pq) { |
---|
| 611 | Instances tempInsts = m_insts; |
---|
| 612 | tempInsts.sort(attIndex); |
---|
| 613 | |
---|
| 614 | // target sums/counts |
---|
| 615 | double targetLeft = 0; |
---|
| 616 | double targetRight = 0; |
---|
| 617 | |
---|
| 618 | int numMissing = 0; |
---|
| 619 | // count missing values and sum/counts for the initial right subset |
---|
| 620 | for (int i = tempInsts.numInstances() - 1; i >= 0; i--) { |
---|
| 621 | if (!tempInsts.instance(i).isMissing(attIndex)) { |
---|
| 622 | targetRight += (tempInsts.attribute(m_target).isNumeric()) |
---|
| 623 | ? (tempInsts.instance(i).value(m_target)) |
---|
| 624 | : ((tempInsts.instance(i).value(m_target) == m_targetIndex) |
---|
| 625 | ? 1 |
---|
| 626 | : 0); |
---|
| 627 | } else { |
---|
| 628 | numMissing++; |
---|
| 629 | } |
---|
| 630 | } |
---|
| 631 | |
---|
| 632 | // are there still enough instances? |
---|
| 633 | if (tempInsts.numInstances() - numMissing <= m_supportCount) { |
---|
| 634 | return; |
---|
| 635 | } |
---|
| 636 | |
---|
| 637 | double bestMerit = 0.0; |
---|
| 638 | double bestSplit = 0.0; |
---|
| 639 | double bestSupport = 0.0; |
---|
| 640 | double bestSubsetSize = 0; |
---|
| 641 | boolean lessThan = true; |
---|
| 642 | |
---|
| 643 | // denominators |
---|
| 644 | double leftCount = 0; |
---|
| 645 | double rightCount = tempInsts.numInstances() - numMissing; |
---|
| 646 | |
---|
| 647 | /* targetRight = (tempInsts.attribute(m_target).isNumeric()) |
---|
| 648 | ? tempInsts.attributeStats(m_target).numericStats.sum |
---|
| 649 | : tempInsts.attributeStats(m_target).nominalCounts[m_targetIndex]; */ |
---|
| 650 | // targetRight = tempInsts.attributeStats(attIndexnominalCounts[m_targetIndex]; |
---|
| 651 | |
---|
| 652 | // consider all splits |
---|
| 653 | for (int i = 0; i < tempInsts.numInstances() - numMissing; i++) { |
---|
| 654 | Instance inst = tempInsts.instance(i); |
---|
| 655 | |
---|
| 656 | if (tempInsts.attribute(m_target).isNumeric()) { |
---|
| 657 | targetLeft += inst.value(m_target); |
---|
| 658 | targetRight -= inst.value(m_target); |
---|
| 659 | } else { |
---|
| 660 | if ((int)inst.value(m_target) == m_targetIndex) { |
---|
| 661 | targetLeft++; |
---|
| 662 | targetRight--; |
---|
| 663 | } |
---|
| 664 | } |
---|
| 665 | leftCount++; |
---|
| 666 | rightCount--; |
---|
| 667 | |
---|
| 668 | // move to the end of any ties |
---|
| 669 | if (i < tempInsts.numInstances() - 1 && |
---|
| 670 | inst.value(attIndex) == tempInsts.instance(i + 1).value(attIndex)) { |
---|
| 671 | continue; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | // evaluate split |
---|
| 675 | if (tempInsts.attribute(m_target).isNominal()) { |
---|
| 676 | if (targetLeft >= m_supportCount) { |
---|
| 677 | double delta = (m_minimize) |
---|
| 678 | ? (bestMerit - (targetLeft / leftCount)) |
---|
| 679 | : ((targetLeft / leftCount) - bestMerit); |
---|
| 680 | // if (targetLeft / leftCount > bestMerit) { |
---|
| 681 | if (delta > 0) { |
---|
| 682 | bestMerit = targetLeft / leftCount; |
---|
| 683 | bestSplit = inst.value(attIndex); |
---|
| 684 | bestSupport = targetLeft; |
---|
| 685 | bestSubsetSize = leftCount; |
---|
| 686 | lessThan = true; |
---|
| 687 | // } else if (targetLeft / leftCount == bestMerit) { |
---|
| 688 | } else if (delta == 0) { |
---|
| 689 | // break ties in favour of higher support |
---|
| 690 | if (targetLeft > bestSupport) { |
---|
| 691 | bestMerit = targetLeft / leftCount; |
---|
| 692 | bestSplit = inst.value(attIndex); |
---|
| 693 | bestSupport = targetLeft; |
---|
| 694 | bestSubsetSize = leftCount; |
---|
| 695 | lessThan = true; |
---|
| 696 | } |
---|
| 697 | } |
---|
| 698 | } |
---|
| 699 | |
---|
| 700 | if (targetRight >= m_supportCount) { |
---|
| 701 | double delta = (m_minimize) |
---|
| 702 | ? (bestMerit - (targetRight / rightCount)) |
---|
| 703 | : ((targetRight / rightCount) - bestMerit); |
---|
| 704 | // if (targetRight / rightCount > bestMerit) { |
---|
| 705 | if (delta > 0) { |
---|
| 706 | bestMerit = targetRight / rightCount; |
---|
| 707 | bestSplit = inst.value(attIndex); |
---|
| 708 | bestSupport = targetRight; |
---|
| 709 | bestSubsetSize = rightCount; |
---|
| 710 | lessThan = false; |
---|
| 711 | // } else if (targetRight / rightCount == bestMerit) { |
---|
| 712 | } else if (delta == 0) { |
---|
| 713 | // break ties in favour of higher support |
---|
| 714 | if (targetRight > bestSupport) { |
---|
| 715 | bestMerit = targetRight / rightCount; |
---|
| 716 | bestSplit = inst.value(attIndex); |
---|
| 717 | bestSupport = targetRight; |
---|
| 718 | bestSubsetSize = rightCount; |
---|
| 719 | lessThan = false; |
---|
| 720 | } |
---|
| 721 | } |
---|
| 722 | } |
---|
| 723 | } else { |
---|
| 724 | if (leftCount >= m_supportCount) { |
---|
| 725 | double delta = (m_minimize) |
---|
| 726 | ? (bestMerit - (targetLeft / leftCount)) |
---|
| 727 | : ((targetLeft / leftCount) - bestMerit); |
---|
| 728 | // if (targetLeft / leftCount > bestMerit) { |
---|
| 729 | if (delta > 0) { |
---|
| 730 | bestMerit = targetLeft / leftCount; |
---|
| 731 | bestSplit = inst.value(attIndex); |
---|
| 732 | bestSupport = leftCount; |
---|
| 733 | bestSubsetSize = leftCount; |
---|
| 734 | lessThan = true; |
---|
| 735 | // } else if (targetLeft / leftCount == bestMerit) { |
---|
| 736 | } else if (delta == 0) { |
---|
| 737 | // break ties in favour of higher support |
---|
| 738 | if (leftCount > bestSupport) { |
---|
| 739 | bestMerit = targetLeft / leftCount; |
---|
| 740 | bestSplit = inst.value(attIndex); |
---|
| 741 | bestSupport = leftCount; |
---|
| 742 | bestSubsetSize = leftCount; |
---|
| 743 | lessThan = true; |
---|
| 744 | } |
---|
| 745 | } |
---|
| 746 | } |
---|
| 747 | |
---|
| 748 | if (rightCount >= m_supportCount) { |
---|
| 749 | double delta = (m_minimize) |
---|
| 750 | ? (bestMerit - (targetRight / rightCount)) |
---|
| 751 | : ((targetRight / rightCount) - bestMerit); |
---|
| 752 | // if (targetRight / rightCount > bestMerit) { |
---|
| 753 | if (delta > 0) { |
---|
| 754 | bestMerit = targetRight / rightCount; |
---|
| 755 | bestSplit = inst.value(attIndex); |
---|
| 756 | bestSupport = rightCount; |
---|
| 757 | bestSubsetSize = rightCount; |
---|
| 758 | lessThan = false; |
---|
| 759 | // } else if (targetRight / rightCount == bestMerit) { |
---|
| 760 | } else if (delta == 0) { |
---|
| 761 | // break ties in favour of higher support |
---|
| 762 | if (rightCount > bestSupport) { |
---|
| 763 | bestMerit = targetRight / rightCount; |
---|
| 764 | bestSplit = inst.value(attIndex); |
---|
| 765 | bestSupport = rightCount; |
---|
| 766 | bestSubsetSize = rightCount; |
---|
| 767 | lessThan = false; |
---|
| 768 | } |
---|
| 769 | } |
---|
| 770 | } |
---|
| 771 | } |
---|
| 772 | } |
---|
| 773 | |
---|
| 774 | double delta = (m_minimize) |
---|
| 775 | ? m_targetValue - bestMerit |
---|
| 776 | : bestMerit - m_targetValue; |
---|
| 777 | |
---|
| 778 | // Have we found a candidate split? |
---|
| 779 | if (bestSupport > 0 && (delta / m_targetValue >= m_minImprovement)) { |
---|
| 780 | /* System.err.println("Evaluating " + tempInsts.attribute(attIndex).name()); |
---|
| 781 | System.err.println("Merit : " + bestMerit); |
---|
| 782 | System.err.println("Support : " + bestSupport); */ |
---|
| 783 | // double suppFraction = bestSupport / m_numInstances; |
---|
| 784 | |
---|
| 785 | HotTestDetails newD = new HotTestDetails(attIndex, bestSplit, |
---|
| 786 | lessThan, (int)bestSupport, |
---|
| 787 | (int)bestSubsetSize, |
---|
| 788 | bestMerit); |
---|
| 789 | pq.add(newD); |
---|
| 790 | } |
---|
| 791 | } |
---|
| 792 | |
---|
| 793 | /** |
---|
| 794 | * Evaluate a nominal attribute for a potential split |
---|
| 795 | * |
---|
| 796 | * @param attIndex the index of the attribute |
---|
| 797 | * @param pq the priority queue of candidtate splits |
---|
| 798 | */ |
---|
| 799 | private void evaluateNominal(int attIndex, PriorityQueue<HotTestDetails> pq) { |
---|
| 800 | int[] counts = m_insts.attributeStats(attIndex).nominalCounts; |
---|
| 801 | boolean ok = false; |
---|
| 802 | // only consider attribute values that result in subsets that meet/exceed min support |
---|
| 803 | for (int i = 0; i < m_insts.attribute(attIndex).numValues(); i++) { |
---|
| 804 | if (counts[i] >= m_supportCount) { |
---|
| 805 | ok = true; |
---|
| 806 | break; |
---|
| 807 | } |
---|
| 808 | } |
---|
| 809 | if (ok) { |
---|
| 810 | double[] subsetMerit = |
---|
| 811 | new double[m_insts.attribute(attIndex).numValues()]; |
---|
| 812 | |
---|
| 813 | for (int i = 0; i < m_insts.numInstances(); i++) { |
---|
| 814 | Instance temp = m_insts.instance(i); |
---|
| 815 | if (!temp.isMissing(attIndex)) { |
---|
| 816 | int attVal = (int)temp.value(attIndex); |
---|
| 817 | if (m_insts.attribute(m_target).isNumeric()) { |
---|
| 818 | subsetMerit[attVal] += temp.value(m_target); |
---|
| 819 | } else { |
---|
| 820 | subsetMerit[attVal] += |
---|
| 821 | ((int)temp.value(m_target) == m_targetIndex) |
---|
| 822 | ? 1.0 |
---|
| 823 | : 0; |
---|
| 824 | } |
---|
| 825 | } |
---|
| 826 | } |
---|
| 827 | |
---|
| 828 | // add to queue if it meets min support and exceeds the merit for the full set |
---|
| 829 | for (int i = 0; i < m_insts.attribute(attIndex).numValues(); i++) { |
---|
| 830 | // does the subset based on this value have enough instances, and, furthermore, |
---|
| 831 | // does the target value (nominal only) occur enough times to exceed min support |
---|
| 832 | if (counts[i] >= m_supportCount && |
---|
| 833 | ((m_insts.attribute(m_target).isNominal()) |
---|
| 834 | ? (subsetMerit[i] >= m_supportCount) // nominal only test |
---|
| 835 | : true)) { |
---|
| 836 | double merit = subsetMerit[i] / counts[i]; //subsetMerit[i][1]; |
---|
| 837 | double delta = (m_minimize) |
---|
| 838 | ? m_targetValue - merit |
---|
| 839 | : merit - m_targetValue; |
---|
| 840 | |
---|
| 841 | if (delta / m_targetValue >= m_minImprovement) { |
---|
| 842 | double support = |
---|
| 843 | (m_insts.attribute(m_target).isNominal()) |
---|
| 844 | ? subsetMerit[i] |
---|
| 845 | : counts[i]; |
---|
| 846 | |
---|
| 847 | HotTestDetails newD = new HotTestDetails(attIndex, (double)i, |
---|
| 848 | false, (int)support, |
---|
| 849 | counts[i], |
---|
| 850 | merit); |
---|
| 851 | pq.add(newD); |
---|
| 852 | } |
---|
| 853 | } |
---|
| 854 | } |
---|
| 855 | } |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | public int assignIDs(int lastID) { |
---|
| 859 | int currentLastID = lastID + 1; |
---|
| 860 | m_id = currentLastID; |
---|
| 861 | if (m_children != null) { |
---|
| 862 | for (int i = 0; i < m_children.length; i++) { |
---|
| 863 | currentLastID = m_children[i].assignIDs(currentLastID); |
---|
| 864 | } |
---|
| 865 | } |
---|
| 866 | return currentLastID; |
---|
| 867 | } |
---|
| 868 | |
---|
| 869 | private void addNodeDetails(StringBuffer buff, int i, String spacer) { |
---|
| 870 | buff.append(m_header.attribute(m_testDetails[i].m_splitAttIndex).name()); |
---|
| 871 | if (m_header.attribute(m_testDetails[i].m_splitAttIndex).isNumeric()) { |
---|
| 872 | if (m_testDetails[i].m_lessThan) { |
---|
| 873 | buff.append(" <= "); |
---|
| 874 | } else { |
---|
| 875 | buff.append(" > "); |
---|
| 876 | } |
---|
| 877 | buff.append(Utils.doubleToString(m_testDetails[i].m_splitValue, 4)); |
---|
| 878 | } else { |
---|
| 879 | buff.append(" = " + m_header. |
---|
| 880 | attribute(m_testDetails[i].m_splitAttIndex). |
---|
| 881 | value((int)m_testDetails[i].m_splitValue)); |
---|
| 882 | } |
---|
| 883 | |
---|
| 884 | if (m_header.attribute(m_target).isNumeric()) { |
---|
| 885 | buff.append(spacer + "(" + Utils.doubleToString(m_testDetails[i].m_merit, 4) + " [" |
---|
| 886 | + m_testDetails[i].m_support + "])"); |
---|
| 887 | } else { |
---|
| 888 | buff.append(spacer + "(" + Utils.doubleToString((m_testDetails[i].m_merit * 100.0), 2) + "% [" |
---|
| 889 | + m_testDetails[i].m_support |
---|
| 890 | + "/" + m_testDetails[i].m_subsetSize + "])"); |
---|
| 891 | } |
---|
| 892 | } |
---|
| 893 | |
---|
| 894 | private void graphHotSpot(StringBuffer text) { |
---|
| 895 | if (m_children != null) { |
---|
| 896 | for (int i = 0; i < m_children.length; i++) { |
---|
| 897 | text.append("N" + m_children[i].m_id); |
---|
| 898 | text.append(" [label=\""); |
---|
| 899 | addNodeDetails(text, i, "\\n"); |
---|
| 900 | text.append("\" shape=plaintext]\n"); |
---|
| 901 | m_children[i].graphHotSpot(text); |
---|
| 902 | text.append("N" + m_id + "->" + "N" + m_children[i].m_id + "\n"); |
---|
| 903 | } |
---|
| 904 | } |
---|
| 905 | } |
---|
| 906 | |
---|
| 907 | /** |
---|
| 908 | * Traverse the tree to create a string description |
---|
| 909 | * |
---|
| 910 | * @param depth the depth at this point in the tree |
---|
| 911 | * @param buff the string buffer to append node details to |
---|
| 912 | */ |
---|
| 913 | protected void dumpTree(int depth, StringBuffer buff) { |
---|
| 914 | if (m_children == null) { |
---|
| 915 | // buff.append("\n"); |
---|
| 916 | } else { |
---|
| 917 | for (int i = 0; i < m_children.length; i++) { |
---|
| 918 | buff.append("\n "); |
---|
| 919 | for (int j = 0; j < depth; j++) { |
---|
| 920 | buff.append("| "); |
---|
| 921 | } |
---|
| 922 | addNodeDetails(buff, i, " "); |
---|
| 923 | |
---|
| 924 | m_children[i].dumpTree(depth + 1, buff); |
---|
| 925 | } |
---|
| 926 | } |
---|
| 927 | } |
---|
| 928 | } |
---|
| 929 | |
---|
| 930 | /** |
---|
| 931 | * Returns the tip text for this property |
---|
| 932 | * @return tip text for this property suitable for |
---|
| 933 | * displaying in the explorer/experimenter gui |
---|
| 934 | */ |
---|
| 935 | public String targetTipText() { |
---|
| 936 | return "The target attribute of interest."; |
---|
| 937 | } |
---|
| 938 | |
---|
| 939 | /** |
---|
| 940 | * Set the target index |
---|
| 941 | * |
---|
| 942 | * @param target the target index as a string (1-based) |
---|
| 943 | */ |
---|
| 944 | public void setTarget(String target) { |
---|
| 945 | m_targetSI.setSingleIndex(target); |
---|
| 946 | } |
---|
| 947 | |
---|
| 948 | /** |
---|
| 949 | * Get the target index as a string |
---|
| 950 | * |
---|
| 951 | * @return the target index (1-based) |
---|
| 952 | */ |
---|
| 953 | public String getTarget() { |
---|
| 954 | return m_targetSI.getSingleIndex(); |
---|
| 955 | } |
---|
| 956 | |
---|
| 957 | /** |
---|
| 958 | * Returns the tip text for this property |
---|
| 959 | * @return tip text for this property suitable for |
---|
| 960 | * displaying in the explorer/experimenter gui |
---|
| 961 | */ |
---|
| 962 | public String targetIndexTipText() { |
---|
| 963 | return "The value of the target (nominal attributes only) of interest."; |
---|
| 964 | } |
---|
| 965 | |
---|
| 966 | /** |
---|
| 967 | * For a nominal target, set the index of the value of interest (1-based) |
---|
| 968 | * |
---|
| 969 | * @param index the index of the nominal value of interest |
---|
| 970 | */ |
---|
| 971 | public void setTargetIndex(String index) { |
---|
| 972 | m_targetIndexSI.setSingleIndex(index); |
---|
| 973 | } |
---|
| 974 | |
---|
| 975 | /** |
---|
| 976 | * For a nominal target, get the index of the value of interest (1-based) |
---|
| 977 | * |
---|
| 978 | * @return the index of the nominal value of interest |
---|
| 979 | */ |
---|
| 980 | public String getTargetIndex() { |
---|
| 981 | return m_targetIndexSI.getSingleIndex(); |
---|
| 982 | } |
---|
| 983 | |
---|
| 984 | /** |
---|
| 985 | * Returns the tip text for this property |
---|
| 986 | * @return tip text for this property suitable for |
---|
| 987 | * displaying in the explorer/experimenter gui |
---|
| 988 | */ |
---|
| 989 | public String minimizeTargetTipText() { |
---|
| 990 | return "Minimize rather than maximize the target."; |
---|
| 991 | } |
---|
| 992 | |
---|
| 993 | /** |
---|
| 994 | * Set whether to minimize the target rather than maximize |
---|
| 995 | * |
---|
| 996 | * @param m true if target is to be minimized |
---|
| 997 | */ |
---|
| 998 | public void setMinimizeTarget(boolean m) { |
---|
| 999 | m_minimize = m; |
---|
| 1000 | } |
---|
| 1001 | |
---|
| 1002 | /** |
---|
| 1003 | * Get whether to minimize the target rather than maximize |
---|
| 1004 | * |
---|
| 1005 | * @return true if target is to be minimized |
---|
| 1006 | */ |
---|
| 1007 | public boolean getMinimizeTarget() { |
---|
| 1008 | return m_minimize; |
---|
| 1009 | } |
---|
| 1010 | |
---|
| 1011 | /** |
---|
| 1012 | * Returns the tip text for this property |
---|
| 1013 | * @return tip text for this property suitable for |
---|
| 1014 | * displaying in the explorer/experimenter gui |
---|
| 1015 | */ |
---|
| 1016 | public String supportTipText() { |
---|
| 1017 | return "The minimum support. Values between 0 and 1 are interpreted " |
---|
| 1018 | + "as a percentage of the total population; values > 1 are " |
---|
| 1019 | + "interpreted as an absolute number of instances"; |
---|
| 1020 | } |
---|
| 1021 | |
---|
| 1022 | /** |
---|
| 1023 | * Get the minimum support |
---|
| 1024 | * |
---|
| 1025 | * @return the minimum support |
---|
| 1026 | */ |
---|
| 1027 | public double getSupport() { |
---|
| 1028 | return m_support; |
---|
| 1029 | } |
---|
| 1030 | |
---|
| 1031 | /** |
---|
| 1032 | * Set the minimum support |
---|
| 1033 | * |
---|
| 1034 | * @param s the minimum support |
---|
| 1035 | */ |
---|
| 1036 | public void setSupport(double s) { |
---|
| 1037 | m_support = s; |
---|
| 1038 | } |
---|
| 1039 | |
---|
| 1040 | /** |
---|
| 1041 | * Returns the tip text for this property |
---|
| 1042 | * @return tip text for this property suitable for |
---|
| 1043 | * displaying in the explorer/experimenter gui |
---|
| 1044 | */ |
---|
| 1045 | public String maxBranchingFactorTipText() { |
---|
| 1046 | return "Maximum branching factor. The maximum number of children " |
---|
| 1047 | + "to consider extending each node with."; |
---|
| 1048 | } |
---|
| 1049 | |
---|
| 1050 | /** |
---|
| 1051 | * Set the maximum branching factor |
---|
| 1052 | * |
---|
| 1053 | * @param b the maximum branching factor |
---|
| 1054 | */ |
---|
| 1055 | public void setMaxBranchingFactor(int b) { |
---|
| 1056 | m_maxBranchingFactor = b; |
---|
| 1057 | } |
---|
| 1058 | |
---|
| 1059 | /** |
---|
| 1060 | * Get the maximum branching factor |
---|
| 1061 | * |
---|
| 1062 | * @return the maximum branching factor |
---|
| 1063 | */ |
---|
| 1064 | public int getMaxBranchingFactor() { |
---|
| 1065 | return m_maxBranchingFactor; |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | /** |
---|
| 1069 | * Returns the tip text for this property |
---|
| 1070 | * @return tip text for this property suitable for |
---|
| 1071 | * displaying in the explorer/experimenter gui |
---|
| 1072 | */ |
---|
| 1073 | public String minImprovementTipText() { |
---|
| 1074 | return "Minimum improvement in target value in order to " |
---|
| 1075 | + "consider adding a new branch/test"; |
---|
| 1076 | } |
---|
| 1077 | |
---|
| 1078 | /** |
---|
| 1079 | * Set the minimum improvement in the target necessary to add a test |
---|
| 1080 | * |
---|
| 1081 | * @param i the minimum improvement |
---|
| 1082 | */ |
---|
| 1083 | public void setMinImprovement(double i) { |
---|
| 1084 | m_minImprovement = i; |
---|
| 1085 | } |
---|
| 1086 | |
---|
| 1087 | /** |
---|
| 1088 | * Get the minimum improvement in the target necessary to add a test |
---|
| 1089 | * |
---|
| 1090 | * @return the minimum improvement |
---|
| 1091 | */ |
---|
| 1092 | public double getMinImprovement() { |
---|
| 1093 | return m_minImprovement; |
---|
| 1094 | } |
---|
| 1095 | |
---|
| 1096 | /** |
---|
| 1097 | * Returns the tip text for this property |
---|
| 1098 | * @return tip text for this property suitable for |
---|
| 1099 | * displaying in the explorer/experimenter gui |
---|
| 1100 | */ |
---|
| 1101 | public String debugTipText() { |
---|
| 1102 | return "Output debugging info (duplicate rule lookup hash table stats)."; |
---|
| 1103 | } |
---|
| 1104 | |
---|
| 1105 | /** |
---|
| 1106 | * Set whether debugging info is output |
---|
| 1107 | * |
---|
| 1108 | * @param d true to output debugging info |
---|
| 1109 | */ |
---|
| 1110 | public void setDebug(boolean d) { |
---|
| 1111 | m_debug = d; |
---|
| 1112 | } |
---|
| 1113 | |
---|
| 1114 | /** |
---|
| 1115 | * Get whether debugging info is output |
---|
| 1116 | * |
---|
| 1117 | * @return true if outputing debugging info |
---|
| 1118 | */ |
---|
| 1119 | public boolean getDebug() { |
---|
| 1120 | return m_debug; |
---|
| 1121 | } |
---|
| 1122 | |
---|
| 1123 | /** |
---|
| 1124 | * Returns an enumeration describing the available options. |
---|
| 1125 | * |
---|
| 1126 | * @return an enumeration of all the available options. |
---|
| 1127 | */ |
---|
| 1128 | public Enumeration listOptions() { |
---|
| 1129 | Vector newVector = new Vector(); |
---|
| 1130 | newVector.addElement(new Option("\tThe target index. (default = last)", |
---|
| 1131 | "c", 1, |
---|
| 1132 | "-c <num | first | last>")); |
---|
| 1133 | newVector.addElement(new Option("\tThe target value (nominal target only, default = first)", |
---|
| 1134 | "V", 1, |
---|
| 1135 | "-V <num | first | last>")); |
---|
| 1136 | newVector.addElement(new Option("\tMinimize rather than maximize.", "L", 0, "-L")); |
---|
| 1137 | newVector.addElement(new Option("\tMinimum value count (nominal target)/segment size " |
---|
| 1138 | + "(numeric target)." |
---|
| 1139 | +"\n\tValues between 0 and 1 are " |
---|
| 1140 | + "\n\tinterpreted as a percentage of " |
---|
| 1141 | + "\n\tthe total population; values > 1 are " |
---|
| 1142 | + "\n\tinterpreted as an absolute number of " |
---|
| 1143 | +"\n\tinstances (default = 0.3)", |
---|
| 1144 | "-S", 1, |
---|
| 1145 | "-S <num>")); |
---|
| 1146 | newVector.addElement(new Option("\tMaximum branching factor (default = 2)", |
---|
| 1147 | "-M", 1, |
---|
| 1148 | "-M <num>")); |
---|
| 1149 | newVector.addElement(new Option("\tMinimum improvement in target value in order " |
---|
| 1150 | + "\n\tto add a new branch/test (default = 0.01 (1%))", |
---|
| 1151 | "-I", 1, |
---|
| 1152 | "-I <num>")); |
---|
| 1153 | newVector.addElement(new Option("\tOutput debugging info (duplicate rule lookup " |
---|
| 1154 | + "\n\thash table stats)", "-D", 0, "-D")); |
---|
| 1155 | return newVector.elements(); |
---|
| 1156 | } |
---|
| 1157 | |
---|
| 1158 | /** |
---|
| 1159 | * Reset options to their defaults |
---|
| 1160 | */ |
---|
| 1161 | public void resetOptions() { |
---|
| 1162 | m_support = 0.33; |
---|
| 1163 | m_minImprovement = 0.01; // 1% |
---|
| 1164 | m_maxBranchingFactor = 2; |
---|
| 1165 | m_minimize = false; |
---|
| 1166 | m_debug = false; |
---|
| 1167 | setTarget("last"); |
---|
| 1168 | setTargetIndex("first"); |
---|
| 1169 | m_errorMessage = null; |
---|
| 1170 | } |
---|
| 1171 | |
---|
| 1172 | /** |
---|
| 1173 | * Parses a given list of options. <p/> |
---|
| 1174 | * |
---|
| 1175 | <!-- options-start --> |
---|
| 1176 | * Valid options are: <p/> |
---|
| 1177 | * |
---|
| 1178 | * <pre> -c <num | first | last> |
---|
| 1179 | * The target index. (default = last)</pre> |
---|
| 1180 | * |
---|
| 1181 | * <pre> -V <num | first | last> |
---|
| 1182 | * The target value (nominal target only, default = first)</pre> |
---|
| 1183 | * |
---|
| 1184 | * <pre> -L |
---|
| 1185 | * Minimize rather than maximize.</pre> |
---|
| 1186 | * |
---|
| 1187 | * <pre> -S <num> |
---|
| 1188 | * Minimum value count (nominal target)/segment size (numeric target). |
---|
| 1189 | * Values between 0 and 1 are |
---|
| 1190 | * interpreted as a percentage of |
---|
| 1191 | * the total population; values > 1 are |
---|
| 1192 | * interpreted as an absolute number of |
---|
| 1193 | * instances (default = 0.3)</pre> |
---|
| 1194 | * |
---|
| 1195 | * <pre> -M <num> |
---|
| 1196 | * Maximum branching factor (default = 2)</pre> |
---|
| 1197 | * |
---|
| 1198 | * <pre> -I <num> |
---|
| 1199 | * Minimum improvement in target value in order |
---|
| 1200 | * to add a new branch/test (default = 0.01 (1%))</pre> |
---|
| 1201 | * |
---|
| 1202 | * <pre> -D |
---|
| 1203 | * Output debugging info (duplicate rule lookup |
---|
| 1204 | * hash table stats)</pre> |
---|
| 1205 | * |
---|
| 1206 | <!-- options-end --> |
---|
| 1207 | * |
---|
| 1208 | * @param options the list of options as an array of strings |
---|
| 1209 | * @exception Exception if an option is not supported |
---|
| 1210 | */ |
---|
| 1211 | public void setOptions(String[] options) throws Exception { |
---|
| 1212 | resetOptions(); |
---|
| 1213 | |
---|
| 1214 | String tempString = Utils.getOption('c', options); |
---|
| 1215 | if (tempString.length() != 0) { |
---|
| 1216 | setTarget(tempString); |
---|
| 1217 | } |
---|
| 1218 | |
---|
| 1219 | tempString = Utils.getOption('V', options); |
---|
| 1220 | if (tempString.length() != 0) { |
---|
| 1221 | setTargetIndex(tempString); |
---|
| 1222 | } |
---|
| 1223 | |
---|
| 1224 | setMinimizeTarget(Utils.getFlag('L', options)); |
---|
| 1225 | |
---|
| 1226 | tempString = Utils.getOption('S', options); |
---|
| 1227 | if (tempString.length() != 0) { |
---|
| 1228 | setSupport(Double.parseDouble(tempString)); |
---|
| 1229 | } |
---|
| 1230 | |
---|
| 1231 | tempString = Utils.getOption('M', options); |
---|
| 1232 | if (tempString.length() != 0) { |
---|
| 1233 | setMaxBranchingFactor(Integer.parseInt(tempString)); |
---|
| 1234 | } |
---|
| 1235 | |
---|
| 1236 | tempString = Utils.getOption('I', options); |
---|
| 1237 | if (tempString.length() != 0) { |
---|
| 1238 | setMinImprovement(Double.parseDouble(tempString)); |
---|
| 1239 | } |
---|
| 1240 | |
---|
| 1241 | setDebug(Utils.getFlag('D', options)); |
---|
| 1242 | } |
---|
| 1243 | |
---|
| 1244 | /** |
---|
| 1245 | * Gets the current settings of HotSpot. |
---|
| 1246 | * |
---|
| 1247 | * @return an array of strings suitable for passing to setOptions |
---|
| 1248 | */ |
---|
| 1249 | public String [] getOptions() { |
---|
| 1250 | String[] options = new String[12]; |
---|
| 1251 | int current = 0; |
---|
| 1252 | |
---|
| 1253 | options[current++] = "-c"; options[current++] = getTarget(); |
---|
| 1254 | options[current++] = "-V"; options[current++] = getTargetIndex(); |
---|
| 1255 | if (getMinimizeTarget()) { |
---|
| 1256 | options[current++] = "-L"; |
---|
| 1257 | } |
---|
| 1258 | options[current++] = "-S"; options[current++] = "" + getSupport(); |
---|
| 1259 | options[current++] = "-M"; options[current++] = "" + getMaxBranchingFactor(); |
---|
| 1260 | options[current++] = "-I"; options[current++] = "" + getMinImprovement(); |
---|
| 1261 | if (getDebug()) { |
---|
| 1262 | options[current++] = "-D"; |
---|
| 1263 | } |
---|
| 1264 | |
---|
| 1265 | while (current < options.length) { |
---|
| 1266 | options[current++] = ""; |
---|
| 1267 | } |
---|
| 1268 | |
---|
| 1269 | return options; |
---|
| 1270 | } |
---|
| 1271 | |
---|
| 1272 | /** |
---|
| 1273 | * Returns the revision string. |
---|
| 1274 | * |
---|
| 1275 | * @return the revision |
---|
| 1276 | */ |
---|
| 1277 | public String getRevision() { |
---|
| 1278 | return RevisionUtils.extract("$Revision: 6081 $"); |
---|
| 1279 | } |
---|
| 1280 | |
---|
| 1281 | /** |
---|
| 1282 | * Returns the type of graph this scheme |
---|
| 1283 | * represents. |
---|
| 1284 | * @return Drawable.TREE |
---|
| 1285 | */ |
---|
| 1286 | public int graphType() { |
---|
| 1287 | return Drawable.TREE; |
---|
| 1288 | } |
---|
| 1289 | |
---|
| 1290 | /** |
---|
| 1291 | * Main method for testing this class. |
---|
| 1292 | * |
---|
| 1293 | * @param args the options |
---|
| 1294 | */ |
---|
| 1295 | public static void main(String[] args) { |
---|
| 1296 | try { |
---|
| 1297 | HotSpot h = new HotSpot(); |
---|
| 1298 | AbstractAssociator.runAssociator(new HotSpot(), args); |
---|
| 1299 | } catch (Exception ex) { |
---|
| 1300 | ex.printStackTrace(); |
---|
| 1301 | } |
---|
| 1302 | } |
---|
| 1303 | } |
---|
| 1304 | |
---|