[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * CaRuleGeneration.java |
---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.associations; |
---|
| 24 | |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.FastVector; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.RevisionHandler; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.UnassignedClassException; |
---|
| 31 | |
---|
| 32 | import java.io.Serializable; |
---|
| 33 | import java.util.Hashtable; |
---|
| 34 | import java.util.TreeSet; |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | /** |
---|
| 38 | * Class implementing the rule generation procedure of the predictive apriori algorithm for class association rules. |
---|
| 39 | * |
---|
| 40 | * For association rules in gerneral the method is described in: |
---|
| 41 | * T. Scheffer (2001). <i>Finding Association Rules That Trade Support |
---|
| 42 | * Optimally against Confidence</i>. Proc of the 5th European Conf. |
---|
| 43 | * on Principles and Practice of Knowledge Discovery in Databases (PKDD'01), |
---|
| 44 | * pp. 424-435. Freiburg, Germany: Springer-Verlag. <p> |
---|
| 45 | * |
---|
| 46 | * The implementation follows the paper expect for adding a rule to the output of the |
---|
| 47 | * <i>n</i> best rules. A rule is added if: |
---|
| 48 | * the expected predictive accuracy of this rule is among the <i>n</i> best and it is |
---|
| 49 | * not subsumed by a rule with at least the same expected predictive accuracy |
---|
| 50 | * (out of an unpublished manuscript from T. Scheffer). |
---|
| 51 | * |
---|
| 52 | * @author Stefan Mutter (mutter@cs.waikato.ac.nz) |
---|
| 53 | * @version $Revision: 1.4 $ */ |
---|
| 54 | public class CaRuleGeneration |
---|
| 55 | extends RuleGeneration |
---|
| 56 | implements Serializable, RevisionHandler { |
---|
| 57 | |
---|
| 58 | /** for serialization */ |
---|
| 59 | private static final long serialVersionUID = 3065752149646517703L; |
---|
| 60 | |
---|
| 61 | /** |
---|
| 62 | * Constructor |
---|
| 63 | * @param itemSet the item set that forms the premise of the rule |
---|
| 64 | */ |
---|
| 65 | public CaRuleGeneration(ItemSet itemSet){ |
---|
| 66 | super(itemSet); |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | /** |
---|
| 70 | * Generates all rules for an item set. The item set is the premise. |
---|
| 71 | * @param numRules the number of association rules the use wants to mine. |
---|
| 72 | * This number equals the size <i>n</i> of the list of the |
---|
| 73 | * best rules. |
---|
| 74 | * @param midPoints the mid points of the intervals |
---|
| 75 | * @param priors Hashtable that contains the prior probabilities |
---|
| 76 | * @param expectation the minimum value of the expected predictive accuracy |
---|
| 77 | * that is needed to get into the list of the best rules |
---|
| 78 | * @param instances the instances for which association rules are generated |
---|
| 79 | * @param best the list of the <i>n</i> best rules. |
---|
| 80 | * The list is implemented as a TreeSet |
---|
| 81 | * @param genTime the maximum time of generation |
---|
| 82 | * @return all the rules with minimum confidence for the given item set |
---|
| 83 | */ |
---|
| 84 | public TreeSet generateRules(int numRules, double[] midPoints, Hashtable priors, double expectation, Instances instances, TreeSet best, int genTime) { |
---|
| 85 | |
---|
| 86 | boolean redundant = false; |
---|
| 87 | FastVector consequences = new FastVector(); |
---|
| 88 | ItemSet premise; |
---|
| 89 | RuleItem current = null, old = null; |
---|
| 90 | |
---|
| 91 | Hashtable hashtable; |
---|
| 92 | |
---|
| 93 | m_change = false; |
---|
| 94 | m_midPoints = midPoints; |
---|
| 95 | m_priors = priors; |
---|
| 96 | m_best = best; |
---|
| 97 | m_expectation = expectation; |
---|
| 98 | m_count = genTime; |
---|
| 99 | m_instances = instances; |
---|
| 100 | |
---|
| 101 | //create rule body |
---|
| 102 | premise =null; |
---|
| 103 | premise = new ItemSet(m_totalTransactions); |
---|
| 104 | int[] premiseItems = new int[m_items.length]; |
---|
| 105 | System.arraycopy(m_items, 0, premiseItems, 0, m_items.length); |
---|
| 106 | premise.setItem(premiseItems); |
---|
| 107 | premise.setCounter(m_counter); |
---|
| 108 | |
---|
| 109 | consequences = singleConsequence(instances); |
---|
| 110 | |
---|
| 111 | //create n best rules |
---|
| 112 | do{ |
---|
| 113 | if(premise == null || consequences.size() == 0) |
---|
| 114 | return m_best; |
---|
| 115 | m_minRuleCount = 1; |
---|
| 116 | while(expectation((double)m_minRuleCount,premise.counter(),m_midPoints,m_priors) <= m_expectation){ |
---|
| 117 | m_minRuleCount++; |
---|
| 118 | if(m_minRuleCount > premise.counter()) |
---|
| 119 | return m_best; |
---|
| 120 | } |
---|
| 121 | redundant = false; |
---|
| 122 | |
---|
| 123 | //create possible heads |
---|
| 124 | FastVector allRuleItems = new FastVector(); |
---|
| 125 | int h = 0; |
---|
| 126 | while(h < consequences.size()){ |
---|
| 127 | RuleItem dummie = new RuleItem(); |
---|
| 128 | m_count++; |
---|
| 129 | current = dummie.generateRuleItem(premise,(ItemSet)consequences.elementAt(h),instances,m_count,m_minRuleCount,m_midPoints,m_priors); |
---|
| 130 | if(current != null) |
---|
| 131 | allRuleItems.addElement(current); |
---|
| 132 | h++; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | //update best |
---|
| 136 | for(h =0; h< allRuleItems.size();h++){ |
---|
| 137 | current = (RuleItem)allRuleItems.elementAt(h); |
---|
| 138 | if(m_best.size() < numRules){ |
---|
| 139 | m_change =true; |
---|
| 140 | redundant = removeRedundant(current); |
---|
| 141 | } |
---|
| 142 | else{ |
---|
| 143 | m_expectation = ((RuleItem)(m_best.first())).accuracy(); |
---|
| 144 | if(current.accuracy() > m_expectation){ |
---|
| 145 | boolean remove = m_best.remove(m_best.first()); |
---|
| 146 | m_change = true; |
---|
| 147 | redundant = removeRedundant(current); |
---|
| 148 | m_expectation = ((RuleItem)(m_best.first())).accuracy(); |
---|
| 149 | while(expectation((double)m_minRuleCount, (current.premise()).counter(),m_midPoints,m_priors) < m_expectation){ |
---|
| 150 | m_minRuleCount++; |
---|
| 151 | if(m_minRuleCount > (current.premise()).counter()) |
---|
| 152 | break; |
---|
| 153 | } |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | } |
---|
| 157 | }while(redundant); |
---|
| 158 | return m_best; |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Methods that decides whether or not rule a subsumes rule b. |
---|
| 163 | * The defintion of subsumption is: |
---|
| 164 | * Rule a subsumes rule b, if a subsumes b |
---|
| 165 | * AND |
---|
| 166 | * a has got least the same expected predictive accuracy as b. |
---|
| 167 | * @param a an association rule stored as a RuleItem |
---|
| 168 | * @param b an association rule stored as a RuleItem |
---|
| 169 | * @return true if rule a subsumes rule b or false otherwise. |
---|
| 170 | */ |
---|
| 171 | public static boolean aSubsumesB(RuleItem a, RuleItem b){ |
---|
| 172 | |
---|
| 173 | if(!a.consequence().equals(b.consequence())) |
---|
| 174 | return false; |
---|
| 175 | if(a.accuracy() < b.accuracy()) |
---|
| 176 | return false; |
---|
| 177 | for(int k = 0; k < ((a.premise()).items()).length;k++){ |
---|
| 178 | if((a.premise()).itemAt(k) != (b.premise()).itemAt(k)){ |
---|
| 179 | if(((a.premise()).itemAt(k) != -1 && (b.premise()).itemAt(k) != -1) || (b.premise()).itemAt(k) == -1) |
---|
| 180 | return false; |
---|
| 181 | } |
---|
| 182 | /*if(a.m_consequence.m_items[k] != b.m_consequence.m_items[k]){ |
---|
| 183 | if((a.m_consequence.m_items[k] != -1 && b.m_consequence.m_items[k] != -1) || a.m_consequence.m_items[k] == -1) |
---|
| 184 | return false; |
---|
| 185 | }*/ |
---|
| 186 | } |
---|
| 187 | return true; |
---|
| 188 | |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | /** |
---|
| 192 | * Converts the header info of the given set of instances into a set |
---|
| 193 | * of item sets (singletons). The ordering of values in the header file |
---|
| 194 | * determines the lexicographic order. |
---|
| 195 | * |
---|
| 196 | * @param instances the set of instances whose header info is to be used |
---|
| 197 | * @return a set of item sets, each containing a single item |
---|
| 198 | * @exception Exception if singletons can't be generated successfully |
---|
| 199 | */ |
---|
| 200 | public static FastVector singletons(Instances instances) throws Exception { |
---|
| 201 | |
---|
| 202 | FastVector setOfItemSets = new FastVector(); |
---|
| 203 | ItemSet current; |
---|
| 204 | |
---|
| 205 | if(instances.classIndex() == -1) |
---|
| 206 | throw new UnassignedClassException("Class index is negative (not set)!"); |
---|
| 207 | Attribute att = instances.classAttribute(); |
---|
| 208 | for (int i = 0; i < instances.numAttributes(); i++) { |
---|
| 209 | if (instances.attribute(i).isNumeric()) |
---|
| 210 | throw new Exception("Can't handle numeric attributes!"); |
---|
| 211 | if(i != instances.classIndex()){ |
---|
| 212 | for (int j = 0; j < instances.attribute(i).numValues(); j++) { |
---|
| 213 | current = new ItemSet(instances.numInstances()); |
---|
| 214 | int[] currentItems = new int[instances.numAttributes()]; |
---|
| 215 | for (int k = 0; k < instances.numAttributes(); k++) |
---|
| 216 | currentItems[k] = -1; |
---|
| 217 | currentItems[i] = j; |
---|
| 218 | current.setItem(currentItems); |
---|
| 219 | setOfItemSets.addElement(current); |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | } |
---|
| 223 | return setOfItemSets; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | /** |
---|
| 227 | * generates a consequence of length 1 for a class association rule. |
---|
| 228 | * @param instances the instances under consideration |
---|
| 229 | * @return FastVector with consequences of length 1 |
---|
| 230 | */ |
---|
| 231 | public static FastVector singleConsequence(Instances instances){ |
---|
| 232 | |
---|
| 233 | ItemSet consequence; |
---|
| 234 | FastVector consequences = new FastVector(); |
---|
| 235 | |
---|
| 236 | for (int j = 0; j < (instances.classAttribute()).numValues(); j++) { |
---|
| 237 | consequence = new ItemSet(instances.numInstances()); |
---|
| 238 | int[] consequenceItems = new int[instances.numAttributes()]; |
---|
| 239 | consequence.setItem(consequenceItems); |
---|
| 240 | for (int k = 0; k < instances.numAttributes(); k++) |
---|
| 241 | consequence.setItemAt(-1,k); |
---|
| 242 | consequence.setItemAt(j,instances.classIndex()); |
---|
| 243 | consequences.addElement(consequence); |
---|
| 244 | } |
---|
| 245 | return consequences; |
---|
| 246 | |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | /** |
---|
| 250 | * Returns the revision string. |
---|
| 251 | * |
---|
| 252 | * @return the revision |
---|
| 253 | */ |
---|
| 254 | public String getRevision() { |
---|
| 255 | return RevisionUtils.extract("$Revision: 1.4 $"); |
---|
| 256 | } |
---|
| 257 | } |
---|