/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * AprioriItemSet.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */ package weka.associations; import weka.core.ContingencyTables; import weka.core.FastVector; import weka.core.Instances; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import java.io.Serializable; import java.util.Enumeration; import java.util.Hashtable; /** * Class for storing a set of items. Item sets are stored in a lexicographic * order, which is determined by the header information of the set of instances * used for generating the set of items. All methods in this class assume that * item sets are stored in lexicographic order. * The class provides methods that are used in the Apriori algorithm to construct * association rules. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Stefan Mutter (mutter@cs.waikato.ac.nz) * @version $Revision: 5130 $ */ public class AprioriItemSet extends ItemSet implements Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = 7684467755712672058L; /** * Constructor * * @param totalTrans the total number of transactions in the data */ public AprioriItemSet(int totalTrans) { super(totalTrans); } /** * Outputs the confidence for a rule. * * @param premise the premise of the rule * @param consequence the consequence of the rule * @return the confidence on the training data */ public static double confidenceForRule(AprioriItemSet premise, AprioriItemSet consequence) { return (double)consequence.m_counter/(double)premise.m_counter; } /** * Outputs the lift for a rule. Lift is defined as:
* confidence / prob(consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the lift on the training data */ public double liftForRule(AprioriItemSet premise, AprioriItemSet consequence, int consequenceCount) { double confidence = confidenceForRule(premise, consequence); return confidence / ((double)consequenceCount / (double)m_totalTransactions); } /** * Outputs the leverage for a rule. Leverage is defined as:
* prob(premise & consequence) - (prob(premise) * prob(consequence)) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent * of the consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the leverage on the training data */ public double leverageForRule(AprioriItemSet premise, AprioriItemSet consequence, int premiseCount, int consequenceCount) { double coverageForItemSet = (double)consequence.m_counter / (double)m_totalTransactions; double expectedCoverageIfIndependent = ((double)premiseCount / (double)m_totalTransactions) * ((double)consequenceCount / (double)m_totalTransactions); double lev = coverageForItemSet - expectedCoverageIfIndependent; return lev; } /** * Outputs the conviction for a rule. Conviction is defined as:
* prob(premise) * prob(!consequence) / prob(premise & !consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent * of the consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the conviction on the training data */ public double convictionForRule(AprioriItemSet premise, AprioriItemSet consequence, int premiseCount, int consequenceCount) { double num = (double)premiseCount * (double)(m_totalTransactions - consequenceCount) / (double)m_totalTransactions; double denom = ((premiseCount - consequence.m_counter)+1); if (num < 0 || denom < 0) { System.err.println("*** "+num+" "+denom); System.err.println("premis count: "+premiseCount+" consequence count "+consequenceCount+" total trans "+m_totalTransactions); } return num / denom; } /** * Generates all rules for an item set. * * @param minConfidence the minimum confidence the rules have to have * @param hashtables containing all(!) previously generated * item sets * @param numItemsInSet the size of the item set for which the rules * are to be generated * @return all the rules with minimum confidence for the given item set */ public FastVector[] generateRules(double minConfidence, FastVector hashtables, int numItemsInSet) { FastVector premises = new FastVector(),consequences = new FastVector(), conf = new FastVector(); FastVector[] rules = new FastVector[3], moreResults; AprioriItemSet premise, consequence; Hashtable hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - 2); // Generate all rules with one item in the consequence. for (int i = 0; i < m_items.length; i++) if (m_items[i] != -1) { premise = new AprioriItemSet(m_totalTransactions); consequence = new AprioriItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; for (int j = 0; j < m_items.length; j++) consequence.m_items[j] = -1; System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length); premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; premise.m_counter = ((Integer)hashtable.get(premise)).intValue(); premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(confidenceForRule(premise, consequence))); } rules[0] = premises; rules[1] = consequences; rules[2] = conf; pruneRules(rules, minConfidence); // Generate all the other rules moreResults = moreComplexRules(rules, numItemsInSet, 1, minConfidence, hashtables); if (moreResults != null) for (int i = 0; i < moreResults[0].size(); i++) { rules[0].addElement(moreResults[0].elementAt(i)); rules[1].addElement(moreResults[1].elementAt(i)); rules[2].addElement(moreResults[2].elementAt(i)); } return rules; } /** * Generates all significant rules for an item set. * * @param minMetric the minimum metric (confidence, lift, leverage, * improvement) the rules have to have * @param metricType (confidence=0, lift, leverage, improvement) * @param hashtables containing all(!) previously generated * item sets * @param numItemsInSet the size of the item set for which the rules * are to be generated * @param numTransactions * @param significanceLevel the significance level for testing the rules * @return all the rules with minimum metric for the given item set * @exception Exception if something goes wrong */ public final FastVector[] generateRulesBruteForce(double minMetric, int metricType, FastVector hashtables, int numItemsInSet, int numTransactions, double significanceLevel) throws Exception { FastVector premises = new FastVector(),consequences = new FastVector(), conf = new FastVector(), lift = new FastVector(), lev = new FastVector(), conv = new FastVector(); FastVector[] rules = new FastVector[6]; AprioriItemSet premise, consequence; Hashtable hashtableForPremise, hashtableForConsequence; int numItemsInPremise, help, max, consequenceUnconditionedCounter; double[][] contingencyTable = new double[2][2]; double metric, chiSquared; // Generate all possible rules for this item set and test their // significance. max = (int)Math.pow(2, numItemsInSet); for (int j = 1; j < max; j++) { numItemsInPremise = 0; help = j; while (help > 0) { if (help % 2 == 1) numItemsInPremise++; help /= 2; } if (numItemsInPremise < numItemsInSet) { hashtableForPremise = (Hashtable)hashtables.elementAt(numItemsInPremise-1); hashtableForConsequence = (Hashtable)hashtables.elementAt(numItemsInSet-numItemsInPremise-1); premise = new AprioriItemSet(m_totalTransactions); consequence = new AprioriItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; help = j; for (int i = 0; i < m_items.length; i++) if (m_items[i] != -1) { if (help % 2 == 1) { premise.m_items[i] = m_items[i]; consequence.m_items[i] = -1; } else { premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; } help /= 2; } else { premise.m_items[i] = -1; consequence.m_items[i] = -1; } premise.m_counter = ((Integer)hashtableForPremise.get(premise)).intValue(); consequenceUnconditionedCounter = ((Integer)hashtableForConsequence.get(consequence)).intValue(); if (metricType == 0) { contingencyTable[0][0] = (double)(consequence.m_counter); contingencyTable[0][1] = (double)(premise.m_counter - consequence.m_counter); contingencyTable[1][0] = (double)(consequenceUnconditionedCounter - consequence.m_counter); contingencyTable[1][1] = (double)(numTransactions - premise.m_counter - consequenceUnconditionedCounter + consequence.m_counter); chiSquared = ContingencyTables.chiSquared(contingencyTable, false); metric = confidenceForRule(premise, consequence); if ((!(metric < minMetric)) && (!(chiSquared > significanceLevel))) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(metric)); lift.addElement(new Double(liftForRule(premise, consequence, consequenceUnconditionedCounter))); lev.addElement(new Double(leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); conv.addElement(new Double(convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); } } else { double tempConf = confidenceForRule(premise, consequence); double tempLift = liftForRule(premise, consequence, consequenceUnconditionedCounter); double tempLev = leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); switch(metricType) { case 1: metric = tempLift; break; case 2: metric = tempLev; break; case 3: metric = tempConv; break; default: throw new Exception("ItemSet: Unknown metric type!"); } if (!(metric < minMetric)) { premises.addElement(premise); consequences.addElement(consequence); conf.addElement(new Double(tempConf)); lift.addElement(new Double(tempLift)); lev.addElement(new Double(tempLev)); conv.addElement(new Double(tempConv)); } } } } rules[0] = premises; rules[1] = consequences; rules[2] = conf; rules[3] = lift; rules[4] = lev; rules[5] = conv; return rules; } /** * Subtracts an item set from another one. * * @param toSubtract the item set to be subtracted from this one. * @return an item set that only contains items form this item sets that * are not contained by toSubtract */ public final AprioriItemSet subtract(AprioriItemSet toSubtract) { AprioriItemSet result = new AprioriItemSet(m_totalTransactions); result.m_items = new int[m_items.length]; for (int i = 0; i < m_items.length; i++) if (toSubtract.m_items[i] == -1) result.m_items[i] = m_items[i]; else result.m_items[i] = -1; result.m_counter = 0; return result; } /** * Generates rules with more than one item in the consequence. * * @param rules all the rules having (k-1)-item sets as consequences * @param numItemsInSet the size of the item set for which the rules * are to be generated * @param numItemsInConsequence the value of (k-1) * @param minConfidence the minimum confidence a rule has to have * @param hashtables the hashtables containing all(!) previously generated * item sets * @return all the rules having (k)-item sets as consequences */ private final FastVector[] moreComplexRules(FastVector[] rules, int numItemsInSet, int numItemsInConsequence, double minConfidence, FastVector hashtables) { AprioriItemSet newPremise; FastVector[] result, moreResults; FastVector newConsequences, newPremises = new FastVector(), newConf = new FastVector(); Hashtable hashtable; if (numItemsInSet > numItemsInConsequence + 1) { hashtable = (Hashtable)hashtables.elementAt(numItemsInSet - numItemsInConsequence - 2); newConsequences = mergeAllItemSets(rules[1], numItemsInConsequence - 1, m_totalTransactions); Enumeration enu = newConsequences.elements(); while (enu.hasMoreElements()) { AprioriItemSet current = (AprioriItemSet)enu.nextElement(); current.m_counter = m_counter; newPremise = subtract(current); newPremise.m_counter = ((Integer)hashtable.get(newPremise)).intValue(); newPremises.addElement(newPremise); newConf.addElement(new Double(confidenceForRule(newPremise, current))); } result = new FastVector[3]; result[0] = newPremises; result[1] = newConsequences; result[2] = newConf; pruneRules(result, minConfidence); moreResults = moreComplexRules(result,numItemsInSet,numItemsInConsequence+1, minConfidence, hashtables); if (moreResults != null) for (int i = 0; i < moreResults[0].size(); i++) { result[0].addElement(moreResults[0].elementAt(i)); result[1].addElement(moreResults[1].elementAt(i)); result[2].addElement(moreResults[2].elementAt(i)); } return result; } else return null; } /** * Returns the contents of an item set as a string. * * @param instances contains the relevant header information * @return string describing the item set */ public final String toString(Instances instances) { return super.toString(instances); } /** * Converts the header info of the given set of instances into a set * of item sets (singletons). The ordering of values in the header file * determines the lexicographic order. * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static FastVector singletons(Instances instances, boolean treatZeroAsMissing) throws Exception { FastVector setOfItemSets = new FastVector(); ItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) throw new Exception("Can't handle numeric attributes!"); int j = (treatZeroAsMissing) ? 1 : 0; for (; j < instances.attribute(i).numValues(); j++) { current = new AprioriItemSet(instances.numInstances()); current.setTreatZeroAsMissing(treatZeroAsMissing); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) current.m_items[k] = -1; current.m_items[i] = j; setOfItemSets.addElement(current); } } return setOfItemSets; } /** * Merges all item sets in the set of (k-1)-item sets * to create the (k)-item sets and updates the counters. * * @param itemSets the set of (k-1)-item sets * @param size the value of (k-1) * @param totalTrans the total number of transactions in the data * @return the generated (k)-item sets */ public static FastVector mergeAllItemSets(FastVector itemSets, int size, int totalTrans) { FastVector newVector = new FastVector(); ItemSet result; int numFound, k; for (int i = 0; i < itemSets.size(); i++) { ItemSet first = (ItemSet)itemSets.elementAt(i); out: for (int j = i+1; j < itemSets.size(); j++) { ItemSet second = (ItemSet)itemSets.elementAt(j); result = new AprioriItemSet(totalTrans); result.m_items = new int[first.m_items.length]; // Find and copy common prefix of size 'size' numFound = 0; k = 0; while (numFound < size) { if (first.m_items[k] == second.m_items[k]) { if (first.m_items[k] != -1) numFound++; result.m_items[k] = first.m_items[k]; } else break out; k++; } // Check difference while (k < first.m_items.length) { if ((first.m_items[k] != -1) && (second.m_items[k] != -1)) break; else { if (first.m_items[k] != -1) result.m_items[k] = first.m_items[k]; else result.m_items[k] = second.m_items[k]; } k++; } if (k == first.m_items.length) { result.m_counter = 0; newVector.addElement(result); } } } return newVector; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5130 $"); } }