| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * ClassifierErrorsPlotInstances.java |
|---|
| 19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.gui.explorer; |
|---|
| 23 | |
|---|
| 24 | import weka.classifiers.Classifier; |
|---|
| 25 | import weka.classifiers.Evaluation; |
|---|
| 26 | import weka.classifiers.IntervalEstimator; |
|---|
| 27 | import weka.classifiers.evaluation.NumericPrediction; |
|---|
| 28 | import weka.core.Attribute; |
|---|
| 29 | import weka.core.DenseInstance; |
|---|
| 30 | import weka.core.FastVector; |
|---|
| 31 | import weka.core.Instance; |
|---|
| 32 | import weka.core.Instances; |
|---|
| 33 | import weka.core.Utils; |
|---|
| 34 | import weka.gui.visualize.Plot2D; |
|---|
| 35 | import weka.gui.visualize.PlotData2D; |
|---|
| 36 | |
|---|
| 37 | /** |
|---|
| 38 | * A class for generating plottable visualization errors. |
|---|
| 39 | * <p/> |
|---|
| 40 | * Example usage: |
|---|
| 41 | * <pre> |
|---|
| 42 | * Instances train = ... // from somewhere |
|---|
| 43 | * Instances test = ... // from somewhere |
|---|
| 44 | * Classifier cls = ... // from somewhere |
|---|
| 45 | * // build classifier |
|---|
| 46 | * cls.buildClassifier(train); |
|---|
| 47 | * // evaluate classifier and generate plot instances |
|---|
| 48 | * ClassifierPlotInstances plotInstances = new ClassifierPlotInstances(); |
|---|
| 49 | * plotInstances.setClassifier(cls); |
|---|
| 50 | * plotInstances.setInstances(train); |
|---|
| 51 | * plotInstances.setClassIndex(train.classIndex()); |
|---|
| 52 | * plotInstances.setUp(); |
|---|
| 53 | * Evaluation eval = new Evaluation(train); |
|---|
| 54 | * for (int i = 0; i < test.numInstances(); i++) |
|---|
| 55 | * plotInstances.process(test.instance(i), cls, eval); |
|---|
| 56 | * // generate visualization |
|---|
| 57 | * VisualizePanel visPanel = new VisualizePanel(); |
|---|
| 58 | * visPanel.addPlot(plotInstances.getPlotData("plot name")); |
|---|
| 59 | * visPanel.setColourIndex(plotInstances.getPlotInstances().classIndex()+1); |
|---|
| 60 | * // clean up |
|---|
| 61 | * plotInstances.cleanUp(); |
|---|
| 62 | * </pre> |
|---|
| 63 | * |
|---|
| 64 | * @author fracpete (fracpete at waikato dot ac dot nz) |
|---|
| 65 | * @version $Revision: 6103 $ |
|---|
| 66 | */ |
|---|
| 67 | public class ClassifierErrorsPlotInstances |
|---|
| 68 | extends AbstractPlotInstances { |
|---|
| 69 | |
|---|
| 70 | /** for serialization. */ |
|---|
| 71 | private static final long serialVersionUID = -3941976365792013279L; |
|---|
| 72 | |
|---|
| 73 | /** the minimum plot size for numeric errors. */ |
|---|
| 74 | protected int m_MinimumPlotSizeNumeric; |
|---|
| 75 | |
|---|
| 76 | /** the maximum plot size for numeric errors. */ |
|---|
| 77 | protected int m_MaximumPlotSizeNumeric; |
|---|
| 78 | |
|---|
| 79 | /** whether to save the instances for visualization or just evaluate the |
|---|
| 80 | * instance. */ |
|---|
| 81 | protected boolean m_SaveForVisualization; |
|---|
| 82 | |
|---|
| 83 | /** for storing the plot shapes. */ |
|---|
| 84 | protected FastVector m_PlotShapes; |
|---|
| 85 | |
|---|
| 86 | /** for storing the plot sizes. */ |
|---|
| 87 | protected FastVector m_PlotSizes; |
|---|
| 88 | |
|---|
| 89 | /** the classifier being used. */ |
|---|
| 90 | protected Classifier m_Classifier; |
|---|
| 91 | |
|---|
| 92 | /** the class index. */ |
|---|
| 93 | protected int m_ClassIndex; |
|---|
| 94 | |
|---|
| 95 | /** the Evaluation object to use. */ |
|---|
| 96 | protected Evaluation m_Evaluation; |
|---|
| 97 | |
|---|
| 98 | /** |
|---|
| 99 | * Initializes the members. |
|---|
| 100 | */ |
|---|
| 101 | protected void initialize() { |
|---|
| 102 | super.initialize(); |
|---|
| 103 | |
|---|
| 104 | m_PlotShapes = new FastVector(); |
|---|
| 105 | m_PlotSizes = new FastVector(); |
|---|
| 106 | m_Classifier = null; |
|---|
| 107 | m_ClassIndex = -1; |
|---|
| 108 | m_Evaluation = null; |
|---|
| 109 | m_SaveForVisualization = true; |
|---|
| 110 | m_MinimumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMinimumPlotSizeNumeric(); |
|---|
| 111 | m_MaximumPlotSizeNumeric = ExplorerDefaults.getClassifierErrorsMaximumPlotSizeNumeric(); |
|---|
| 112 | } |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * Sets the classifier used for making the predictions. |
|---|
| 116 | * |
|---|
| 117 | * @param value the classifier to use |
|---|
| 118 | */ |
|---|
| 119 | public void setClassifier(Classifier value) { |
|---|
| 120 | m_Classifier = value; |
|---|
| 121 | } |
|---|
| 122 | |
|---|
| 123 | /** |
|---|
| 124 | * Returns the currently set classifier. |
|---|
| 125 | * |
|---|
| 126 | * @return the classifier in use |
|---|
| 127 | */ |
|---|
| 128 | public Classifier getClassifier() { |
|---|
| 129 | return m_Classifier; |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | /** |
|---|
| 133 | * Sets the 0-based class index. |
|---|
| 134 | * |
|---|
| 135 | * @param index the class index |
|---|
| 136 | */ |
|---|
| 137 | public void setClassIndex(int index) { |
|---|
| 138 | m_ClassIndex = index; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | /** |
|---|
| 142 | * Returns the 0-based class index. |
|---|
| 143 | * |
|---|
| 144 | * @return the class index |
|---|
| 145 | */ |
|---|
| 146 | public int getClassIndex() { |
|---|
| 147 | return m_ClassIndex; |
|---|
| 148 | } |
|---|
| 149 | |
|---|
| 150 | /** |
|---|
| 151 | * Sets the Evaluation object to use. |
|---|
| 152 | * |
|---|
| 153 | * @param value the evaluation to use |
|---|
| 154 | */ |
|---|
| 155 | public void setEvaluation(Evaluation value) { |
|---|
| 156 | m_Evaluation = value; |
|---|
| 157 | } |
|---|
| 158 | |
|---|
| 159 | /** |
|---|
| 160 | * Returns the Evaluation object in use. |
|---|
| 161 | * |
|---|
| 162 | * @return the evaluation object |
|---|
| 163 | */ |
|---|
| 164 | public Evaluation getEvaluation() { |
|---|
| 165 | return m_Evaluation; |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | /** |
|---|
| 169 | * Sets whether the instances are saved for visualization or only evaluation |
|---|
| 170 | * of the prediction is to happen. |
|---|
| 171 | * |
|---|
| 172 | * @param value if true then the instances will be saved |
|---|
| 173 | */ |
|---|
| 174 | public void setSaveForVisualization(boolean value) { |
|---|
| 175 | m_SaveForVisualization = value; |
|---|
| 176 | } |
|---|
| 177 | |
|---|
| 178 | /** |
|---|
| 179 | * Returns whether the instances are saved for visualization for only |
|---|
| 180 | * evaluation of the prediction is to happen. |
|---|
| 181 | * |
|---|
| 182 | * @return true if the instances are saved |
|---|
| 183 | */ |
|---|
| 184 | public boolean getSaveForVisualization() { |
|---|
| 185 | return m_SaveForVisualization; |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | /** |
|---|
| 189 | * Checks whether classifier, class index and evaluation are provided. |
|---|
| 190 | */ |
|---|
| 191 | protected void check() { |
|---|
| 192 | super.check(); |
|---|
| 193 | |
|---|
| 194 | if (m_Classifier == null) |
|---|
| 195 | throw new IllegalStateException("No classifier set!"); |
|---|
| 196 | |
|---|
| 197 | if (m_ClassIndex == -1) |
|---|
| 198 | throw new IllegalStateException("No class index set!"); |
|---|
| 199 | |
|---|
| 200 | if (m_Evaluation == null) |
|---|
| 201 | throw new IllegalStateException("No evaluation set"); |
|---|
| 202 | } |
|---|
| 203 | |
|---|
| 204 | /** |
|---|
| 205 | * Sets up the structure for the plot instances. Sets m_PlotInstances to null |
|---|
| 206 | * if instances are not saved for visualization. |
|---|
| 207 | * |
|---|
| 208 | * @see #getSaveForVisualization() |
|---|
| 209 | */ |
|---|
| 210 | protected void determineFormat() { |
|---|
| 211 | FastVector hv; |
|---|
| 212 | Attribute predictedClass; |
|---|
| 213 | Attribute classAt; |
|---|
| 214 | FastVector attVals; |
|---|
| 215 | int i; |
|---|
| 216 | |
|---|
| 217 | if (!m_SaveForVisualization) { |
|---|
| 218 | m_PlotInstances = null; |
|---|
| 219 | return; |
|---|
| 220 | } |
|---|
| 221 | |
|---|
| 222 | hv = new FastVector(); |
|---|
| 223 | |
|---|
| 224 | classAt = m_Instances.attribute(m_ClassIndex); |
|---|
| 225 | if (classAt.isNominal()) { |
|---|
| 226 | attVals = new FastVector(); |
|---|
| 227 | for (i = 0; i < classAt.numValues(); i++) |
|---|
| 228 | attVals.addElement(classAt.value(i)); |
|---|
| 229 | predictedClass = new Attribute("predicted" + classAt.name(), attVals); |
|---|
| 230 | } |
|---|
| 231 | else { |
|---|
| 232 | predictedClass = new Attribute("predicted" + classAt.name()); |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | for (i = 0; i < m_Instances.numAttributes(); i++) { |
|---|
| 236 | if (i == m_Instances.classIndex()) |
|---|
| 237 | hv.addElement(predictedClass); |
|---|
| 238 | hv.addElement(m_Instances.attribute(i).copy()); |
|---|
| 239 | } |
|---|
| 240 | |
|---|
| 241 | m_PlotInstances = new Instances( |
|---|
| 242 | m_Instances.relationName() + "_predicted", hv, m_Instances.numInstances()); |
|---|
| 243 | m_PlotInstances.setClassIndex(m_ClassIndex + 1); |
|---|
| 244 | } |
|---|
| 245 | |
|---|
| 246 | /** |
|---|
| 247 | * Process a classifier's prediction for an instance and update a |
|---|
| 248 | * set of plotting instances and additional plotting info. m_PlotShape |
|---|
| 249 | * for nominal class datasets holds shape types (actual data points have |
|---|
| 250 | * automatic shape type assignment; classifier error data points have |
|---|
| 251 | * box shape type). For numeric class datasets, the actual data points |
|---|
| 252 | * are stored in m_PlotInstances and m_PlotSize stores the error (which is |
|---|
| 253 | * later converted to shape size values). |
|---|
| 254 | * |
|---|
| 255 | * @param toPredict the actual data point |
|---|
| 256 | * @param classifier the classifier |
|---|
| 257 | * @param eval the evaluation object to use for evaluating the classifier on |
|---|
| 258 | * the instance to predict |
|---|
| 259 | * @see #m_PlotShapes |
|---|
| 260 | * @see #m_PlotSizes |
|---|
| 261 | * @see #m_PlotInstances |
|---|
| 262 | */ |
|---|
| 263 | public void process(Instance toPredict, Classifier classifier, Evaluation eval) { |
|---|
| 264 | double pred; |
|---|
| 265 | double[] values; |
|---|
| 266 | int i; |
|---|
| 267 | |
|---|
| 268 | try { |
|---|
| 269 | pred = eval.evaluateModelOnceAndRecordPrediction(classifier, toPredict); |
|---|
| 270 | |
|---|
| 271 | if (!m_SaveForVisualization) |
|---|
| 272 | return; |
|---|
| 273 | |
|---|
| 274 | if (m_PlotInstances != null) { |
|---|
| 275 | values = new double[m_PlotInstances.numAttributes()]; |
|---|
| 276 | for (i = 0; i < m_PlotInstances.numAttributes(); i++) { |
|---|
| 277 | if (i < toPredict.classIndex()) { |
|---|
| 278 | values[i] = toPredict.value(i); |
|---|
| 279 | } |
|---|
| 280 | else if (i == toPredict.classIndex()) { |
|---|
| 281 | values[i] = pred; |
|---|
| 282 | values[i+1] = toPredict.value(i); |
|---|
| 283 | i++; |
|---|
| 284 | } |
|---|
| 285 | else { |
|---|
| 286 | values[i] = toPredict.value(i-1); |
|---|
| 287 | } |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | m_PlotInstances.add(new DenseInstance(1.0, values)); |
|---|
| 291 | |
|---|
| 292 | if (toPredict.classAttribute().isNominal()) { |
|---|
| 293 | if (toPredict.isMissing(toPredict.classIndex()) || Utils.isMissingValue(pred)) { |
|---|
| 294 | m_PlotShapes.addElement(new Integer(Plot2D.MISSING_SHAPE)); |
|---|
| 295 | } |
|---|
| 296 | else if (pred != toPredict.classValue()) { |
|---|
| 297 | // set to default error point shape |
|---|
| 298 | m_PlotShapes.addElement(new Integer(Plot2D.ERROR_SHAPE)); |
|---|
| 299 | } |
|---|
| 300 | else { |
|---|
| 301 | // otherwise set to constant (automatically assigned) point shape |
|---|
| 302 | m_PlotShapes.addElement(new Integer(Plot2D.CONST_AUTOMATIC_SHAPE)); |
|---|
| 303 | } |
|---|
| 304 | m_PlotSizes.addElement(new Integer(Plot2D.DEFAULT_SHAPE_SIZE)); |
|---|
| 305 | } |
|---|
| 306 | else { |
|---|
| 307 | // store the error (to be converted to a point size later) |
|---|
| 308 | Double errd = null; |
|---|
| 309 | if (!toPredict.isMissing(toPredict.classIndex()) && !Utils.isMissingValue(pred)) { |
|---|
| 310 | errd = new Double(pred - toPredict.classValue()); |
|---|
| 311 | m_PlotShapes.addElement(new Integer(Plot2D.CONST_AUTOMATIC_SHAPE)); |
|---|
| 312 | } |
|---|
| 313 | else { |
|---|
| 314 | // missing shape if actual class not present or prediction is missing |
|---|
| 315 | m_PlotShapes.addElement(new Integer(Plot2D.MISSING_SHAPE)); |
|---|
| 316 | } |
|---|
| 317 | m_PlotSizes.addElement(errd); |
|---|
| 318 | } |
|---|
| 319 | } |
|---|
| 320 | } |
|---|
| 321 | catch (Exception ex) { |
|---|
| 322 | ex.printStackTrace(); |
|---|
| 323 | } |
|---|
| 324 | } |
|---|
| 325 | |
|---|
| 326 | /** |
|---|
| 327 | * Scales numeric class predictions into shape sizes for plotting |
|---|
| 328 | * in the visualize panel. |
|---|
| 329 | */ |
|---|
| 330 | protected void scaleNumericPredictions() { |
|---|
| 331 | double maxErr; |
|---|
| 332 | double minErr; |
|---|
| 333 | double err; |
|---|
| 334 | int i; |
|---|
| 335 | Double errd; |
|---|
| 336 | double temp; |
|---|
| 337 | |
|---|
| 338 | maxErr = Double.NEGATIVE_INFINITY; |
|---|
| 339 | minErr = Double.POSITIVE_INFINITY; |
|---|
| 340 | |
|---|
| 341 | // find min/max errors |
|---|
| 342 | for (i = 0; i < m_PlotSizes.size(); i++) { |
|---|
| 343 | errd = (Double) m_PlotSizes.elementAt(i); |
|---|
| 344 | if (errd != null) { |
|---|
| 345 | err = Math.abs(errd.doubleValue()); |
|---|
| 346 | if (err < minErr) |
|---|
| 347 | minErr = err; |
|---|
| 348 | if (err > maxErr) |
|---|
| 349 | maxErr = err; |
|---|
| 350 | } |
|---|
| 351 | } |
|---|
| 352 | |
|---|
| 353 | // scale errors |
|---|
| 354 | for (i = 0; i < m_PlotSizes.size(); i++) { |
|---|
| 355 | errd = (Double) m_PlotSizes.elementAt(i); |
|---|
| 356 | if (errd != null) { |
|---|
| 357 | err = Math.abs(errd.doubleValue()); |
|---|
| 358 | if (maxErr - minErr > 0) { |
|---|
| 359 | temp = (((err - minErr) / (maxErr - minErr)) * (m_MaximumPlotSizeNumeric - m_MinimumPlotSizeNumeric + 1)); |
|---|
| 360 | m_PlotSizes.setElementAt(new Integer((int) temp) + m_MinimumPlotSizeNumeric, i); |
|---|
| 361 | } |
|---|
| 362 | else { |
|---|
| 363 | m_PlotSizes.setElementAt(new Integer(m_MinimumPlotSizeNumeric), i); |
|---|
| 364 | } |
|---|
| 365 | } |
|---|
| 366 | else { |
|---|
| 367 | m_PlotSizes.setElementAt(new Integer(m_MinimumPlotSizeNumeric), i); |
|---|
| 368 | } |
|---|
| 369 | } |
|---|
| 370 | } |
|---|
| 371 | |
|---|
| 372 | /** |
|---|
| 373 | * Adds the prediction intervals as additional attributes at the end. |
|---|
| 374 | * Since classifiers can returns varying number of intervals per instance, |
|---|
| 375 | * the dataset is filled with missing values for non-existing intervals. |
|---|
| 376 | */ |
|---|
| 377 | protected void addPredictionIntervals() { |
|---|
| 378 | int maxNum; |
|---|
| 379 | int num; |
|---|
| 380 | int i; |
|---|
| 381 | int n; |
|---|
| 382 | FastVector preds; |
|---|
| 383 | FastVector atts; |
|---|
| 384 | Instances data; |
|---|
| 385 | Instance inst; |
|---|
| 386 | Instance newInst; |
|---|
| 387 | double[] values; |
|---|
| 388 | double[][] predInt; |
|---|
| 389 | |
|---|
| 390 | // determine the maximum number of intervals |
|---|
| 391 | maxNum = 0; |
|---|
| 392 | preds = m_Evaluation.predictions(); |
|---|
| 393 | for (i = 0; i < preds.size(); i++) { |
|---|
| 394 | num = ((NumericPrediction) preds.elementAt(i)).predictionIntervals().length; |
|---|
| 395 | if (num > maxNum) |
|---|
| 396 | maxNum = num; |
|---|
| 397 | } |
|---|
| 398 | |
|---|
| 399 | // create new header |
|---|
| 400 | atts = new FastVector(); |
|---|
| 401 | for (i = 0; i < m_PlotInstances.numAttributes(); i++) |
|---|
| 402 | atts.addElement(m_PlotInstances.attribute(i)); |
|---|
| 403 | for (i = 0; i < maxNum; i++) { |
|---|
| 404 | atts.addElement(new Attribute("predictionInterval_" + (i+1) + "-lowerBoundary")); |
|---|
| 405 | atts.addElement(new Attribute("predictionInterval_" + (i+1) + "-upperBoundary")); |
|---|
| 406 | atts.addElement(new Attribute("predictionInterval_" + (i+1) + "-width")); |
|---|
| 407 | } |
|---|
| 408 | data = new Instances(m_PlotInstances.relationName(), atts, m_PlotInstances.numInstances()); |
|---|
| 409 | data.setClassIndex(m_PlotInstances.classIndex()); |
|---|
| 410 | |
|---|
| 411 | // update data |
|---|
| 412 | for (i = 0; i < m_PlotInstances.numInstances(); i++) { |
|---|
| 413 | inst = m_PlotInstances.instance(i); |
|---|
| 414 | // copy old values |
|---|
| 415 | values = new double[data.numAttributes()]; |
|---|
| 416 | System.arraycopy(inst.toDoubleArray(), 0, values, 0, inst.numAttributes()); |
|---|
| 417 | // add interval data |
|---|
| 418 | predInt = ((NumericPrediction) preds.elementAt(i)).predictionIntervals(); |
|---|
| 419 | for (n = 0; n < maxNum; n++) { |
|---|
| 420 | if (n < predInt.length){ |
|---|
| 421 | values[m_PlotInstances.numAttributes() + n*3 + 0] = predInt[n][0]; |
|---|
| 422 | values[m_PlotInstances.numAttributes() + n*3 + 1] = predInt[n][1]; |
|---|
| 423 | values[m_PlotInstances.numAttributes() + n*3 + 2] = predInt[n][1] - predInt[n][0]; |
|---|
| 424 | } |
|---|
| 425 | else { |
|---|
| 426 | values[m_PlotInstances.numAttributes() + n*3 + 0] = Utils.missingValue(); |
|---|
| 427 | values[m_PlotInstances.numAttributes() + n*3 + 1] = Utils.missingValue(); |
|---|
| 428 | values[m_PlotInstances.numAttributes() + n*3 + 2] = Utils.missingValue(); |
|---|
| 429 | } |
|---|
| 430 | } |
|---|
| 431 | // create new Instance |
|---|
| 432 | newInst = new DenseInstance(inst.weight(), values); |
|---|
| 433 | data.add(newInst); |
|---|
| 434 | } |
|---|
| 435 | |
|---|
| 436 | m_PlotInstances = data; |
|---|
| 437 | } |
|---|
| 438 | |
|---|
| 439 | /** |
|---|
| 440 | * Performs optional post-processing. |
|---|
| 441 | * |
|---|
| 442 | * @see #scaleNumericPredictions() |
|---|
| 443 | * @see #addPredictionIntervals() |
|---|
| 444 | */ |
|---|
| 445 | protected void finishUp() { |
|---|
| 446 | super.finishUp(); |
|---|
| 447 | |
|---|
| 448 | if (!m_SaveForVisualization) |
|---|
| 449 | return; |
|---|
| 450 | |
|---|
| 451 | if (m_Instances.attribute(m_ClassIndex).isNumeric()) |
|---|
| 452 | scaleNumericPredictions(); |
|---|
| 453 | if (m_Classifier instanceof IntervalEstimator) |
|---|
| 454 | addPredictionIntervals(); |
|---|
| 455 | } |
|---|
| 456 | |
|---|
| 457 | /** |
|---|
| 458 | * Assembles and returns the plot. The relation name of the dataset gets |
|---|
| 459 | * added automatically. |
|---|
| 460 | * |
|---|
| 461 | * @param name the name of the plot |
|---|
| 462 | * @return the plot or null if plot instances weren't saved for visualization |
|---|
| 463 | * @throws Exception if plot generation fails |
|---|
| 464 | */ |
|---|
| 465 | protected PlotData2D createPlotData(String name) throws Exception { |
|---|
| 466 | PlotData2D result; |
|---|
| 467 | |
|---|
| 468 | if (!m_SaveForVisualization) |
|---|
| 469 | return null; |
|---|
| 470 | |
|---|
| 471 | result = new PlotData2D(m_PlotInstances); |
|---|
| 472 | result.setShapeSize(m_PlotSizes); |
|---|
| 473 | result.setShapeType(m_PlotShapes); |
|---|
| 474 | result.setPlotName(name + " (" + m_Instances.relationName() + ")"); |
|---|
| 475 | result.addInstanceNumberAttribute(); |
|---|
| 476 | |
|---|
| 477 | return result; |
|---|
| 478 | } |
|---|
| 479 | |
|---|
| 480 | /** |
|---|
| 481 | * For freeing up memory. Plot data cannot be generated after this call! |
|---|
| 482 | */ |
|---|
| 483 | public void cleanUp() { |
|---|
| 484 | super.cleanUp(); |
|---|
| 485 | |
|---|
| 486 | m_Classifier = null; |
|---|
| 487 | m_PlotShapes = null; |
|---|
| 488 | m_PlotSizes = null; |
|---|
| 489 | m_Evaluation = null; |
|---|
| 490 | } |
|---|
| 491 | } |
|---|