1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RemoteBoundaryVisualizerSubTask.java |
---|
19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.gui.boundaryvisualizer; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Utils; |
---|
31 | import weka.experiment.Task; |
---|
32 | import weka.experiment.TaskStatusInfo; |
---|
33 | |
---|
34 | import java.util.Random; |
---|
35 | |
---|
36 | /** |
---|
37 | * Class that encapsulates a sub task for distributed boundary |
---|
38 | * visualization. Produces probability distributions for each pixel |
---|
39 | * in one row of the visualization. |
---|
40 | * |
---|
41 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
42 | * @version $Revision: 5987 $ |
---|
43 | * @since 1.0 |
---|
44 | * @see Task |
---|
45 | */ |
---|
46 | public class RemoteBoundaryVisualizerSubTask implements Task { |
---|
47 | |
---|
48 | // status information for this sub task |
---|
49 | private TaskStatusInfo m_status = new TaskStatusInfo(); |
---|
50 | |
---|
51 | // the result of this sub task |
---|
52 | private RemoteResult m_result; |
---|
53 | |
---|
54 | // which row are we doing |
---|
55 | private int m_rowNumber; |
---|
56 | |
---|
57 | // width and height of the visualization |
---|
58 | private int m_panelHeight; |
---|
59 | private int m_panelWidth; |
---|
60 | |
---|
61 | // the classifier to use |
---|
62 | private Classifier m_classifier; |
---|
63 | |
---|
64 | // the kernel density estimator |
---|
65 | private DataGenerator m_dataGenerator; |
---|
66 | |
---|
67 | // the training data |
---|
68 | private Instances m_trainingData; |
---|
69 | |
---|
70 | // attributes for visualizing on (fixed dimensions) |
---|
71 | private int m_xAttribute; |
---|
72 | private int m_yAttribute; |
---|
73 | |
---|
74 | // pixel width and height in terms of attribute values |
---|
75 | private double m_pixHeight; |
---|
76 | private double m_pixWidth; |
---|
77 | |
---|
78 | // min, max of these attributes |
---|
79 | private double m_minX; |
---|
80 | private double m_minY; |
---|
81 | private double m_maxX; |
---|
82 | private double m_maxY; |
---|
83 | |
---|
84 | // number of samples to take from each region in the fixed dimensions |
---|
85 | private int m_numOfSamplesPerRegion = 2; |
---|
86 | |
---|
87 | // number of samples per kernel = base ^ (# non-fixed dimensions) |
---|
88 | private int m_numOfSamplesPerGenerator; |
---|
89 | private double m_samplesBase = 2.0; |
---|
90 | |
---|
91 | // A random number generator |
---|
92 | private Random m_random; |
---|
93 | |
---|
94 | private double [] m_weightingAttsValues; |
---|
95 | private boolean [] m_attsToWeightOn; |
---|
96 | private double [] m_vals; |
---|
97 | private double [] m_dist; |
---|
98 | private Instance m_predInst; |
---|
99 | |
---|
100 | /** |
---|
101 | * Set the row number for this sub task |
---|
102 | * |
---|
103 | * @param rn the row number |
---|
104 | */ |
---|
105 | public void setRowNumber(int rn) { |
---|
106 | m_rowNumber = rn; |
---|
107 | } |
---|
108 | |
---|
109 | /** |
---|
110 | * Set the width of the visualization |
---|
111 | * |
---|
112 | * @param pw the width |
---|
113 | */ |
---|
114 | public void setPanelWidth(int pw) { |
---|
115 | m_panelWidth = pw; |
---|
116 | } |
---|
117 | |
---|
118 | /** |
---|
119 | * Set the height of the visualization |
---|
120 | * |
---|
121 | * @param ph the height |
---|
122 | */ |
---|
123 | public void setPanelHeight(int ph) { |
---|
124 | m_panelHeight = ph; |
---|
125 | } |
---|
126 | |
---|
127 | /** |
---|
128 | * Set the height of a pixel |
---|
129 | * |
---|
130 | * @param ph the height of a pixel |
---|
131 | */ |
---|
132 | public void setPixHeight(double ph) { |
---|
133 | m_pixHeight = ph; |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * Set the width of a pixel |
---|
138 | * |
---|
139 | * @param pw the width of a pixel |
---|
140 | */ |
---|
141 | public void setPixWidth(double pw) { |
---|
142 | m_pixWidth = pw; |
---|
143 | } |
---|
144 | |
---|
145 | /** |
---|
146 | * Set the classifier to use |
---|
147 | * |
---|
148 | * @param dc the classifier |
---|
149 | */ |
---|
150 | public void setClassifier(Classifier dc) { |
---|
151 | m_classifier = dc; |
---|
152 | } |
---|
153 | |
---|
154 | /** |
---|
155 | * Set the density estimator to use |
---|
156 | * |
---|
157 | * @param dg the density estimator |
---|
158 | */ |
---|
159 | public void setDataGenerator(DataGenerator dg) { |
---|
160 | m_dataGenerator = dg; |
---|
161 | } |
---|
162 | |
---|
163 | /** |
---|
164 | * Set the training data |
---|
165 | * |
---|
166 | * @param i the training data |
---|
167 | */ |
---|
168 | public void setInstances(Instances i) { |
---|
169 | m_trainingData = i; |
---|
170 | } |
---|
171 | |
---|
172 | /** |
---|
173 | * Set the minimum and maximum values of the x axis fixed dimension |
---|
174 | * |
---|
175 | * @param minx a <code>double</code> value |
---|
176 | * @param maxx a <code>double</code> value |
---|
177 | */ |
---|
178 | public void setMinMaxX(double minx, double maxx) { |
---|
179 | m_minX = minx; m_maxX = maxx; |
---|
180 | } |
---|
181 | |
---|
182 | /** |
---|
183 | * Set the minimum and maximum values of the y axis fixed dimension |
---|
184 | * |
---|
185 | * @param miny a <code>double</code> value |
---|
186 | * @param maxy a <code>double</code> value |
---|
187 | */ |
---|
188 | public void setMinMaxY(double miny, double maxy) { |
---|
189 | m_minY = miny; m_maxY = maxy; |
---|
190 | } |
---|
191 | |
---|
192 | /** |
---|
193 | * Set the x axis fixed dimension |
---|
194 | * |
---|
195 | * @param xatt an <code>int</code> value |
---|
196 | */ |
---|
197 | public void setXAttribute(int xatt) { |
---|
198 | m_xAttribute = xatt; |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Set the y axis fixed dimension |
---|
203 | * |
---|
204 | * @param yatt an <code>int</code> value |
---|
205 | */ |
---|
206 | public void setYAttribute(int yatt) { |
---|
207 | m_yAttribute = yatt; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * Set the number of points to uniformly sample from a region (fixed |
---|
212 | * dimensions). |
---|
213 | * |
---|
214 | * @param num an <code>int</code> value |
---|
215 | */ |
---|
216 | public void setNumSamplesPerRegion(int num) { |
---|
217 | m_numOfSamplesPerRegion = num; |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Set the base for computing the number of samples to obtain from each |
---|
222 | * generator. number of samples = base ^ (# non fixed dimensions) |
---|
223 | * |
---|
224 | * @param ksb a <code>double</code> value |
---|
225 | */ |
---|
226 | public void setGeneratorSamplesBase(double ksb) { |
---|
227 | m_samplesBase = ksb; |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Perform the sub task |
---|
232 | */ |
---|
233 | public void execute() { |
---|
234 | |
---|
235 | m_random = new Random(m_rowNumber * 11); |
---|
236 | m_dataGenerator.setSeed(m_rowNumber * 11); |
---|
237 | m_result = new RemoteResult(m_rowNumber, m_panelWidth); |
---|
238 | m_status.setTaskResult(m_result); |
---|
239 | m_status.setExecutionStatus(TaskStatusInfo.PROCESSING); |
---|
240 | |
---|
241 | try { |
---|
242 | m_numOfSamplesPerGenerator = |
---|
243 | (int)Math.pow(m_samplesBase, m_trainingData.numAttributes()-3); |
---|
244 | if (m_trainingData == null) { |
---|
245 | throw new Exception("No training data set (BoundaryPanel)"); |
---|
246 | } |
---|
247 | if (m_classifier == null) { |
---|
248 | throw new Exception("No classifier set (BoundaryPanel)"); |
---|
249 | } |
---|
250 | if (m_dataGenerator == null) { |
---|
251 | throw new Exception("No data generator set (BoundaryPanel)"); |
---|
252 | } |
---|
253 | if (m_trainingData.attribute(m_xAttribute).isNominal() || |
---|
254 | m_trainingData.attribute(m_yAttribute).isNominal()) { |
---|
255 | throw new Exception("Visualization dimensions must be numeric " |
---|
256 | +"(RemoteBoundaryVisualizerSubTask)"); |
---|
257 | } |
---|
258 | |
---|
259 | m_attsToWeightOn = new boolean[m_trainingData.numAttributes()]; |
---|
260 | m_attsToWeightOn[m_xAttribute] = true; |
---|
261 | m_attsToWeightOn[m_yAttribute] = true; |
---|
262 | |
---|
263 | // generate samples |
---|
264 | m_weightingAttsValues = new double [m_attsToWeightOn.length]; |
---|
265 | m_vals = new double[m_trainingData.numAttributes()]; |
---|
266 | m_predInst = new DenseInstance(1.0, m_vals); |
---|
267 | m_predInst.setDataset(m_trainingData); |
---|
268 | |
---|
269 | System.err.println("Executing row number "+m_rowNumber); |
---|
270 | for (int j = 0; j < m_panelWidth; j++) { |
---|
271 | double [] preds = calculateRegionProbs(j, m_rowNumber); |
---|
272 | m_result.setLocationProbs(j, preds); |
---|
273 | m_result. |
---|
274 | setPercentCompleted((int)(100 * ((double)j / (double)m_panelWidth))); |
---|
275 | } |
---|
276 | } catch (Exception ex) { |
---|
277 | m_status.setExecutionStatus(TaskStatusInfo.FAILED); |
---|
278 | m_status.setStatusMessage("Row "+m_rowNumber+" failed."); |
---|
279 | System.err.print(ex); |
---|
280 | return; |
---|
281 | } |
---|
282 | |
---|
283 | // finished |
---|
284 | m_status.setExecutionStatus(TaskStatusInfo.FINISHED); |
---|
285 | m_status.setStatusMessage("Row "+m_rowNumber+" completed successfully."); |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | private double [] calculateRegionProbs(int j, int i) throws Exception { |
---|
290 | double [] sumOfProbsForRegion = |
---|
291 | new double [m_trainingData.classAttribute().numValues()]; |
---|
292 | |
---|
293 | for (int u = 0; u < m_numOfSamplesPerRegion; u++) { |
---|
294 | |
---|
295 | double [] sumOfProbsForLocation = |
---|
296 | new double [m_trainingData.classAttribute().numValues()]; |
---|
297 | |
---|
298 | m_weightingAttsValues[m_xAttribute] = getRandomX(j); |
---|
299 | m_weightingAttsValues[m_yAttribute] = getRandomY(m_panelHeight-i-1); |
---|
300 | |
---|
301 | m_dataGenerator.setWeightingValues(m_weightingAttsValues); |
---|
302 | |
---|
303 | double [] weights = m_dataGenerator.getWeights(); |
---|
304 | double sumOfWeights = Utils.sum(weights); |
---|
305 | int [] indices = Utils.sort(weights); |
---|
306 | |
---|
307 | // Prune 1% of weight mass |
---|
308 | int [] newIndices = new int[indices.length]; |
---|
309 | double sumSoFar = 0; |
---|
310 | double criticalMass = 0.99 * sumOfWeights; |
---|
311 | int index = weights.length - 1; int counter = 0; |
---|
312 | for (int z = weights.length - 1; z >= 0; z--) { |
---|
313 | newIndices[index--] = indices[z]; |
---|
314 | sumSoFar += weights[indices[z]]; |
---|
315 | counter++; |
---|
316 | if (sumSoFar > criticalMass) { |
---|
317 | break; |
---|
318 | } |
---|
319 | } |
---|
320 | indices = new int[counter]; |
---|
321 | System.arraycopy(newIndices, index + 1, indices, 0, counter); |
---|
322 | |
---|
323 | for (int z = 0; z < m_numOfSamplesPerGenerator; z++) { |
---|
324 | |
---|
325 | m_dataGenerator.setWeightingValues(m_weightingAttsValues); |
---|
326 | double [][] values = m_dataGenerator.generateInstances(indices); |
---|
327 | |
---|
328 | for (int q = 0; q < values.length; q++) { |
---|
329 | if (values[q] != null) { |
---|
330 | System.arraycopy(values[q], 0, m_vals, 0, m_vals.length); |
---|
331 | m_vals[m_xAttribute] = m_weightingAttsValues[m_xAttribute]; |
---|
332 | m_vals[m_yAttribute] = m_weightingAttsValues[m_yAttribute]; |
---|
333 | |
---|
334 | // classify the instance |
---|
335 | m_dist = m_classifier.distributionForInstance(m_predInst); |
---|
336 | |
---|
337 | for (int k = 0; k < sumOfProbsForLocation.length; k++) { |
---|
338 | sumOfProbsForLocation[k] += (m_dist[k] * weights[q]); |
---|
339 | } |
---|
340 | } |
---|
341 | } |
---|
342 | } |
---|
343 | |
---|
344 | for (int k = 0; k < sumOfProbsForRegion.length; k++) { |
---|
345 | sumOfProbsForRegion[k] += (sumOfProbsForLocation[k] * sumOfWeights); |
---|
346 | } |
---|
347 | } |
---|
348 | |
---|
349 | // average |
---|
350 | Utils.normalize(sumOfProbsForRegion); |
---|
351 | |
---|
352 | // cache |
---|
353 | double [] tempDist = new double[sumOfProbsForRegion.length]; |
---|
354 | System.arraycopy(sumOfProbsForRegion, 0, tempDist, |
---|
355 | 0, sumOfProbsForRegion.length); |
---|
356 | |
---|
357 | return tempDist; |
---|
358 | } |
---|
359 | |
---|
360 | /** |
---|
361 | * Return a random x attribute value contained within |
---|
362 | * the pix'th horizontal pixel |
---|
363 | * |
---|
364 | * @param pix the horizontal pixel number |
---|
365 | * @return a value in attribute space |
---|
366 | */ |
---|
367 | private double getRandomX(int pix) { |
---|
368 | |
---|
369 | double minPix = m_minX + (pix * m_pixWidth); |
---|
370 | |
---|
371 | return minPix + m_random.nextDouble() * m_pixWidth; |
---|
372 | } |
---|
373 | |
---|
374 | /** |
---|
375 | * Return a random y attribute value contained within |
---|
376 | * the pix'th vertical pixel |
---|
377 | * |
---|
378 | * @param pix the vertical pixel number |
---|
379 | * @return a value in attribute space |
---|
380 | */ |
---|
381 | private double getRandomY(int pix) { |
---|
382 | |
---|
383 | double minPix = m_minY + (pix * m_pixHeight); |
---|
384 | |
---|
385 | return minPix + m_random.nextDouble() * m_pixHeight; |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Return status information for this sub task |
---|
390 | * |
---|
391 | * @return a <code>TaskStatusInfo</code> value |
---|
392 | */ |
---|
393 | public TaskStatusInfo getTaskStatus() { |
---|
394 | return m_status; |
---|
395 | } |
---|
396 | } |
---|