1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KDDataGenerator.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.gui.boundaryvisualizer; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Utils; |
---|
29 | |
---|
30 | import java.io.Serializable; |
---|
31 | import java.util.Random; |
---|
32 | |
---|
33 | /** |
---|
34 | * KDDataGenerator. Class that uses kernels to generate new random |
---|
35 | * instances based on a supplied set of instances. |
---|
36 | * |
---|
37 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
38 | * @version $Revision: 1.7 $ |
---|
39 | * @since 1.0 |
---|
40 | * @see DataGenerator |
---|
41 | * @see Serializable |
---|
42 | */ |
---|
43 | public class KDDataGenerator |
---|
44 | implements DataGenerator, Serializable { |
---|
45 | |
---|
46 | /** for serialization */ |
---|
47 | private static final long serialVersionUID = -958573275606402792L; |
---|
48 | |
---|
49 | /** the instances to use */ |
---|
50 | private Instances m_instances; |
---|
51 | |
---|
52 | /** standard deviations of the normal distributions for numeric attributes in |
---|
53 | * each KD estimator */ |
---|
54 | private double [] m_standardDeviations; |
---|
55 | |
---|
56 | /** global means or modes to use for missing values */ |
---|
57 | private double [] m_globalMeansOrModes; |
---|
58 | |
---|
59 | /** minimum standard deviation for numeric attributes */ |
---|
60 | private double m_minStdDev = 1e-5; |
---|
61 | |
---|
62 | /** Laplace correction for discrete distributions */ |
---|
63 | private double m_laplaceConst = 1.0; |
---|
64 | |
---|
65 | /** random number seed */ |
---|
66 | private int m_seed = 1; |
---|
67 | |
---|
68 | /** random number generator */ |
---|
69 | private Random m_random; |
---|
70 | |
---|
71 | /** which dimensions to use for computing a weight for each generated |
---|
72 | * instance */ |
---|
73 | private boolean [] m_weightingDimensions; |
---|
74 | |
---|
75 | /** the values for the weighting dimensions to use for computing the weight |
---|
76 | * for the next instance to be generated */ |
---|
77 | private double [] m_weightingValues; |
---|
78 | |
---|
79 | private static double m_normConst = Math.sqrt(2*Math.PI); |
---|
80 | |
---|
81 | /** Number of neighbours to use for kernel bandwidth */ |
---|
82 | private int m_kernelBandwidth = 3; |
---|
83 | |
---|
84 | /** standard deviations for numeric attributes computed from the |
---|
85 | * m_kernelBandwidth nearest neighbours for each kernel. */ |
---|
86 | private double [][] m_kernelParams; |
---|
87 | |
---|
88 | /** The minimum values for numeric attributes. */ |
---|
89 | protected double [] m_Min; |
---|
90 | |
---|
91 | /** The maximum values for numeric attributes. */ |
---|
92 | protected double [] m_Max; |
---|
93 | |
---|
94 | /** |
---|
95 | * Initialize the generator using the supplied instances |
---|
96 | * |
---|
97 | * @param inputInstances the instances to use as the basis of the kernels |
---|
98 | * @throws Exception if an error occurs |
---|
99 | */ |
---|
100 | public void buildGenerator(Instances inputInstances) throws Exception { |
---|
101 | m_random = new Random(m_seed); |
---|
102 | |
---|
103 | m_instances = inputInstances; |
---|
104 | m_standardDeviations = new double [m_instances.numAttributes()]; |
---|
105 | m_globalMeansOrModes = new double [m_instances.numAttributes()]; |
---|
106 | if (m_weightingDimensions == null) { |
---|
107 | m_weightingDimensions = new boolean[m_instances.numAttributes()]; |
---|
108 | } |
---|
109 | /* for (int i = 0; i < m_instances.numAttributes(); i++) { |
---|
110 | if (i != m_instances.classIndex()) { |
---|
111 | if (m_instances.attribute(i).isNumeric()) { |
---|
112 | // global standard deviations |
---|
113 | double var = m_instances.variance(i); |
---|
114 | if (var == 0) { |
---|
115 | var = m_minStdDev; |
---|
116 | } else { |
---|
117 | var = Math.sqrt(var); |
---|
118 | // heuristic to take into account # instances and dimensions |
---|
119 | double adjust = Math.pow((double) m_instances.numInstances(), |
---|
120 | 1.0 / m_instances.numAttributes()); |
---|
121 | // double adjust = m_instances.numInstances(); |
---|
122 | var /= adjust; |
---|
123 | } |
---|
124 | m_standardDeviations[i] = var; |
---|
125 | } else { |
---|
126 | m_globalMeansOrModes[i] = m_instances.meanOrMode(i); |
---|
127 | } |
---|
128 | } |
---|
129 | } */ |
---|
130 | for (int i = 0; i < m_instances.numAttributes(); i++) { |
---|
131 | if (i != m_instances.classIndex()) { |
---|
132 | m_globalMeansOrModes[i] = m_instances.meanOrMode(i); |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | m_kernelParams = |
---|
137 | new double [m_instances.numInstances()][m_instances.numAttributes()]; |
---|
138 | computeParams(); |
---|
139 | } |
---|
140 | |
---|
141 | public double [] getWeights() { |
---|
142 | |
---|
143 | double [] weights = new double[m_instances.numInstances()]; |
---|
144 | |
---|
145 | for (int k = 0; k < m_instances.numInstances(); k++) { |
---|
146 | double weight = 1; |
---|
147 | for (int i = 0; i < m_instances.numAttributes(); i++) { |
---|
148 | if (m_weightingDimensions[i]) { |
---|
149 | double mean = 0; |
---|
150 | if (!m_instances.instance(k).isMissing(i)) { |
---|
151 | mean = m_instances.instance(k).value(i); |
---|
152 | } else { |
---|
153 | mean = m_globalMeansOrModes[i]; |
---|
154 | } |
---|
155 | double wm = 1.0; |
---|
156 | |
---|
157 | // wm = normalDens(m_weightingValues[i], mean, m_standardDeviations[i]); |
---|
158 | wm = normalDens(m_weightingValues[i], mean, |
---|
159 | m_kernelParams[k][i]); |
---|
160 | |
---|
161 | weight *= wm; |
---|
162 | } |
---|
163 | } |
---|
164 | weights[k] = weight; |
---|
165 | } |
---|
166 | return weights; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Return a cumulative distribution from a discrete distribution |
---|
171 | * |
---|
172 | * @param dist the distribution to use |
---|
173 | * @return the cumulative distribution |
---|
174 | */ |
---|
175 | private double [] computeCumulativeDistribution(double [] dist) { |
---|
176 | |
---|
177 | double [] cumDist = new double[dist.length]; |
---|
178 | double sum = 0; |
---|
179 | for (int i = 0; i < dist.length; i++) { |
---|
180 | sum += dist[i]; |
---|
181 | cumDist[i] = sum; |
---|
182 | } |
---|
183 | |
---|
184 | return cumDist; |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Generates a new instance using one kernel estimator. Each successive |
---|
189 | * call to this method incremets the index of the kernel to use. |
---|
190 | * |
---|
191 | * @return the new random instance |
---|
192 | * @throws Exception if an error occurs |
---|
193 | */ |
---|
194 | public double [][] generateInstances(int [] indices) throws Exception { |
---|
195 | |
---|
196 | double [][] values = new double[m_instances.numInstances()][]; |
---|
197 | |
---|
198 | for (int k = 0; k < indices.length; k++) { |
---|
199 | values[indices[k]] = new double[m_instances.numAttributes()]; |
---|
200 | for (int i = 0; i < m_instances.numAttributes(); i++) { |
---|
201 | if ((!m_weightingDimensions[i]) && (i != m_instances.classIndex())) { |
---|
202 | if (m_instances.attribute(i).isNumeric()) { |
---|
203 | double mean = 0; |
---|
204 | double val = m_random.nextGaussian(); |
---|
205 | if (!m_instances.instance(indices[k]).isMissing(i)) { |
---|
206 | mean = m_instances.instance(indices[k]).value(i); |
---|
207 | } else { |
---|
208 | mean = m_globalMeansOrModes[i]; |
---|
209 | } |
---|
210 | |
---|
211 | val *= m_kernelParams[indices[k]][i]; |
---|
212 | val += mean; |
---|
213 | |
---|
214 | values[indices[k]][i] = val; |
---|
215 | } else { |
---|
216 | // nominal attribute |
---|
217 | double [] dist = new double[m_instances.attribute(i).numValues()]; |
---|
218 | for (int j = 0; j < dist.length; j++) { |
---|
219 | dist[j] = m_laplaceConst; |
---|
220 | } |
---|
221 | if (!m_instances.instance(indices[k]).isMissing(i)) { |
---|
222 | dist[(int)m_instances.instance(indices[k]).value(i)]++; |
---|
223 | } else { |
---|
224 | dist[(int)m_globalMeansOrModes[i]]++; |
---|
225 | } |
---|
226 | Utils.normalize(dist); |
---|
227 | double [] cumDist = computeCumulativeDistribution(dist); |
---|
228 | double randomVal = m_random.nextDouble(); |
---|
229 | int instVal = 0; |
---|
230 | for (int j = 0; j < cumDist.length; j++) { |
---|
231 | if (randomVal <= cumDist[j]) { |
---|
232 | instVal = j; |
---|
233 | break; |
---|
234 | } |
---|
235 | } |
---|
236 | values[indices[k]][i] = (double)instVal; |
---|
237 | } |
---|
238 | } |
---|
239 | } |
---|
240 | } |
---|
241 | return values; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Density function of normal distribution. |
---|
246 | * @param x input value |
---|
247 | * @param mean mean of distribution |
---|
248 | * @param stdDev standard deviation of distribution |
---|
249 | */ |
---|
250 | private double normalDens (double x, double mean, double stdDev) { |
---|
251 | double diff = x - mean; |
---|
252 | |
---|
253 | return (1/(m_normConst*stdDev))*Math.exp(-(diff*diff/(2*stdDev*stdDev))); |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Set which dimensions to use when computing a weight for the next |
---|
258 | * instance to generate |
---|
259 | * |
---|
260 | * @param dims an array of booleans indicating which dimensions to use |
---|
261 | */ |
---|
262 | public void setWeightingDimensions(boolean [] dims) { |
---|
263 | m_weightingDimensions = dims; |
---|
264 | } |
---|
265 | |
---|
266 | /** |
---|
267 | * Set the values for the weighting dimensions to be used when computing |
---|
268 | * the weight for the next instance to be generated |
---|
269 | * |
---|
270 | * @param vals an array of doubles containing the values of the |
---|
271 | * weighting dimensions (corresponding to the entries that are set to |
---|
272 | * true throw setWeightingDimensions) |
---|
273 | */ |
---|
274 | public void setWeightingValues(double [] vals) { |
---|
275 | m_weightingValues = vals; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * Return the number of kernels (there is one per training instance) |
---|
280 | * |
---|
281 | * @return the number of kernels |
---|
282 | */ |
---|
283 | public int getNumGeneratingModels() { |
---|
284 | if (m_instances != null) { |
---|
285 | return m_instances.numInstances(); |
---|
286 | } |
---|
287 | return 0; |
---|
288 | } |
---|
289 | |
---|
290 | /** |
---|
291 | * Set the kernel bandwidth (number of nearest neighbours to cover) |
---|
292 | * |
---|
293 | * @param kb an <code>int</code> value |
---|
294 | */ |
---|
295 | public void setKernelBandwidth(int kb) { |
---|
296 | m_kernelBandwidth = kb; |
---|
297 | } |
---|
298 | |
---|
299 | /** |
---|
300 | * Get the kernel bandwidth |
---|
301 | * |
---|
302 | * @return an <code>int</code> value |
---|
303 | */ |
---|
304 | public int getKernelBandwidth() { |
---|
305 | return m_kernelBandwidth; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Initializes a new random number generator using the |
---|
310 | * supplied seed. |
---|
311 | * |
---|
312 | * @param seed an <code>int</code> value |
---|
313 | */ |
---|
314 | public void setSeed(int seed) { |
---|
315 | m_seed = seed; |
---|
316 | m_random = new Random(m_seed); |
---|
317 | } |
---|
318 | |
---|
319 | /** |
---|
320 | * Calculates the distance between two instances |
---|
321 | * |
---|
322 | * @param test the first instance |
---|
323 | * @param train the second instance |
---|
324 | * @return the distance between the two given instances, between 0 and 1 |
---|
325 | */ |
---|
326 | private double distance(Instance first, Instance second) { |
---|
327 | |
---|
328 | double diff, distance = 0; |
---|
329 | |
---|
330 | for(int i = 0; i < m_instances.numAttributes(); i++) { |
---|
331 | if (i == m_instances.classIndex()) { |
---|
332 | continue; |
---|
333 | } |
---|
334 | double firstVal = m_globalMeansOrModes[i]; |
---|
335 | double secondVal = m_globalMeansOrModes[i]; |
---|
336 | |
---|
337 | switch (m_instances.attribute(i).type()) { |
---|
338 | case Attribute.NUMERIC: |
---|
339 | // If attribute is numeric |
---|
340 | if (!first.isMissing(i)) { |
---|
341 | firstVal = first.value(i); |
---|
342 | } |
---|
343 | |
---|
344 | if (!second.isMissing(i)) { |
---|
345 | secondVal = second.value(i); |
---|
346 | } |
---|
347 | |
---|
348 | diff = norm(firstVal,i) - norm(secondVal,i); |
---|
349 | |
---|
350 | break; |
---|
351 | default: |
---|
352 | diff = 0; |
---|
353 | break; |
---|
354 | } |
---|
355 | distance += diff * diff; |
---|
356 | } |
---|
357 | return Math.sqrt(distance); |
---|
358 | } |
---|
359 | |
---|
360 | /** |
---|
361 | * Normalizes a given value of a numeric attribute. |
---|
362 | * |
---|
363 | * @param x the value to be normalized |
---|
364 | * @param i the attribute's index |
---|
365 | */ |
---|
366 | private double norm(double x,int i) { |
---|
367 | |
---|
368 | if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i], m_Min[i])) { |
---|
369 | return 0; |
---|
370 | } else { |
---|
371 | return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); |
---|
372 | } |
---|
373 | } |
---|
374 | |
---|
375 | /** |
---|
376 | * Updates the minimum and maximum values for all the attributes |
---|
377 | * based on a new instance. |
---|
378 | * |
---|
379 | * @param instance the new instance |
---|
380 | */ |
---|
381 | private void updateMinMax(Instance instance) { |
---|
382 | |
---|
383 | for (int j = 0; j < m_instances.numAttributes(); j++) { |
---|
384 | if (!instance.isMissing(j)) { |
---|
385 | if (Double.isNaN(m_Min[j])) { |
---|
386 | m_Min[j] = instance.value(j); |
---|
387 | m_Max[j] = instance.value(j); |
---|
388 | } else if (instance.value(j) < m_Min[j]) { |
---|
389 | m_Min[j] = instance.value(j); |
---|
390 | } else if (instance.value(j) > m_Max[j]) { |
---|
391 | m_Max[j] = instance.value(j); |
---|
392 | } |
---|
393 | } |
---|
394 | } |
---|
395 | } |
---|
396 | |
---|
397 | private void computeParams() throws Exception { |
---|
398 | // Calculate the minimum and maximum values |
---|
399 | m_Min = new double [m_instances.numAttributes()]; |
---|
400 | m_Max = new double [m_instances.numAttributes()]; |
---|
401 | for (int i = 0; i < m_instances.numAttributes(); i++) { |
---|
402 | m_Min[i] = m_Max[i] = Double.NaN; |
---|
403 | } |
---|
404 | for (int i = 0; i < m_instances.numInstances(); i++) { |
---|
405 | updateMinMax(m_instances.instance(i)); |
---|
406 | } |
---|
407 | |
---|
408 | double [] distances = new double[m_instances.numInstances()]; |
---|
409 | for (int i = 0; i < m_instances.numInstances(); i++) { |
---|
410 | Instance current = m_instances.instance(i); |
---|
411 | for (int j = 0; j < m_instances.numInstances(); j++) { |
---|
412 | distances[j] = distance(current, m_instances.instance(j)); |
---|
413 | } |
---|
414 | int [] sorted = Utils.sort(distances); |
---|
415 | int k = m_kernelBandwidth; |
---|
416 | double bandwidth = distances[sorted[k]]; |
---|
417 | |
---|
418 | // Check for bandwidth zero |
---|
419 | if (bandwidth <= 0) { |
---|
420 | for (int j = k + 1; j < sorted.length; j++) { |
---|
421 | if (distances[sorted[j]] > bandwidth) { |
---|
422 | bandwidth = distances[sorted[j]]; |
---|
423 | break; |
---|
424 | } |
---|
425 | } |
---|
426 | if (bandwidth <= 0) { |
---|
427 | throw new Exception("All training instances coincide with " |
---|
428 | +"test instance!"); |
---|
429 | } |
---|
430 | } |
---|
431 | for (int j = 0; j < m_instances.numAttributes(); j++) { |
---|
432 | if ((m_Max[j] - m_Min[j]) > 0) { |
---|
433 | m_kernelParams[i][j] = bandwidth * (m_Max[j] - m_Min[j]); |
---|
434 | } |
---|
435 | } |
---|
436 | } |
---|
437 | } |
---|
438 | } |
---|
439 | |
---|
440 | |
---|