| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * Standardize.java |
|---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.filters.unsupervised.attribute; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Capabilities; |
|---|
| 26 | import weka.core.Instance; |
|---|
| 27 | import weka.core.DenseInstance; |
|---|
| 28 | import weka.core.Instances; |
|---|
| 29 | import weka.core.RevisionUtils; |
|---|
| 30 | import weka.core.SparseInstance; |
|---|
| 31 | import weka.core.Utils; |
|---|
| 32 | import weka.core.Capabilities.Capability; |
|---|
| 33 | import weka.filters.Sourcable; |
|---|
| 34 | import weka.filters.UnsupervisedFilter; |
|---|
| 35 | |
|---|
| 36 | /** |
|---|
| 37 | <!-- globalinfo-start --> |
|---|
| 38 | * Standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set). |
|---|
| 39 | * <p/> |
|---|
| 40 | <!-- globalinfo-end --> |
|---|
| 41 | * |
|---|
| 42 | <!-- options-start --> |
|---|
| 43 | * Valid options are: <p/> |
|---|
| 44 | * |
|---|
| 45 | * <pre> -unset-class-temporarily |
|---|
| 46 | * Unsets the class index temporarily before the filter is |
|---|
| 47 | * applied to the data. |
|---|
| 48 | * (default: no)</pre> |
|---|
| 49 | * |
|---|
| 50 | <!-- options-end --> |
|---|
| 51 | * |
|---|
| 52 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
|---|
| 53 | * @version $Revision: 5987 $ |
|---|
| 54 | */ |
|---|
| 55 | public class Standardize |
|---|
| 56 | extends PotentialClassIgnorer |
|---|
| 57 | implements UnsupervisedFilter, Sourcable { |
|---|
| 58 | |
|---|
| 59 | /** for serialization */ |
|---|
| 60 | static final long serialVersionUID = -6830769026855053281L; |
|---|
| 61 | |
|---|
| 62 | /** The means */ |
|---|
| 63 | private double [] m_Means; |
|---|
| 64 | |
|---|
| 65 | /** The variances */ |
|---|
| 66 | private double [] m_StdDevs; |
|---|
| 67 | |
|---|
| 68 | /** |
|---|
| 69 | * Returns a string describing this filter |
|---|
| 70 | * |
|---|
| 71 | * @return a description of the filter suitable for |
|---|
| 72 | * displaying in the explorer/experimenter gui |
|---|
| 73 | */ |
|---|
| 74 | public String globalInfo() { |
|---|
| 75 | |
|---|
| 76 | return "Standardizes all numeric attributes in the given dataset " |
|---|
| 77 | + "to have zero mean and unit variance (apart from the class attribute, if set)."; |
|---|
| 78 | } |
|---|
| 79 | |
|---|
| 80 | /** |
|---|
| 81 | * Returns the Capabilities of this filter. |
|---|
| 82 | * |
|---|
| 83 | * @return the capabilities of this object |
|---|
| 84 | * @see Capabilities |
|---|
| 85 | */ |
|---|
| 86 | public Capabilities getCapabilities() { |
|---|
| 87 | Capabilities result = super.getCapabilities(); |
|---|
| 88 | result.disableAll(); |
|---|
| 89 | |
|---|
| 90 | // attributes |
|---|
| 91 | result.enableAllAttributes(); |
|---|
| 92 | result.enable(Capability.MISSING_VALUES); |
|---|
| 93 | |
|---|
| 94 | // class |
|---|
| 95 | result.enableAllClasses(); |
|---|
| 96 | result.enable(Capability.MISSING_CLASS_VALUES); |
|---|
| 97 | result.enable(Capability.NO_CLASS); |
|---|
| 98 | |
|---|
| 99 | return result; |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | /** |
|---|
| 103 | * Sets the format of the input instances. |
|---|
| 104 | * |
|---|
| 105 | * @param instanceInfo an Instances object containing the input |
|---|
| 106 | * instance structure (any instances contained in the object are |
|---|
| 107 | * ignored - only the structure is required). |
|---|
| 108 | * @return true if the outputFormat may be collected immediately |
|---|
| 109 | * @throws Exception if the input format can't be set |
|---|
| 110 | * successfully |
|---|
| 111 | */ |
|---|
| 112 | public boolean setInputFormat(Instances instanceInfo) |
|---|
| 113 | throws Exception { |
|---|
| 114 | |
|---|
| 115 | super.setInputFormat(instanceInfo); |
|---|
| 116 | setOutputFormat(instanceInfo); |
|---|
| 117 | m_Means = m_StdDevs = null; |
|---|
| 118 | return true; |
|---|
| 119 | } |
|---|
| 120 | |
|---|
| 121 | /** |
|---|
| 122 | * Input an instance for filtering. Filter requires all |
|---|
| 123 | * training instances be read before producing output. |
|---|
| 124 | * |
|---|
| 125 | * @param instance the input instance |
|---|
| 126 | * @return true if the filtered instance may now be |
|---|
| 127 | * collected with output(). |
|---|
| 128 | * @throws IllegalStateException if no input format has been set. |
|---|
| 129 | */ |
|---|
| 130 | public boolean input(Instance instance) throws Exception { |
|---|
| 131 | |
|---|
| 132 | if (getInputFormat() == null) { |
|---|
| 133 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 134 | } |
|---|
| 135 | if (m_NewBatch) { |
|---|
| 136 | resetQueue(); |
|---|
| 137 | m_NewBatch = false; |
|---|
| 138 | } |
|---|
| 139 | if (m_Means == null) { |
|---|
| 140 | bufferInput(instance); |
|---|
| 141 | return false; |
|---|
| 142 | } else { |
|---|
| 143 | convertInstance(instance); |
|---|
| 144 | return true; |
|---|
| 145 | } |
|---|
| 146 | } |
|---|
| 147 | |
|---|
| 148 | /** |
|---|
| 149 | * Signify that this batch of input to the filter is finished. |
|---|
| 150 | * If the filter requires all instances prior to filtering, |
|---|
| 151 | * output() may now be called to retrieve the filtered instances. |
|---|
| 152 | * |
|---|
| 153 | * @return true if there are instances pending output |
|---|
| 154 | * @exception Exception if an error occurs |
|---|
| 155 | * @exception IllegalStateException if no input structure has been defined |
|---|
| 156 | */ |
|---|
| 157 | public boolean batchFinished() throws Exception { |
|---|
| 158 | |
|---|
| 159 | if (getInputFormat() == null) { |
|---|
| 160 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 161 | } |
|---|
| 162 | if (m_Means == null) { |
|---|
| 163 | Instances input = getInputFormat(); |
|---|
| 164 | m_Means = new double[input.numAttributes()]; |
|---|
| 165 | m_StdDevs = new double[input.numAttributes()]; |
|---|
| 166 | for (int i = 0; i < input.numAttributes(); i++) { |
|---|
| 167 | if (input.attribute(i).isNumeric() && |
|---|
| 168 | (input.classIndex() != i)) { |
|---|
| 169 | m_Means[i] = input.meanOrMode(i); |
|---|
| 170 | m_StdDevs[i] = Math.sqrt(input.variance(i)); |
|---|
| 171 | } |
|---|
| 172 | } |
|---|
| 173 | |
|---|
| 174 | // Convert pending input instances |
|---|
| 175 | for(int i = 0; i < input.numInstances(); i++) { |
|---|
| 176 | convertInstance(input.instance(i)); |
|---|
| 177 | } |
|---|
| 178 | } |
|---|
| 179 | // Free memory |
|---|
| 180 | flushInput(); |
|---|
| 181 | |
|---|
| 182 | m_NewBatch = true; |
|---|
| 183 | return (numPendingOutput() != 0); |
|---|
| 184 | } |
|---|
| 185 | |
|---|
| 186 | /** |
|---|
| 187 | * Convert a single instance over. The converted instance is |
|---|
| 188 | * added to the end of the output queue. |
|---|
| 189 | * |
|---|
| 190 | * @param instance the instance to convert |
|---|
| 191 | * @exception Exception if an error occurs |
|---|
| 192 | */ |
|---|
| 193 | private void convertInstance(Instance instance) throws Exception { |
|---|
| 194 | |
|---|
| 195 | Instance inst = null; |
|---|
| 196 | if (instance instanceof SparseInstance) { |
|---|
| 197 | double[] newVals = new double[instance.numAttributes()]; |
|---|
| 198 | int[] newIndices = new int[instance.numAttributes()]; |
|---|
| 199 | double[] vals = instance.toDoubleArray(); |
|---|
| 200 | int ind = 0; |
|---|
| 201 | for (int j = 0; j < instance.numAttributes(); j++) { |
|---|
| 202 | double value; |
|---|
| 203 | if (instance.attribute(j).isNumeric() && |
|---|
| 204 | (!Utils.isMissingValue(vals[j])) && |
|---|
| 205 | (getInputFormat().classIndex() != j)) { |
|---|
| 206 | |
|---|
| 207 | // Just subtract the mean if the standard deviation is zero |
|---|
| 208 | if (m_StdDevs[j] > 0) { |
|---|
| 209 | value = (vals[j] - m_Means[j]) / m_StdDevs[j]; |
|---|
| 210 | } else { |
|---|
| 211 | value = vals[j] - m_Means[j]; |
|---|
| 212 | } |
|---|
| 213 | if (Double.isNaN(value)) { |
|---|
| 214 | throw new Exception("A NaN value was generated " |
|---|
| 215 | + "while standardizing attribute " |
|---|
| 216 | + instance.attribute(j).name()); |
|---|
| 217 | } |
|---|
| 218 | if (value != 0.0) { |
|---|
| 219 | newVals[ind] = value; |
|---|
| 220 | newIndices[ind] = j; |
|---|
| 221 | ind++; |
|---|
| 222 | } |
|---|
| 223 | } else { |
|---|
| 224 | value = vals[j]; |
|---|
| 225 | if (value != 0.0) { |
|---|
| 226 | newVals[ind] = value; |
|---|
| 227 | newIndices[ind] = j; |
|---|
| 228 | ind++; |
|---|
| 229 | } |
|---|
| 230 | } |
|---|
| 231 | } |
|---|
| 232 | double[] tempVals = new double[ind]; |
|---|
| 233 | int[] tempInd = new int[ind]; |
|---|
| 234 | System.arraycopy(newVals, 0, tempVals, 0, ind); |
|---|
| 235 | System.arraycopy(newIndices, 0, tempInd, 0, ind); |
|---|
| 236 | inst = new SparseInstance(instance.weight(), tempVals, tempInd, |
|---|
| 237 | instance.numAttributes()); |
|---|
| 238 | } else { |
|---|
| 239 | double[] vals = instance.toDoubleArray(); |
|---|
| 240 | for (int j = 0; j < getInputFormat().numAttributes(); j++) { |
|---|
| 241 | if (instance.attribute(j).isNumeric() && |
|---|
| 242 | (!Utils.isMissingValue(vals[j])) && |
|---|
| 243 | (getInputFormat().classIndex() != j)) { |
|---|
| 244 | |
|---|
| 245 | // Just subtract the mean if the standard deviation is zero |
|---|
| 246 | if (m_StdDevs[j] > 0) { |
|---|
| 247 | vals[j] = (vals[j] - m_Means[j]) / m_StdDevs[j]; |
|---|
| 248 | } else { |
|---|
| 249 | vals[j] = (vals[j] - m_Means[j]); |
|---|
| 250 | } |
|---|
| 251 | if (Double.isNaN(vals[j])) { |
|---|
| 252 | throw new Exception("A NaN value was generated " |
|---|
| 253 | + "while standardizing attribute " |
|---|
| 254 | + instance.attribute(j).name()); |
|---|
| 255 | } |
|---|
| 256 | } |
|---|
| 257 | } |
|---|
| 258 | inst = new DenseInstance(instance.weight(), vals); |
|---|
| 259 | } |
|---|
| 260 | inst.setDataset(instance.dataset()); |
|---|
| 261 | push(inst); |
|---|
| 262 | } |
|---|
| 263 | |
|---|
| 264 | /** |
|---|
| 265 | * Returns a string that describes the filter as source. The |
|---|
| 266 | * filter will be contained in a class with the given name (there may |
|---|
| 267 | * be auxiliary classes), |
|---|
| 268 | * and will contain two methods with these signatures: |
|---|
| 269 | * <pre><code> |
|---|
| 270 | * // converts one row |
|---|
| 271 | * public static Object[] filter(Object[] i); |
|---|
| 272 | * // converts a full dataset (first dimension is row index) |
|---|
| 273 | * public static Object[][] filter(Object[][] i); |
|---|
| 274 | * </code></pre> |
|---|
| 275 | * where the array <code>i</code> contains elements that are either |
|---|
| 276 | * Double, String, with missing values represented as null. The generated |
|---|
| 277 | * code is public domain and comes with no warranty. |
|---|
| 278 | * |
|---|
| 279 | * @param className the name that should be given to the source class. |
|---|
| 280 | * @param data the dataset used for initializing the filter |
|---|
| 281 | * @return the object source described by a string |
|---|
| 282 | * @throws Exception if the source can't be computed |
|---|
| 283 | */ |
|---|
| 284 | public String toSource(String className, Instances data) throws Exception { |
|---|
| 285 | StringBuffer result; |
|---|
| 286 | boolean[] process; |
|---|
| 287 | int i; |
|---|
| 288 | |
|---|
| 289 | result = new StringBuffer(); |
|---|
| 290 | |
|---|
| 291 | // determine what attributes were processed |
|---|
| 292 | process = new boolean[data.numAttributes()]; |
|---|
| 293 | for (i = 0; i < data.numAttributes(); i++) { |
|---|
| 294 | process[i] = (data.attribute(i).isNumeric() && (i != data.classIndex())); |
|---|
| 295 | } |
|---|
| 296 | |
|---|
| 297 | result.append("class " + className + " {\n"); |
|---|
| 298 | result.append("\n"); |
|---|
| 299 | result.append(" /** lists which attributes will be processed */\n"); |
|---|
| 300 | result.append(" protected final static boolean[] PROCESS = new boolean[]{" + Utils.arrayToString(process) + "};\n"); |
|---|
| 301 | result.append("\n"); |
|---|
| 302 | result.append(" /** the computed means */\n"); |
|---|
| 303 | result.append(" protected final static double[] MEANS = new double[]{" + Utils.arrayToString(m_Means) + "};\n"); |
|---|
| 304 | result.append("\n"); |
|---|
| 305 | result.append(" /** the computed standard deviations */\n"); |
|---|
| 306 | result.append(" protected final static double[] STDEVS = new double[]{" + Utils.arrayToString(m_StdDevs) + "};\n"); |
|---|
| 307 | result.append("\n"); |
|---|
| 308 | result.append(" /**\n"); |
|---|
| 309 | result.append(" * filters a single row\n"); |
|---|
| 310 | result.append(" * \n"); |
|---|
| 311 | result.append(" * @param i the row to process\n"); |
|---|
| 312 | result.append(" * @return the processed row\n"); |
|---|
| 313 | result.append(" */\n"); |
|---|
| 314 | result.append(" public static Object[] filter(Object[] i) {\n"); |
|---|
| 315 | result.append(" Object[] result;\n"); |
|---|
| 316 | result.append("\n"); |
|---|
| 317 | result.append(" result = new Object[i.length];\n"); |
|---|
| 318 | result.append(" for (int n = 0; n < i.length; n++) {\n"); |
|---|
| 319 | result.append(" if (PROCESS[n] && (i[n] != null)) {\n"); |
|---|
| 320 | result.append(" if (STDEVS[n] > 0)\n"); |
|---|
| 321 | result.append(" result[n] = (((Double) i[n]) - MEANS[n]) / STDEVS[n];\n"); |
|---|
| 322 | result.append(" else\n"); |
|---|
| 323 | result.append(" result[n] = ((Double) i[n]) - MEANS[n];\n"); |
|---|
| 324 | result.append(" }\n"); |
|---|
| 325 | result.append(" else {\n"); |
|---|
| 326 | result.append(" result[n] = i[n];\n"); |
|---|
| 327 | result.append(" }\n"); |
|---|
| 328 | result.append(" }\n"); |
|---|
| 329 | result.append("\n"); |
|---|
| 330 | result.append(" return result;\n"); |
|---|
| 331 | result.append(" }\n"); |
|---|
| 332 | result.append("\n"); |
|---|
| 333 | result.append(" /**\n"); |
|---|
| 334 | result.append(" * filters multiple rows\n"); |
|---|
| 335 | result.append(" * \n"); |
|---|
| 336 | result.append(" * @param i the rows to process\n"); |
|---|
| 337 | result.append(" * @return the processed rows\n"); |
|---|
| 338 | result.append(" */\n"); |
|---|
| 339 | result.append(" public static Object[][] filter(Object[][] i) {\n"); |
|---|
| 340 | result.append(" Object[][] result;\n"); |
|---|
| 341 | result.append("\n"); |
|---|
| 342 | result.append(" result = new Object[i.length][];\n"); |
|---|
| 343 | result.append(" for (int n = 0; n < i.length; n++) {\n"); |
|---|
| 344 | result.append(" result[n] = filter(i[n]);\n"); |
|---|
| 345 | result.append(" }\n"); |
|---|
| 346 | result.append("\n"); |
|---|
| 347 | result.append(" return result;\n"); |
|---|
| 348 | result.append(" }\n"); |
|---|
| 349 | result.append("}\n"); |
|---|
| 350 | |
|---|
| 351 | return result.toString(); |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | /** |
|---|
| 355 | * Returns the revision string. |
|---|
| 356 | * |
|---|
| 357 | * @return the revision |
|---|
| 358 | */ |
|---|
| 359 | public String getRevision() { |
|---|
| 360 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 361 | } |
|---|
| 362 | |
|---|
| 363 | /** |
|---|
| 364 | * Main method for testing this class. |
|---|
| 365 | * |
|---|
| 366 | * @param argv should contain arguments to the filter: |
|---|
| 367 | * use -h for help |
|---|
| 368 | */ |
|---|
| 369 | public static void main(String [] argv) { |
|---|
| 370 | runFilter(new Standardize(), argv); |
|---|
| 371 | } |
|---|
| 372 | } |
|---|