1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Standardize.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.filters.unsupervised.attribute; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.DenseInstance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | import weka.core.SparseInstance; |
---|
31 | import weka.core.Utils; |
---|
32 | import weka.core.Capabilities.Capability; |
---|
33 | import weka.filters.Sourcable; |
---|
34 | import weka.filters.UnsupervisedFilter; |
---|
35 | |
---|
36 | /** |
---|
37 | <!-- globalinfo-start --> |
---|
38 | * Standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set). |
---|
39 | * <p/> |
---|
40 | <!-- globalinfo-end --> |
---|
41 | * |
---|
42 | <!-- options-start --> |
---|
43 | * Valid options are: <p/> |
---|
44 | * |
---|
45 | * <pre> -unset-class-temporarily |
---|
46 | * Unsets the class index temporarily before the filter is |
---|
47 | * applied to the data. |
---|
48 | * (default: no)</pre> |
---|
49 | * |
---|
50 | <!-- options-end --> |
---|
51 | * |
---|
52 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
53 | * @version $Revision: 5987 $ |
---|
54 | */ |
---|
55 | public class Standardize |
---|
56 | extends PotentialClassIgnorer |
---|
57 | implements UnsupervisedFilter, Sourcable { |
---|
58 | |
---|
59 | /** for serialization */ |
---|
60 | static final long serialVersionUID = -6830769026855053281L; |
---|
61 | |
---|
62 | /** The means */ |
---|
63 | private double [] m_Means; |
---|
64 | |
---|
65 | /** The variances */ |
---|
66 | private double [] m_StdDevs; |
---|
67 | |
---|
68 | /** |
---|
69 | * Returns a string describing this filter |
---|
70 | * |
---|
71 | * @return a description of the filter suitable for |
---|
72 | * displaying in the explorer/experimenter gui |
---|
73 | */ |
---|
74 | public String globalInfo() { |
---|
75 | |
---|
76 | return "Standardizes all numeric attributes in the given dataset " |
---|
77 | + "to have zero mean and unit variance (apart from the class attribute, if set)."; |
---|
78 | } |
---|
79 | |
---|
80 | /** |
---|
81 | * Returns the Capabilities of this filter. |
---|
82 | * |
---|
83 | * @return the capabilities of this object |
---|
84 | * @see Capabilities |
---|
85 | */ |
---|
86 | public Capabilities getCapabilities() { |
---|
87 | Capabilities result = super.getCapabilities(); |
---|
88 | result.disableAll(); |
---|
89 | |
---|
90 | // attributes |
---|
91 | result.enableAllAttributes(); |
---|
92 | result.enable(Capability.MISSING_VALUES); |
---|
93 | |
---|
94 | // class |
---|
95 | result.enableAllClasses(); |
---|
96 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
97 | result.enable(Capability.NO_CLASS); |
---|
98 | |
---|
99 | return result; |
---|
100 | } |
---|
101 | |
---|
102 | /** |
---|
103 | * Sets the format of the input instances. |
---|
104 | * |
---|
105 | * @param instanceInfo an Instances object containing the input |
---|
106 | * instance structure (any instances contained in the object are |
---|
107 | * ignored - only the structure is required). |
---|
108 | * @return true if the outputFormat may be collected immediately |
---|
109 | * @throws Exception if the input format can't be set |
---|
110 | * successfully |
---|
111 | */ |
---|
112 | public boolean setInputFormat(Instances instanceInfo) |
---|
113 | throws Exception { |
---|
114 | |
---|
115 | super.setInputFormat(instanceInfo); |
---|
116 | setOutputFormat(instanceInfo); |
---|
117 | m_Means = m_StdDevs = null; |
---|
118 | return true; |
---|
119 | } |
---|
120 | |
---|
121 | /** |
---|
122 | * Input an instance for filtering. Filter requires all |
---|
123 | * training instances be read before producing output. |
---|
124 | * |
---|
125 | * @param instance the input instance |
---|
126 | * @return true if the filtered instance may now be |
---|
127 | * collected with output(). |
---|
128 | * @throws IllegalStateException if no input format has been set. |
---|
129 | */ |
---|
130 | public boolean input(Instance instance) throws Exception { |
---|
131 | |
---|
132 | if (getInputFormat() == null) { |
---|
133 | throw new IllegalStateException("No input instance format defined"); |
---|
134 | } |
---|
135 | if (m_NewBatch) { |
---|
136 | resetQueue(); |
---|
137 | m_NewBatch = false; |
---|
138 | } |
---|
139 | if (m_Means == null) { |
---|
140 | bufferInput(instance); |
---|
141 | return false; |
---|
142 | } else { |
---|
143 | convertInstance(instance); |
---|
144 | return true; |
---|
145 | } |
---|
146 | } |
---|
147 | |
---|
148 | /** |
---|
149 | * Signify that this batch of input to the filter is finished. |
---|
150 | * If the filter requires all instances prior to filtering, |
---|
151 | * output() may now be called to retrieve the filtered instances. |
---|
152 | * |
---|
153 | * @return true if there are instances pending output |
---|
154 | * @exception Exception if an error occurs |
---|
155 | * @exception IllegalStateException if no input structure has been defined |
---|
156 | */ |
---|
157 | public boolean batchFinished() throws Exception { |
---|
158 | |
---|
159 | if (getInputFormat() == null) { |
---|
160 | throw new IllegalStateException("No input instance format defined"); |
---|
161 | } |
---|
162 | if (m_Means == null) { |
---|
163 | Instances input = getInputFormat(); |
---|
164 | m_Means = new double[input.numAttributes()]; |
---|
165 | m_StdDevs = new double[input.numAttributes()]; |
---|
166 | for (int i = 0; i < input.numAttributes(); i++) { |
---|
167 | if (input.attribute(i).isNumeric() && |
---|
168 | (input.classIndex() != i)) { |
---|
169 | m_Means[i] = input.meanOrMode(i); |
---|
170 | m_StdDevs[i] = Math.sqrt(input.variance(i)); |
---|
171 | } |
---|
172 | } |
---|
173 | |
---|
174 | // Convert pending input instances |
---|
175 | for(int i = 0; i < input.numInstances(); i++) { |
---|
176 | convertInstance(input.instance(i)); |
---|
177 | } |
---|
178 | } |
---|
179 | // Free memory |
---|
180 | flushInput(); |
---|
181 | |
---|
182 | m_NewBatch = true; |
---|
183 | return (numPendingOutput() != 0); |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * Convert a single instance over. The converted instance is |
---|
188 | * added to the end of the output queue. |
---|
189 | * |
---|
190 | * @param instance the instance to convert |
---|
191 | * @exception Exception if an error occurs |
---|
192 | */ |
---|
193 | private void convertInstance(Instance instance) throws Exception { |
---|
194 | |
---|
195 | Instance inst = null; |
---|
196 | if (instance instanceof SparseInstance) { |
---|
197 | double[] newVals = new double[instance.numAttributes()]; |
---|
198 | int[] newIndices = new int[instance.numAttributes()]; |
---|
199 | double[] vals = instance.toDoubleArray(); |
---|
200 | int ind = 0; |
---|
201 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
202 | double value; |
---|
203 | if (instance.attribute(j).isNumeric() && |
---|
204 | (!Utils.isMissingValue(vals[j])) && |
---|
205 | (getInputFormat().classIndex() != j)) { |
---|
206 | |
---|
207 | // Just subtract the mean if the standard deviation is zero |
---|
208 | if (m_StdDevs[j] > 0) { |
---|
209 | value = (vals[j] - m_Means[j]) / m_StdDevs[j]; |
---|
210 | } else { |
---|
211 | value = vals[j] - m_Means[j]; |
---|
212 | } |
---|
213 | if (Double.isNaN(value)) { |
---|
214 | throw new Exception("A NaN value was generated " |
---|
215 | + "while standardizing attribute " |
---|
216 | + instance.attribute(j).name()); |
---|
217 | } |
---|
218 | if (value != 0.0) { |
---|
219 | newVals[ind] = value; |
---|
220 | newIndices[ind] = j; |
---|
221 | ind++; |
---|
222 | } |
---|
223 | } else { |
---|
224 | value = vals[j]; |
---|
225 | if (value != 0.0) { |
---|
226 | newVals[ind] = value; |
---|
227 | newIndices[ind] = j; |
---|
228 | ind++; |
---|
229 | } |
---|
230 | } |
---|
231 | } |
---|
232 | double[] tempVals = new double[ind]; |
---|
233 | int[] tempInd = new int[ind]; |
---|
234 | System.arraycopy(newVals, 0, tempVals, 0, ind); |
---|
235 | System.arraycopy(newIndices, 0, tempInd, 0, ind); |
---|
236 | inst = new SparseInstance(instance.weight(), tempVals, tempInd, |
---|
237 | instance.numAttributes()); |
---|
238 | } else { |
---|
239 | double[] vals = instance.toDoubleArray(); |
---|
240 | for (int j = 0; j < getInputFormat().numAttributes(); j++) { |
---|
241 | if (instance.attribute(j).isNumeric() && |
---|
242 | (!Utils.isMissingValue(vals[j])) && |
---|
243 | (getInputFormat().classIndex() != j)) { |
---|
244 | |
---|
245 | // Just subtract the mean if the standard deviation is zero |
---|
246 | if (m_StdDevs[j] > 0) { |
---|
247 | vals[j] = (vals[j] - m_Means[j]) / m_StdDevs[j]; |
---|
248 | } else { |
---|
249 | vals[j] = (vals[j] - m_Means[j]); |
---|
250 | } |
---|
251 | if (Double.isNaN(vals[j])) { |
---|
252 | throw new Exception("A NaN value was generated " |
---|
253 | + "while standardizing attribute " |
---|
254 | + instance.attribute(j).name()); |
---|
255 | } |
---|
256 | } |
---|
257 | } |
---|
258 | inst = new DenseInstance(instance.weight(), vals); |
---|
259 | } |
---|
260 | inst.setDataset(instance.dataset()); |
---|
261 | push(inst); |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Returns a string that describes the filter as source. The |
---|
266 | * filter will be contained in a class with the given name (there may |
---|
267 | * be auxiliary classes), |
---|
268 | * and will contain two methods with these signatures: |
---|
269 | * <pre><code> |
---|
270 | * // converts one row |
---|
271 | * public static Object[] filter(Object[] i); |
---|
272 | * // converts a full dataset (first dimension is row index) |
---|
273 | * public static Object[][] filter(Object[][] i); |
---|
274 | * </code></pre> |
---|
275 | * where the array <code>i</code> contains elements that are either |
---|
276 | * Double, String, with missing values represented as null. The generated |
---|
277 | * code is public domain and comes with no warranty. |
---|
278 | * |
---|
279 | * @param className the name that should be given to the source class. |
---|
280 | * @param data the dataset used for initializing the filter |
---|
281 | * @return the object source described by a string |
---|
282 | * @throws Exception if the source can't be computed |
---|
283 | */ |
---|
284 | public String toSource(String className, Instances data) throws Exception { |
---|
285 | StringBuffer result; |
---|
286 | boolean[] process; |
---|
287 | int i; |
---|
288 | |
---|
289 | result = new StringBuffer(); |
---|
290 | |
---|
291 | // determine what attributes were processed |
---|
292 | process = new boolean[data.numAttributes()]; |
---|
293 | for (i = 0; i < data.numAttributes(); i++) { |
---|
294 | process[i] = (data.attribute(i).isNumeric() && (i != data.classIndex())); |
---|
295 | } |
---|
296 | |
---|
297 | result.append("class " + className + " {\n"); |
---|
298 | result.append("\n"); |
---|
299 | result.append(" /** lists which attributes will be processed */\n"); |
---|
300 | result.append(" protected final static boolean[] PROCESS = new boolean[]{" + Utils.arrayToString(process) + "};\n"); |
---|
301 | result.append("\n"); |
---|
302 | result.append(" /** the computed means */\n"); |
---|
303 | result.append(" protected final static double[] MEANS = new double[]{" + Utils.arrayToString(m_Means) + "};\n"); |
---|
304 | result.append("\n"); |
---|
305 | result.append(" /** the computed standard deviations */\n"); |
---|
306 | result.append(" protected final static double[] STDEVS = new double[]{" + Utils.arrayToString(m_StdDevs) + "};\n"); |
---|
307 | result.append("\n"); |
---|
308 | result.append(" /**\n"); |
---|
309 | result.append(" * filters a single row\n"); |
---|
310 | result.append(" * \n"); |
---|
311 | result.append(" * @param i the row to process\n"); |
---|
312 | result.append(" * @return the processed row\n"); |
---|
313 | result.append(" */\n"); |
---|
314 | result.append(" public static Object[] filter(Object[] i) {\n"); |
---|
315 | result.append(" Object[] result;\n"); |
---|
316 | result.append("\n"); |
---|
317 | result.append(" result = new Object[i.length];\n"); |
---|
318 | result.append(" for (int n = 0; n < i.length; n++) {\n"); |
---|
319 | result.append(" if (PROCESS[n] && (i[n] != null)) {\n"); |
---|
320 | result.append(" if (STDEVS[n] > 0)\n"); |
---|
321 | result.append(" result[n] = (((Double) i[n]) - MEANS[n]) / STDEVS[n];\n"); |
---|
322 | result.append(" else\n"); |
---|
323 | result.append(" result[n] = ((Double) i[n]) - MEANS[n];\n"); |
---|
324 | result.append(" }\n"); |
---|
325 | result.append(" else {\n"); |
---|
326 | result.append(" result[n] = i[n];\n"); |
---|
327 | result.append(" }\n"); |
---|
328 | result.append(" }\n"); |
---|
329 | result.append("\n"); |
---|
330 | result.append(" return result;\n"); |
---|
331 | result.append(" }\n"); |
---|
332 | result.append("\n"); |
---|
333 | result.append(" /**\n"); |
---|
334 | result.append(" * filters multiple rows\n"); |
---|
335 | result.append(" * \n"); |
---|
336 | result.append(" * @param i the rows to process\n"); |
---|
337 | result.append(" * @return the processed rows\n"); |
---|
338 | result.append(" */\n"); |
---|
339 | result.append(" public static Object[][] filter(Object[][] i) {\n"); |
---|
340 | result.append(" Object[][] result;\n"); |
---|
341 | result.append("\n"); |
---|
342 | result.append(" result = new Object[i.length][];\n"); |
---|
343 | result.append(" for (int n = 0; n < i.length; n++) {\n"); |
---|
344 | result.append(" result[n] = filter(i[n]);\n"); |
---|
345 | result.append(" }\n"); |
---|
346 | result.append("\n"); |
---|
347 | result.append(" return result;\n"); |
---|
348 | result.append(" }\n"); |
---|
349 | result.append("}\n"); |
---|
350 | |
---|
351 | return result.toString(); |
---|
352 | } |
---|
353 | |
---|
354 | /** |
---|
355 | * Returns the revision string. |
---|
356 | * |
---|
357 | * @return the revision |
---|
358 | */ |
---|
359 | public String getRevision() { |
---|
360 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * Main method for testing this class. |
---|
365 | * |
---|
366 | * @param argv should contain arguments to the filter: |
---|
367 | * use -h for help |
---|
368 | */ |
---|
369 | public static void main(String [] argv) { |
---|
370 | runFilter(new Standardize(), argv); |
---|
371 | } |
---|
372 | } |
---|