| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * MILES.java |
|---|
| 19 | * Copyright (C) 2008-09 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.filters.unsupervised.attribute; |
|---|
| 23 | |
|---|
| 24 | import weka.core.Attribute; |
|---|
| 25 | import weka.core.Instance; |
|---|
| 26 | import weka.core.DenseInstance; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.Version; |
|---|
| 29 | import weka.core.Capabilities.Capability; |
|---|
| 30 | import weka.core.Capabilities; |
|---|
| 31 | import weka.core.RevisionUtils; |
|---|
| 32 | import weka.core.OptionHandler; |
|---|
| 33 | import weka.core.Utils; |
|---|
| 34 | import weka.core.FastVector; |
|---|
| 35 | import weka.core.Option; |
|---|
| 36 | import weka.core.TechnicalInformation; |
|---|
| 37 | import weka.core.TechnicalInformationHandler; |
|---|
| 38 | import weka.core.TechnicalInformation.Field; |
|---|
| 39 | import weka.core.TechnicalInformation.Type; |
|---|
| 40 | |
|---|
| 41 | import weka.filters.SimpleBatchFilter; |
|---|
| 42 | import weka.filters.UnsupervisedFilter; |
|---|
| 43 | |
|---|
| 44 | import java.util.LinkedList; |
|---|
| 45 | import java.util.Enumeration; |
|---|
| 46 | |
|---|
| 47 | /** |
|---|
| 48 | <!-- globalinfo-start --> |
|---|
| 49 | * Implements the MILES transformation that maps multiple instance bags into a high-dimensional single-instance feature space.<br/> |
|---|
| 50 | * For more information see:<br/> |
|---|
| 51 | * <br/> |
|---|
| 52 | * Y. Chen, J. Bi, J.Z. Wang (2006). MILES: Multiple-instance learning via embedded instance selection. IEEE PAMI. 28(12):1931-1947.<br/> |
|---|
| 53 | * <br/> |
|---|
| 54 | * James Foulds, Eibe Frank: Revisiting multiple-instance learning via embedded instance selection. In: 21st Australasian Joint Conference on Artificial Intelligence, 300-310, 2008. |
|---|
| 55 | * <p/> |
|---|
| 56 | <!-- globalinfo-end --> |
|---|
| 57 | * |
|---|
| 58 | <!-- technical-bibtex-start --> |
|---|
| 59 | * BibTeX: |
|---|
| 60 | * <pre> |
|---|
| 61 | * @article{Chen2006, |
|---|
| 62 | * author = {Y. Chen and J. Bi and J.Z. Wang}, |
|---|
| 63 | * journal = {IEEE PAMI}, |
|---|
| 64 | * number = {12}, |
|---|
| 65 | * pages = {1931-1947}, |
|---|
| 66 | * title = {MILES: Multiple-instance learning via embedded instance selection}, |
|---|
| 67 | * volume = {28}, |
|---|
| 68 | * year = {2006} |
|---|
| 69 | * } |
|---|
| 70 | * |
|---|
| 71 | * @inproceedings{Foulds2008, |
|---|
| 72 | * author = {James Foulds and Eibe Frank}, |
|---|
| 73 | * booktitle = {21st Australasian Joint Conference on Artificial Intelligence}, |
|---|
| 74 | * pages = {300-310}, |
|---|
| 75 | * publisher = {Springer}, |
|---|
| 76 | * title = {Revisiting multiple-instance learning via embedded instance selection}, |
|---|
| 77 | * year = {2008} |
|---|
| 78 | * } |
|---|
| 79 | * </pre> |
|---|
| 80 | * <p/> |
|---|
| 81 | <!-- technical-bibtex-end --> |
|---|
| 82 | * |
|---|
| 83 | <!-- options-start --> |
|---|
| 84 | * Valid options are: <p/> |
|---|
| 85 | * |
|---|
| 86 | * <pre> -S <num> |
|---|
| 87 | * Specify the sigma parameter (default: sqrt(800000)</pre> |
|---|
| 88 | * |
|---|
| 89 | <!-- options-end --> |
|---|
| 90 | * |
|---|
| 91 | * @author Jimmy Foulds |
|---|
| 92 | * @author Eibe Frank |
|---|
| 93 | * @version $Revision: 5987 $ |
|---|
| 94 | */ |
|---|
| 95 | public class MILESFilter |
|---|
| 96 | extends SimpleBatchFilter implements UnsupervisedFilter, OptionHandler, TechnicalInformationHandler |
|---|
| 97 | { |
|---|
| 98 | |
|---|
| 99 | /** For serialization */ |
|---|
| 100 | static final long serialVersionUID = 4694489111366063853L; |
|---|
| 101 | |
|---|
| 102 | /** Index of bag attribute */ |
|---|
| 103 | public static final int BAG_ATTRIBUTE = 1; |
|---|
| 104 | |
|---|
| 105 | /** Index of label attribute */ |
|---|
| 106 | public static final int LABEL_ATTRIBUTE = 2; |
|---|
| 107 | |
|---|
| 108 | /** Sigma parameter (default: square root of 800000) */ |
|---|
| 109 | private double m_sigma = Math.sqrt(800000); |
|---|
| 110 | |
|---|
| 111 | /** Linked list of all instances collected */ |
|---|
| 112 | private LinkedList<Instance> m_allInsts = null; |
|---|
| 113 | |
|---|
| 114 | /** |
|---|
| 115 | * Returns the tip text for this property |
|---|
| 116 | */ |
|---|
| 117 | public String sigmaTipText() { |
|---|
| 118 | |
|---|
| 119 | return "The value of the sigma parameter."; |
|---|
| 120 | } |
|---|
| 121 | |
|---|
| 122 | /** |
|---|
| 123 | * Sets the sigma parameter. |
|---|
| 124 | */ |
|---|
| 125 | public void setSigma(double sigma) |
|---|
| 126 | { |
|---|
| 127 | m_sigma = sigma; |
|---|
| 128 | } |
|---|
| 129 | |
|---|
| 130 | /** |
|---|
| 131 | * Gets the sigma parameter. |
|---|
| 132 | */ |
|---|
| 133 | public double getSigma() |
|---|
| 134 | { |
|---|
| 135 | return m_sigma; |
|---|
| 136 | } |
|---|
| 137 | |
|---|
| 138 | /** |
|---|
| 139 | * Global info for the filter. |
|---|
| 140 | */ |
|---|
| 141 | public String globalInfo() { |
|---|
| 142 | return "Implements the MILES transformation that maps multiple instance bags into" |
|---|
| 143 | + " a high-dimensional single-instance feature space." |
|---|
| 144 | + "\n" |
|---|
| 145 | + "For more information see:\n\n" |
|---|
| 146 | + getTechnicalInformation().toString(); |
|---|
| 147 | } |
|---|
| 148 | |
|---|
| 149 | /** |
|---|
| 150 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 151 | * detailed information about the technical background of this class, |
|---|
| 152 | * e.g., paper reference or book this class is based on. |
|---|
| 153 | * |
|---|
| 154 | * @return the technical information about this class |
|---|
| 155 | */ |
|---|
| 156 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 157 | TechnicalInformation result; |
|---|
| 158 | TechnicalInformation additional; |
|---|
| 159 | |
|---|
| 160 | result = new TechnicalInformation(Type.ARTICLE); |
|---|
| 161 | result.setValue(Field.AUTHOR, "Y. Chen and J. Bi and J.Z. Wang"); |
|---|
| 162 | result.setValue(Field.TITLE, "MILES: Multiple-instance learning via embedded instance selection"); |
|---|
| 163 | result.setValue(Field.JOURNAL, "IEEE PAMI"); |
|---|
| 164 | result.setValue(Field.YEAR, "2006"); |
|---|
| 165 | result.setValue(Field.VOLUME, "28"); |
|---|
| 166 | result.setValue(Field.PAGES, "1931-1947"); |
|---|
| 167 | result.setValue(Field.NUMBER, "12"); |
|---|
| 168 | |
|---|
| 169 | additional = result.add(Type.INPROCEEDINGS); |
|---|
| 170 | additional.setValue(Field.AUTHOR, "James Foulds and Eibe Frank"); |
|---|
| 171 | additional.setValue(Field.TITLE, "Revisiting multiple-instance learning via embedded instance selection"); |
|---|
| 172 | additional.setValue(Field.BOOKTITLE, "21st Australasian Joint Conference on Artificial Intelligence"); |
|---|
| 173 | additional.setValue(Field.YEAR, "2008"); |
|---|
| 174 | additional.setValue(Field.PAGES, "300-310"); |
|---|
| 175 | additional.setValue(Field.PUBLISHER, "Springer"); |
|---|
| 176 | |
|---|
| 177 | return result; |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | /** |
|---|
| 181 | * Capabilities for the filter. |
|---|
| 182 | */ |
|---|
| 183 | public Capabilities getCapabilities() { |
|---|
| 184 | Capabilities result = super.getCapabilities(); |
|---|
| 185 | result.enable(Capability.ONLY_MULTIINSTANCE); |
|---|
| 186 | return result; |
|---|
| 187 | } |
|---|
| 188 | |
|---|
| 189 | /** |
|---|
| 190 | * Determines the output format for the filter. |
|---|
| 191 | */ |
|---|
| 192 | protected Instances determineOutputFormat(Instances inputFormat) { |
|---|
| 193 | |
|---|
| 194 | // Create attributes |
|---|
| 195 | FastVector atts = new FastVector(); |
|---|
| 196 | m_allInsts = new LinkedList<Instance>(); |
|---|
| 197 | for (int i = 0; i < getInputFormat().numInstances(); i++) |
|---|
| 198 | { |
|---|
| 199 | Instances bag = getInputFormat().instance(i).relationalValue(BAG_ATTRIBUTE); |
|---|
| 200 | for (int j = 0; j < bag.numInstances(); j++) |
|---|
| 201 | { |
|---|
| 202 | m_allInsts.add(bag.instance(j)); |
|---|
| 203 | } |
|---|
| 204 | } |
|---|
| 205 | for (int i = 0; i < m_allInsts.size(); i++) |
|---|
| 206 | { |
|---|
| 207 | atts.addElement(new Attribute("" + i)); |
|---|
| 208 | } |
|---|
| 209 | atts.addElement(inputFormat.attribute(LABEL_ATTRIBUTE)); //class |
|---|
| 210 | |
|---|
| 211 | //TODO set relation name properly |
|---|
| 212 | Instances returner = new Instances("", atts, 0); |
|---|
| 213 | returner.setClassIndex(returner.numAttributes() - 1); |
|---|
| 214 | |
|---|
| 215 | return returner; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | /** |
|---|
| 219 | * Processes a set of instances. |
|---|
| 220 | */ |
|---|
| 221 | protected Instances process(Instances inst) |
|---|
| 222 | { |
|---|
| 223 | |
|---|
| 224 | // Get instances object with correct output format |
|---|
| 225 | Instances result = getOutputFormat(); |
|---|
| 226 | result.setClassIndex(result.numAttributes() - 1); |
|---|
| 227 | |
|---|
| 228 | // Can't do much if bag is empty |
|---|
| 229 | if (inst.numInstances() == 0) |
|---|
| 230 | { |
|---|
| 231 | return result; |
|---|
| 232 | } |
|---|
| 233 | |
|---|
| 234 | // Go through all the instances in the bag to be transformed |
|---|
| 235 | for (int i = 0; i < inst.numInstances(); i++) //for every bag |
|---|
| 236 | { |
|---|
| 237 | |
|---|
| 238 | // Allocate memory for instance |
|---|
| 239 | double[] outputInstance = new double[result.numAttributes()]; |
|---|
| 240 | |
|---|
| 241 | // Get the bag |
|---|
| 242 | Instances bag = inst.instance(i).relationalValue(BAG_ATTRIBUTE); |
|---|
| 243 | int k = 0; |
|---|
| 244 | for (Instance x_k : m_allInsts) //for every instance in every bag |
|---|
| 245 | { |
|---|
| 246 | //TODO handle empty bags |
|---|
| 247 | double dSquared = Double.MAX_VALUE; |
|---|
| 248 | for (int j = 0; j < bag.numInstances(); j++) //for every instance in the current bag |
|---|
| 249 | { |
|---|
| 250 | // Compute sum of squared differences |
|---|
| 251 | double total = 0; |
|---|
| 252 | Instance x_ij = bag.instance(j); |
|---|
| 253 | double numMissingValues = 0; |
|---|
| 254 | for (int l = 0; l < x_k.numAttributes(); l++) //for every attribute |
|---|
| 255 | { |
|---|
| 256 | // Can skip missing values in reference instance |
|---|
| 257 | if (x_k.isMissing(l)) { |
|---|
| 258 | continue; |
|---|
| 259 | } |
|---|
| 260 | // Need to keep track of how many values in current instance are missing |
|---|
| 261 | if (!x_ij.isMissing(l)) { |
|---|
| 262 | total += (x_ij.value(l) - x_k.value(l)) * (x_ij.value(l) - x_k.value(l)); |
|---|
| 263 | } else { |
|---|
| 264 | numMissingValues++; |
|---|
| 265 | } |
|---|
| 266 | } |
|---|
| 267 | // Adjust for missing values |
|---|
| 268 | total *= x_k.numAttributes() / (x_k.numAttributes() - numMissingValues); |
|---|
| 269 | |
|---|
| 270 | // Update minimum |
|---|
| 271 | if (total < dSquared || dSquared == Double.MAX_VALUE) |
|---|
| 272 | { |
|---|
| 273 | dSquared = total; |
|---|
| 274 | } |
|---|
| 275 | } |
|---|
| 276 | if (dSquared == Double.MAX_VALUE) |
|---|
| 277 | outputInstance[k] = 0; //TODO is this ok? |
|---|
| 278 | else |
|---|
| 279 | outputInstance[k] = Math.exp(-1.0 * dSquared / (m_sigma * m_sigma)); |
|---|
| 280 | k++; |
|---|
| 281 | } |
|---|
| 282 | |
|---|
| 283 | // Set class label |
|---|
| 284 | double label = inst.instance(i).value(LABEL_ATTRIBUTE); |
|---|
| 285 | outputInstance[outputInstance.length - 1] = label; |
|---|
| 286 | |
|---|
| 287 | // Add instance to result |
|---|
| 288 | result.add(new DenseInstance(inst.instance(i).weight(), outputInstance)); |
|---|
| 289 | } |
|---|
| 290 | |
|---|
| 291 | return result; |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | /** |
|---|
| 295 | * Returns an enumeration describing the available options. |
|---|
| 296 | * |
|---|
| 297 | * @return an enumeration of all the available options. |
|---|
| 298 | */ |
|---|
| 299 | public Enumeration listOptions() { |
|---|
| 300 | |
|---|
| 301 | FastVector newVector = new FastVector(1); |
|---|
| 302 | |
|---|
| 303 | newVector.addElement(new Option( |
|---|
| 304 | "\tSpecify the sigma parameter (default: sqrt(800000)", |
|---|
| 305 | "S", 1, "-S <num>")); |
|---|
| 306 | |
|---|
| 307 | return newVector.elements(); |
|---|
| 308 | } |
|---|
| 309 | |
|---|
| 310 | |
|---|
| 311 | /** |
|---|
| 312 | * Parses a given list of options. <p/> |
|---|
| 313 | * |
|---|
| 314 | <!-- options-start --> |
|---|
| 315 | * Valid options are: <p/> |
|---|
| 316 | * |
|---|
| 317 | * <pre> -S <num> |
|---|
| 318 | * Specify the sigma parameter (default: sqrt(800000)</pre> |
|---|
| 319 | * |
|---|
| 320 | <!-- options-end --> |
|---|
| 321 | * |
|---|
| 322 | * @param options the list of options as an array of strings |
|---|
| 323 | * @throws Exception if an option is not supported |
|---|
| 324 | */ |
|---|
| 325 | public void setOptions(String[] options) throws Exception { |
|---|
| 326 | |
|---|
| 327 | String sigmaString = Utils.getOption('S', options); |
|---|
| 328 | if (sigmaString.length() != 0) { |
|---|
| 329 | setSigma(Double.parseDouble(sigmaString)); |
|---|
| 330 | } else { |
|---|
| 331 | setSigma(Math.sqrt(800000)); |
|---|
| 332 | } |
|---|
| 333 | } |
|---|
| 334 | |
|---|
| 335 | /** |
|---|
| 336 | * Gets the current settings of the filter. |
|---|
| 337 | * |
|---|
| 338 | * @return an array of strings suitable for passing to setOptions |
|---|
| 339 | */ |
|---|
| 340 | public String [] getOptions() { |
|---|
| 341 | |
|---|
| 342 | String [] options = new String [2]; |
|---|
| 343 | int current = 0; |
|---|
| 344 | |
|---|
| 345 | options[current++] = "-S"; options[current++] = "" + getSigma(); |
|---|
| 346 | |
|---|
| 347 | while (current < options.length) { |
|---|
| 348 | options[current++] = ""; |
|---|
| 349 | } |
|---|
| 350 | return options; |
|---|
| 351 | } |
|---|
| 352 | |
|---|
| 353 | public static void main(String[] args) |
|---|
| 354 | { |
|---|
| 355 | runFilter(new MILESFilter(), args); |
|---|
| 356 | } |
|---|
| 357 | |
|---|
| 358 | public String getRevision() { |
|---|
| 359 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 360 | } |
|---|
| 361 | } |
|---|
| 362 | |
|---|