1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KernelFilter.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.filters.unsupervised.attribute; |
---|
24 | |
---|
25 | import weka.classifiers.functions.supportVector.Kernel; |
---|
26 | import weka.classifiers.functions.supportVector.PolyKernel; |
---|
27 | import weka.classifiers.functions.supportVector.RBFKernel; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.FastVector; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.DenseInstance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.MathematicalExpression; |
---|
35 | import weka.core.Option; |
---|
36 | import weka.core.OptionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.SingleIndex; |
---|
39 | import weka.core.TechnicalInformation; |
---|
40 | import weka.core.TechnicalInformationHandler; |
---|
41 | import weka.core.Utils; |
---|
42 | import weka.core.Capabilities.Capability; |
---|
43 | import weka.core.TechnicalInformation.Field; |
---|
44 | import weka.core.TechnicalInformation.Type; |
---|
45 | import weka.core.converters.ConverterUtils.DataSource; |
---|
46 | import weka.filters.AllFilter; |
---|
47 | import weka.filters.Filter; |
---|
48 | import weka.filters.SimpleBatchFilter; |
---|
49 | import weka.filters.UnsupervisedFilter; |
---|
50 | |
---|
51 | import java.io.File; |
---|
52 | import java.util.Enumeration; |
---|
53 | import java.util.HashMap; |
---|
54 | import java.util.Vector; |
---|
55 | |
---|
56 | /** |
---|
57 | <!-- globalinfo-start --> |
---|
58 | * Converts the given set of predictor variables into a kernel matrix. The class value remains unchangedm, as long as the preprocessing filter doesn't change it.<br/> |
---|
59 | * By default, the data is preprocessed with the Center filter, but the user can choose any filter (NB: one must be careful that the filter does not alter the class attribute unintentionally). With weka.filters.AllFilter the preprocessing gets disabled.<br/> |
---|
60 | * <br/> |
---|
61 | * For more information regarding preprocessing the data, see:<br/> |
---|
62 | * <br/> |
---|
63 | * K.P. Bennett, M.J. Embrechts: An Optimization Perspective on Kernel Partial Least Squares Regression. In: Advances in Learning Theory: Methods, Models and Applications, 227-249, 2003. |
---|
64 | * <p/> |
---|
65 | <!-- globalinfo-end --> |
---|
66 | * |
---|
67 | <!-- technical-bibtex-start --> |
---|
68 | * BibTeX: |
---|
69 | * <pre> |
---|
70 | * @inproceedings{Bennett2003, |
---|
71 | * author = {K.P. Bennett and M.J. Embrechts}, |
---|
72 | * booktitle = {Advances in Learning Theory: Methods, Models and Applications}, |
---|
73 | * editor = {J. Suykens et al.}, |
---|
74 | * pages = {227-249}, |
---|
75 | * publisher = {IOS Press, Amsterdam, The Netherlands}, |
---|
76 | * series = {NATO Science Series, Series III: Computer and System Sciences}, |
---|
77 | * title = {An Optimization Perspective on Kernel Partial Least Squares Regression}, |
---|
78 | * volume = {190}, |
---|
79 | * year = {2003} |
---|
80 | * } |
---|
81 | * </pre> |
---|
82 | * <p/> |
---|
83 | <!-- technical-bibtex-end --> |
---|
84 | * |
---|
85 | <!-- options-start --> |
---|
86 | * Valid options are: <p/> |
---|
87 | * |
---|
88 | * <pre> -D |
---|
89 | * Turns on output of debugging information.</pre> |
---|
90 | * |
---|
91 | * <pre> -no-checks |
---|
92 | * Turns off all checks - use with caution! |
---|
93 | * Turning them off assumes that data is purely numeric, doesn't |
---|
94 | * contain any missing values, and has a nominal class. Turning them |
---|
95 | * off also means that no header information will be stored if the |
---|
96 | * machine is linear. Finally, it also assumes that no instance has |
---|
97 | * a weight equal to 0. |
---|
98 | * (default: checks on)</pre> |
---|
99 | * |
---|
100 | * <pre> -F <filename> |
---|
101 | * The file to initialize the filter with (optional).</pre> |
---|
102 | * |
---|
103 | * <pre> -C <num> |
---|
104 | * The class index for the file to initialize with, |
---|
105 | * First and last are valid (optional, default: last).</pre> |
---|
106 | * |
---|
107 | * <pre> -K <classname and parameters> |
---|
108 | * The Kernel to use. |
---|
109 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
110 | * |
---|
111 | * <pre> -kernel-factor |
---|
112 | * Defines a factor for the kernel. |
---|
113 | * - RBFKernel: a factor for gamma |
---|
114 | * Standardize: 1/(2*N) |
---|
115 | * Normalize..: 6/N |
---|
116 | * Available parameters are: |
---|
117 | * N for # of instances, A for # of attributes |
---|
118 | * (default: 1)</pre> |
---|
119 | * |
---|
120 | * <pre> -P <classname and parameters> |
---|
121 | * The Filter used for preprocessing (use weka.filters.AllFilter |
---|
122 | * to disable preprocessing). |
---|
123 | * (default: weka.filters.unsupervised.attribute.Center)</pre> |
---|
124 | * |
---|
125 | * <pre> |
---|
126 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
127 | * </pre> |
---|
128 | * |
---|
129 | * <pre> -D |
---|
130 | * Enables debugging output (if available) to be printed. |
---|
131 | * (default: off)</pre> |
---|
132 | * |
---|
133 | * <pre> -no-checks |
---|
134 | * Turns off all checks - use with caution! |
---|
135 | * (default: checks on)</pre> |
---|
136 | * |
---|
137 | * <pre> -C <num> |
---|
138 | * The size of the cache (a prime number), 0 for full cache and |
---|
139 | * -1 to turn it off. |
---|
140 | * (default: 250007)</pre> |
---|
141 | * |
---|
142 | * <pre> -E <num> |
---|
143 | * The Exponent to use. |
---|
144 | * (default: 1.0)</pre> |
---|
145 | * |
---|
146 | * <pre> -L |
---|
147 | * Use lower-order terms. |
---|
148 | * (default: no)</pre> |
---|
149 | * |
---|
150 | * <pre> |
---|
151 | * Options specific to preprocessing filter weka.filters.unsupervised.attribute.Center: |
---|
152 | * </pre> |
---|
153 | * |
---|
154 | * <pre> -unset-class-temporarily |
---|
155 | * Unsets the class index temporarily before the filter is |
---|
156 | * applied to the data. |
---|
157 | * (default: no)</pre> |
---|
158 | * |
---|
159 | <!-- options-end --> |
---|
160 | * |
---|
161 | * @author Jonathan Miles (jdm18@cs.waikato.ac.nz) |
---|
162 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
163 | * @version $Revision: 5987 $ |
---|
164 | */ |
---|
165 | public class KernelFilter |
---|
166 | extends SimpleBatchFilter |
---|
167 | implements UnsupervisedFilter, TechnicalInformationHandler { |
---|
168 | |
---|
169 | /** for serialization */ |
---|
170 | static final long serialVersionUID = 213800899640387499L; |
---|
171 | |
---|
172 | /** The number of instances in the training data. */ |
---|
173 | protected int m_NumTrainInstances; |
---|
174 | |
---|
175 | /** Kernel to use **/ |
---|
176 | protected Kernel m_Kernel = new PolyKernel(); |
---|
177 | |
---|
178 | /** the Kernel which is actually used for computation */ |
---|
179 | protected Kernel m_ActualKernel = null; |
---|
180 | |
---|
181 | /** Turn off all checks and conversions? Turning them off assumes |
---|
182 | that data is purely numeric, doesn't contain any missing values, |
---|
183 | and has a nominal class. Turning them off also means that |
---|
184 | no header information will be stored if the machine is linear. |
---|
185 | Finally, it also assumes that no instance has a weight equal to 0.*/ |
---|
186 | protected boolean m_checksTurnedOff; |
---|
187 | |
---|
188 | /** The filter used to make attributes numeric. */ |
---|
189 | protected NominalToBinary m_NominalToBinary; |
---|
190 | |
---|
191 | /** The filter used to get rid of missing values. */ |
---|
192 | protected ReplaceMissingValues m_Missing; |
---|
193 | |
---|
194 | /** The dataset to initialize the filter with */ |
---|
195 | protected File m_InitFile = new File(System.getProperty("user.dir")); |
---|
196 | |
---|
197 | /** the class index for the file to initialized with |
---|
198 | * @see #m_InitFile */ |
---|
199 | protected SingleIndex m_InitFileClassIndex = new SingleIndex("last"); |
---|
200 | |
---|
201 | /** whether the filter was initialized */ |
---|
202 | protected boolean m_Initialized = false; |
---|
203 | |
---|
204 | /** optimizes the kernel with this formula |
---|
205 | * (A = # of attributes, N = # of instances)*/ |
---|
206 | protected String m_KernelFactorExpression = "1"; |
---|
207 | |
---|
208 | /** the calculated kernel factor |
---|
209 | * @see #m_KernelFactorExpression */ |
---|
210 | protected double m_KernelFactor = 1.0; |
---|
211 | |
---|
212 | /** for centering/standardizing the data */ |
---|
213 | protected Filter m_Filter = new Center(); |
---|
214 | |
---|
215 | /** for centering/standardizing the data (the actual filter to use) */ |
---|
216 | protected Filter m_ActualFilter = null; |
---|
217 | |
---|
218 | /** |
---|
219 | * Returns a string describing this filter. |
---|
220 | * |
---|
221 | * @return a description of the filter suitable for |
---|
222 | * displaying in the explorer/experimenter gui |
---|
223 | */ |
---|
224 | public String globalInfo() { |
---|
225 | return |
---|
226 | "Converts the given set of predictor variables into a kernel matrix. " |
---|
227 | + "The class value remains unchangedm, as long as the preprocessing " |
---|
228 | + "filter doesn't change it.\n" |
---|
229 | + "By default, the data is preprocessed with the Center filter, but the " |
---|
230 | + "user can choose any filter (NB: one must be careful that the filter " |
---|
231 | + "does not alter the class attribute unintentionally). With " |
---|
232 | + "weka.filters.AllFilter the preprocessing gets disabled.\n\n" |
---|
233 | + "For more information regarding preprocessing the data, see:\n\n" |
---|
234 | + getTechnicalInformation().toString(); |
---|
235 | } |
---|
236 | |
---|
237 | /** |
---|
238 | * Returns an instance of a TechnicalInformation object, containing |
---|
239 | * detailed information about the technical background of this class, |
---|
240 | * e.g., paper reference or book this class is based on. |
---|
241 | * |
---|
242 | * @return the technical information about this class |
---|
243 | */ |
---|
244 | public TechnicalInformation getTechnicalInformation() { |
---|
245 | TechnicalInformation result; |
---|
246 | |
---|
247 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
248 | result.setValue(Field.AUTHOR, "K.P. Bennett and M.J. Embrechts"); |
---|
249 | result.setValue(Field.TITLE, "An Optimization Perspective on Kernel Partial Least Squares Regression"); |
---|
250 | result.setValue(Field.YEAR, "2003"); |
---|
251 | result.setValue(Field.EDITOR, "J. Suykens et al."); |
---|
252 | result.setValue(Field.BOOKTITLE, "Advances in Learning Theory: Methods, Models and Applications"); |
---|
253 | result.setValue(Field.PAGES, "227-249"); |
---|
254 | result.setValue(Field.PUBLISHER, "IOS Press, Amsterdam, The Netherlands"); |
---|
255 | result.setValue(Field.SERIES, "NATO Science Series, Series III: Computer and System Sciences"); |
---|
256 | result.setValue(Field.VOLUME, "190"); |
---|
257 | |
---|
258 | return result; |
---|
259 | } |
---|
260 | |
---|
261 | /** |
---|
262 | * Returns an enumeration describing the available options. |
---|
263 | * |
---|
264 | * @return an enumeration of all the available options. |
---|
265 | */ |
---|
266 | public Enumeration listOptions() { |
---|
267 | Vector result; |
---|
268 | Enumeration enm; |
---|
269 | |
---|
270 | result = new Vector(); |
---|
271 | |
---|
272 | enm = super.listOptions(); |
---|
273 | while (enm.hasMoreElements()) |
---|
274 | result.addElement(enm.nextElement()); |
---|
275 | |
---|
276 | result.addElement(new Option( |
---|
277 | "\tTurns off all checks - use with caution!\n" |
---|
278 | + "\tTurning them off assumes that data is purely numeric, doesn't\n" |
---|
279 | + "\tcontain any missing values, and has a nominal class. Turning them\n" |
---|
280 | + "\toff also means that no header information will be stored if the\n" |
---|
281 | + "\tmachine is linear. Finally, it also assumes that no instance has\n" |
---|
282 | + "\ta weight equal to 0.\n" |
---|
283 | + "\t(default: checks on)", |
---|
284 | "no-checks", 0, "-no-checks")); |
---|
285 | |
---|
286 | result.addElement(new Option( |
---|
287 | "\tThe file to initialize the filter with (optional).", |
---|
288 | "F", 1, "-F <filename>")); |
---|
289 | |
---|
290 | result.addElement(new Option( |
---|
291 | "\tThe class index for the file to initialize with,\n" |
---|
292 | + "\tFirst and last are valid (optional, default: last).", |
---|
293 | "C", 1, "-C <num>")); |
---|
294 | |
---|
295 | result.addElement(new Option( |
---|
296 | "\tThe Kernel to use.\n" |
---|
297 | + "\t(default: weka.classifiers.functions.supportVector.PolyKernel)", |
---|
298 | "K", 1, "-K <classname and parameters>")); |
---|
299 | |
---|
300 | result.addElement(new Option( |
---|
301 | "\tDefines a factor for the kernel.\n" |
---|
302 | + "\t\t- RBFKernel: a factor for gamma\n" |
---|
303 | + "\t\t\tStandardize: 1/(2*N)\n" |
---|
304 | + "\t\t\tNormalize..: 6/N\n" |
---|
305 | + "\tAvailable parameters are:\n" |
---|
306 | + "\t\tN for # of instances, A for # of attributes\n" |
---|
307 | + "\t(default: 1)", |
---|
308 | "kernel-factor", 0, "-kernel-factor")); |
---|
309 | |
---|
310 | result.addElement(new Option( |
---|
311 | "\tThe Filter used for preprocessing (use weka.filters.AllFilter\n" |
---|
312 | + "\tto disable preprocessing).\n" |
---|
313 | + "\t(default: " + Center.class.getName() + ")", |
---|
314 | "P", 1, "-P <classname and parameters>")); |
---|
315 | |
---|
316 | // kernel options |
---|
317 | result.addElement(new Option( |
---|
318 | "", |
---|
319 | "", 0, "\nOptions specific to kernel " |
---|
320 | + getKernel().getClass().getName() + ":")); |
---|
321 | |
---|
322 | enm = ((OptionHandler) getKernel()).listOptions(); |
---|
323 | while (enm.hasMoreElements()) |
---|
324 | result.addElement(enm.nextElement()); |
---|
325 | |
---|
326 | // filter options |
---|
327 | if (getPreprocessing() instanceof OptionHandler) { |
---|
328 | result.addElement(new Option( |
---|
329 | "", |
---|
330 | "", 0, "\nOptions specific to preprocessing filter " |
---|
331 | + getPreprocessing().getClass().getName() + ":")); |
---|
332 | |
---|
333 | enm = ((OptionHandler) getPreprocessing()).listOptions(); |
---|
334 | while (enm.hasMoreElements()) |
---|
335 | result.addElement(enm.nextElement()); |
---|
336 | } |
---|
337 | |
---|
338 | return result.elements(); |
---|
339 | } |
---|
340 | |
---|
341 | /** |
---|
342 | * Gets the current settings of the filter. |
---|
343 | * |
---|
344 | * @return an array of strings suitable for passing to setOptions |
---|
345 | */ |
---|
346 | public String[] getOptions() { |
---|
347 | int i; |
---|
348 | Vector result; |
---|
349 | String[] options; |
---|
350 | String tmpStr; |
---|
351 | |
---|
352 | result = new Vector(); |
---|
353 | options = super.getOptions(); |
---|
354 | for (i = 0; i < options.length; i++) |
---|
355 | result.add(options[i]); |
---|
356 | |
---|
357 | if (getChecksTurnedOff()) |
---|
358 | result.add("-no-checks"); |
---|
359 | |
---|
360 | if ((getInitFile() != null) && getInitFile().isFile()) { |
---|
361 | result.add("-F"); |
---|
362 | result.add("" + getInitFile().getAbsolutePath()); |
---|
363 | |
---|
364 | result.add("-C"); |
---|
365 | result.add("" + getInitFileClassIndex()); |
---|
366 | } |
---|
367 | |
---|
368 | result.add("-K"); |
---|
369 | result.add("" + getKernel().getClass().getName() + " " + Utils.joinOptions(getKernel().getOptions())); |
---|
370 | |
---|
371 | result.add("-kernel-factor"); |
---|
372 | result.add("" + getKernelFactorExpression()); |
---|
373 | |
---|
374 | result.add("-P"); |
---|
375 | tmpStr = getPreprocessing().getClass().getName(); |
---|
376 | if (getPreprocessing() instanceof OptionHandler) |
---|
377 | tmpStr += " " + Utils.joinOptions(((OptionHandler) getPreprocessing()).getOptions()); |
---|
378 | result.add("" + tmpStr); |
---|
379 | |
---|
380 | return (String[]) result.toArray(new String[result.size()]); |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * Parses a given list of options. <p/> |
---|
385 | * |
---|
386 | <!-- options-start --> |
---|
387 | * Valid options are: <p/> |
---|
388 | * |
---|
389 | * <pre> -D |
---|
390 | * Turns on output of debugging information.</pre> |
---|
391 | * |
---|
392 | * <pre> -no-checks |
---|
393 | * Turns off all checks - use with caution! |
---|
394 | * Turning them off assumes that data is purely numeric, doesn't |
---|
395 | * contain any missing values, and has a nominal class. Turning them |
---|
396 | * off also means that no header information will be stored if the |
---|
397 | * machine is linear. Finally, it also assumes that no instance has |
---|
398 | * a weight equal to 0. |
---|
399 | * (default: checks on)</pre> |
---|
400 | * |
---|
401 | * <pre> -F <filename> |
---|
402 | * The file to initialize the filter with (optional).</pre> |
---|
403 | * |
---|
404 | * <pre> -C <num> |
---|
405 | * The class index for the file to initialize with, |
---|
406 | * First and last are valid (optional, default: last).</pre> |
---|
407 | * |
---|
408 | * <pre> -K <classname and parameters> |
---|
409 | * The Kernel to use. |
---|
410 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
411 | * |
---|
412 | * <pre> -kernel-factor |
---|
413 | * Defines a factor for the kernel. |
---|
414 | * - RBFKernel: a factor for gamma |
---|
415 | * Standardize: 1/(2*N) |
---|
416 | * Normalize..: 6/N |
---|
417 | * Available parameters are: |
---|
418 | * N for # of instances, A for # of attributes |
---|
419 | * (default: 1)</pre> |
---|
420 | * |
---|
421 | * <pre> -P <classname and parameters> |
---|
422 | * The Filter used for preprocessing (use weka.filters.AllFilter |
---|
423 | * to disable preprocessing). |
---|
424 | * (default: weka.filters.unsupervised.attribute.Center)</pre> |
---|
425 | * |
---|
426 | * <pre> |
---|
427 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
428 | * </pre> |
---|
429 | * |
---|
430 | * <pre> -D |
---|
431 | * Enables debugging output (if available) to be printed. |
---|
432 | * (default: off)</pre> |
---|
433 | * |
---|
434 | * <pre> -no-checks |
---|
435 | * Turns off all checks - use with caution! |
---|
436 | * (default: checks on)</pre> |
---|
437 | * |
---|
438 | * <pre> -C <num> |
---|
439 | * The size of the cache (a prime number), 0 for full cache and |
---|
440 | * -1 to turn it off. |
---|
441 | * (default: 250007)</pre> |
---|
442 | * |
---|
443 | * <pre> -E <num> |
---|
444 | * The Exponent to use. |
---|
445 | * (default: 1.0)</pre> |
---|
446 | * |
---|
447 | * <pre> -L |
---|
448 | * Use lower-order terms. |
---|
449 | * (default: no)</pre> |
---|
450 | * |
---|
451 | * <pre> |
---|
452 | * Options specific to preprocessing filter weka.filters.unsupervised.attribute.Center: |
---|
453 | * </pre> |
---|
454 | * |
---|
455 | * <pre> -unset-class-temporarily |
---|
456 | * Unsets the class index temporarily before the filter is |
---|
457 | * applied to the data. |
---|
458 | * (default: no)</pre> |
---|
459 | * |
---|
460 | <!-- options-end --> |
---|
461 | * |
---|
462 | * @param options the list of options as an array of strings |
---|
463 | * @throws Exception if an option is not supported |
---|
464 | */ |
---|
465 | public void setOptions(String[] options) throws Exception { |
---|
466 | String tmpStr; |
---|
467 | String[] tmpOptions; |
---|
468 | |
---|
469 | setChecksTurnedOff(Utils.getFlag("no-checks", options)); |
---|
470 | |
---|
471 | tmpStr = Utils.getOption('F', options); |
---|
472 | if (tmpStr.length() != 0) |
---|
473 | setInitFile(new File(tmpStr)); |
---|
474 | else |
---|
475 | setInitFile(null); |
---|
476 | |
---|
477 | tmpStr = Utils.getOption('C', options); |
---|
478 | if (tmpStr.length() != 0) |
---|
479 | setInitFileClassIndex(tmpStr); |
---|
480 | else |
---|
481 | setInitFileClassIndex("last"); |
---|
482 | |
---|
483 | tmpStr = Utils.getOption('K', options); |
---|
484 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
485 | if (tmpOptions.length != 0) { |
---|
486 | tmpStr = tmpOptions[0]; |
---|
487 | tmpOptions[0] = ""; |
---|
488 | setKernel(Kernel.forName(tmpStr, tmpOptions)); |
---|
489 | } |
---|
490 | |
---|
491 | tmpStr = Utils.getOption("kernel-factor", options); |
---|
492 | if (tmpStr.length() != 0) |
---|
493 | setKernelFactorExpression(tmpStr); |
---|
494 | else |
---|
495 | setKernelFactorExpression("1"); |
---|
496 | |
---|
497 | tmpStr = Utils.getOption("P", options); |
---|
498 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
499 | if (tmpOptions.length != 0) { |
---|
500 | tmpStr = tmpOptions[0]; |
---|
501 | tmpOptions[0] = ""; |
---|
502 | setPreprocessing((Filter) Utils.forName(Filter.class, tmpStr, tmpOptions)); |
---|
503 | } |
---|
504 | else { |
---|
505 | setPreprocessing(new Center()); |
---|
506 | } |
---|
507 | |
---|
508 | super.setOptions(options); |
---|
509 | } |
---|
510 | |
---|
511 | /** |
---|
512 | * Returns the tip text for this property |
---|
513 | * |
---|
514 | * @return tip text for this property suitable for |
---|
515 | * displaying in the explorer/experimenter gui |
---|
516 | */ |
---|
517 | public String initFileTipText() { |
---|
518 | return "The dataset to initialize the filter with."; |
---|
519 | } |
---|
520 | |
---|
521 | /** |
---|
522 | * Gets the file to initialize the filter with, can be null. |
---|
523 | * |
---|
524 | * @return the file |
---|
525 | */ |
---|
526 | public File getInitFile() { |
---|
527 | return m_InitFile; |
---|
528 | } |
---|
529 | |
---|
530 | /** |
---|
531 | * Sets the file to initialize the filter with, can be null. |
---|
532 | * |
---|
533 | * @param value the file |
---|
534 | */ |
---|
535 | public void setInitFile(File value) { |
---|
536 | m_InitFile = value; |
---|
537 | } |
---|
538 | |
---|
539 | /** |
---|
540 | * Returns the tip text for this property |
---|
541 | * |
---|
542 | * @return tip text for this property suitable for |
---|
543 | * displaying in the explorer/experimenter gui |
---|
544 | */ |
---|
545 | public String initFileClassIndexTipText() { |
---|
546 | return "The class index of the dataset to initialize the filter with (first and last are valid)."; |
---|
547 | } |
---|
548 | |
---|
549 | /** |
---|
550 | * Gets the class index of the file to initialize the filter with. |
---|
551 | * |
---|
552 | * @return the class index |
---|
553 | */ |
---|
554 | public String getInitFileClassIndex() { |
---|
555 | return m_InitFileClassIndex.getSingleIndex(); |
---|
556 | } |
---|
557 | |
---|
558 | /** |
---|
559 | * Sets class index of the file to initialize the filter with. |
---|
560 | * |
---|
561 | * @param value the class index |
---|
562 | */ |
---|
563 | public void setInitFileClassIndex(String value) { |
---|
564 | m_InitFileClassIndex.setSingleIndex(value); |
---|
565 | } |
---|
566 | |
---|
567 | /** |
---|
568 | * Returns the tip text for this property |
---|
569 | * |
---|
570 | * @return tip text for this property suitable for |
---|
571 | * displaying in the explorer/experimenter gui |
---|
572 | */ |
---|
573 | public String kernelTipText() { |
---|
574 | return "The kernel to use."; |
---|
575 | } |
---|
576 | |
---|
577 | /** |
---|
578 | * Gets the kernel to use. |
---|
579 | * |
---|
580 | * @return the kernel |
---|
581 | */ |
---|
582 | public Kernel getKernel() { |
---|
583 | return m_Kernel; |
---|
584 | } |
---|
585 | |
---|
586 | /** |
---|
587 | * Sets the kernel to use. |
---|
588 | * |
---|
589 | * @param value the kernel |
---|
590 | */ |
---|
591 | public void setKernel(Kernel value) { |
---|
592 | m_Kernel = value; |
---|
593 | } |
---|
594 | |
---|
595 | /** |
---|
596 | * Disables or enables the checks (which could be time-consuming). Use with |
---|
597 | * caution! |
---|
598 | * |
---|
599 | * @param value if true turns off all checks |
---|
600 | */ |
---|
601 | public void setChecksTurnedOff(boolean value) { |
---|
602 | m_checksTurnedOff = value; |
---|
603 | } |
---|
604 | |
---|
605 | /** |
---|
606 | * Returns whether the checks are turned off or not. |
---|
607 | * |
---|
608 | * @return true if the checks are turned off |
---|
609 | */ |
---|
610 | public boolean getChecksTurnedOff() { |
---|
611 | return m_checksTurnedOff; |
---|
612 | } |
---|
613 | |
---|
614 | /** |
---|
615 | * Returns the tip text for this property |
---|
616 | * |
---|
617 | * @return tip text for this property suitable for |
---|
618 | * displaying in the explorer/experimenter gui |
---|
619 | */ |
---|
620 | public String checksTurnedOffTipText() { |
---|
621 | return "Turns time-consuming checks off - use with caution."; |
---|
622 | } |
---|
623 | |
---|
624 | /** |
---|
625 | * Returns the tip text for this property |
---|
626 | * |
---|
627 | * @return tip text for this property suitable for |
---|
628 | * displaying in the explorer/experimenter gui |
---|
629 | */ |
---|
630 | public String kernelFactorExpressionTipText() { |
---|
631 | return "The factor for the kernel, with A = # of attributes and N = # of instances."; |
---|
632 | } |
---|
633 | |
---|
634 | /** |
---|
635 | * Gets the expression for the kernel. |
---|
636 | * |
---|
637 | * @return the expression |
---|
638 | */ |
---|
639 | public String getKernelFactorExpression() { |
---|
640 | return m_KernelFactorExpression; |
---|
641 | } |
---|
642 | |
---|
643 | /** |
---|
644 | * Sets the expression for the kernel. |
---|
645 | * |
---|
646 | * @param value the file |
---|
647 | */ |
---|
648 | public void setKernelFactorExpression(String value) { |
---|
649 | m_KernelFactorExpression = value; |
---|
650 | } |
---|
651 | |
---|
652 | /** |
---|
653 | * Returns the tip text for this property |
---|
654 | * |
---|
655 | * @return tip text for this property suitable for |
---|
656 | * displaying in the explorer/experimenter gui |
---|
657 | */ |
---|
658 | public String preprocessingTipText() { |
---|
659 | return "Sets the filter to use for preprocessing (use the AllFilter for no preprocessing)."; |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Sets the filter to use for preprocessing (use the AllFilter for no |
---|
664 | * preprocessing) |
---|
665 | * |
---|
666 | * @param value the preprocessing filter |
---|
667 | */ |
---|
668 | public void setPreprocessing(Filter value) { |
---|
669 | m_Filter = value; |
---|
670 | m_ActualFilter = null; |
---|
671 | } |
---|
672 | |
---|
673 | /** |
---|
674 | * Gets the filter used for preprocessing |
---|
675 | * |
---|
676 | * @return the current preprocessing filter. |
---|
677 | */ |
---|
678 | public Filter getPreprocessing() { |
---|
679 | return m_Filter; |
---|
680 | } |
---|
681 | |
---|
682 | /** |
---|
683 | * resets the filter, i.e., m_NewBatch to true and m_FirstBatchDone to |
---|
684 | * false. |
---|
685 | */ |
---|
686 | protected void reset() { |
---|
687 | super.reset(); |
---|
688 | |
---|
689 | m_Initialized = false; |
---|
690 | } |
---|
691 | |
---|
692 | /** |
---|
693 | * Determines the output format based on the input format and returns |
---|
694 | * this. In case the output format cannot be returned immediately, i.e., |
---|
695 | * immediateOutputFormat() returns false, then this method will be called |
---|
696 | * from batchFinished(). |
---|
697 | * |
---|
698 | * @param inputFormat the input format to base the output format on |
---|
699 | * @return the output format |
---|
700 | * @throws Exception in case the determination goes wrong |
---|
701 | * @see #hasImmediateOutputFormat() |
---|
702 | * @see #batchFinished() |
---|
703 | */ |
---|
704 | protected Instances determineOutputFormat(Instances inputFormat) throws Exception { |
---|
705 | return new Instances(inputFormat); |
---|
706 | } |
---|
707 | |
---|
708 | /** |
---|
709 | * initializes the filter with the given dataset, i.e., the kernel gets |
---|
710 | * built. Needs to be called before the first call of Filter.useFilter or |
---|
711 | * batchFinished(), if not the -F option (or setInitFile(File) is used). |
---|
712 | * |
---|
713 | * @param instances the data to initialize with |
---|
714 | * @throws Exception if building of kernel fails |
---|
715 | */ |
---|
716 | public void initFilter(Instances instances) throws Exception { |
---|
717 | HashMap symbols; |
---|
718 | |
---|
719 | // determine kernel factor |
---|
720 | symbols = new HashMap(); |
---|
721 | symbols.put("A", new Double(instances.numAttributes())); |
---|
722 | symbols.put("N", new Double(instances.numInstances())); |
---|
723 | m_KernelFactor = MathematicalExpression.evaluate(getKernelFactorExpression(), symbols); |
---|
724 | |
---|
725 | // init filters |
---|
726 | if (!m_checksTurnedOff) { |
---|
727 | m_Missing = new ReplaceMissingValues(); |
---|
728 | m_Missing.setInputFormat(instances); |
---|
729 | instances = Filter.useFilter(instances, m_Missing); |
---|
730 | } |
---|
731 | else { |
---|
732 | m_Missing = null; |
---|
733 | } |
---|
734 | |
---|
735 | if (getKernel().getCapabilities().handles(Capability.NUMERIC_ATTRIBUTES)) { |
---|
736 | boolean onlyNumeric = true; |
---|
737 | if (!m_checksTurnedOff) { |
---|
738 | for (int i = 0; i < instances.numAttributes(); i++) { |
---|
739 | if (i != instances.classIndex()) { |
---|
740 | if (!instances.attribute(i).isNumeric()) { |
---|
741 | onlyNumeric = false; |
---|
742 | break; |
---|
743 | } |
---|
744 | } |
---|
745 | } |
---|
746 | } |
---|
747 | |
---|
748 | if (!onlyNumeric) { |
---|
749 | m_NominalToBinary = new NominalToBinary(); |
---|
750 | m_NominalToBinary.setInputFormat(instances); |
---|
751 | instances = Filter.useFilter(instances, m_NominalToBinary); |
---|
752 | } |
---|
753 | else { |
---|
754 | m_NominalToBinary = null; |
---|
755 | } |
---|
756 | } |
---|
757 | else { |
---|
758 | m_NominalToBinary = null; |
---|
759 | } |
---|
760 | |
---|
761 | if ((m_Filter != null) && (m_Filter.getClass() != AllFilter.class)) { |
---|
762 | m_ActualFilter = Filter.makeCopy(m_Filter); |
---|
763 | m_ActualFilter.setInputFormat(instances); |
---|
764 | instances = Filter.useFilter(instances, m_ActualFilter); |
---|
765 | } |
---|
766 | else { |
---|
767 | m_ActualFilter = null; |
---|
768 | } |
---|
769 | |
---|
770 | m_NumTrainInstances = instances.numInstances(); |
---|
771 | |
---|
772 | // set factor for kernel |
---|
773 | m_ActualKernel = Kernel.makeCopy(m_Kernel); |
---|
774 | if (m_ActualKernel instanceof RBFKernel) |
---|
775 | ((RBFKernel) m_ActualKernel).setGamma( |
---|
776 | m_KernelFactor * ((RBFKernel) m_ActualKernel).getGamma()); |
---|
777 | // build kernel |
---|
778 | m_ActualKernel.buildKernel(instances); |
---|
779 | |
---|
780 | m_Initialized = true; |
---|
781 | } |
---|
782 | |
---|
783 | /** |
---|
784 | * Returns the Capabilities of this filter. |
---|
785 | * |
---|
786 | * @return the capabilities of this object |
---|
787 | * @see Capabilities |
---|
788 | */ |
---|
789 | public Capabilities getCapabilities() { |
---|
790 | Capabilities result; |
---|
791 | |
---|
792 | if (getKernel() == null) { |
---|
793 | result = super.getCapabilities(); |
---|
794 | result.disableAll(); |
---|
795 | } else { |
---|
796 | result = getKernel().getCapabilities(); |
---|
797 | } |
---|
798 | |
---|
799 | result.setMinimumNumberInstances(0); |
---|
800 | |
---|
801 | return result; |
---|
802 | } |
---|
803 | |
---|
804 | /** |
---|
805 | * Processes the given data (may change the provided dataset) and returns |
---|
806 | * the modified version. This method is called in batchFinished(). |
---|
807 | * |
---|
808 | * @param instances the data to process |
---|
809 | * @return the modified data |
---|
810 | * @throws Exception in case the processing goes wrong |
---|
811 | * @see #batchFinished() |
---|
812 | */ |
---|
813 | protected Instances process(Instances instances) throws Exception { |
---|
814 | // initializing necessary? |
---|
815 | if (!m_Initialized) { |
---|
816 | // do we have a file to initialize with? |
---|
817 | if ((getInitFile() != null) && getInitFile().isFile()) { |
---|
818 | DataSource source = new DataSource(getInitFile().getAbsolutePath()); |
---|
819 | Instances data = source.getDataSet(); |
---|
820 | m_InitFileClassIndex.setUpper(data.numAttributes() - 1); |
---|
821 | data.setClassIndex(m_InitFileClassIndex.getIndex()); |
---|
822 | initFilter(data); |
---|
823 | } |
---|
824 | else { |
---|
825 | initFilter(instances); |
---|
826 | } |
---|
827 | } |
---|
828 | |
---|
829 | // apply filters |
---|
830 | if (m_Missing != null) |
---|
831 | instances = Filter.useFilter(instances, m_Missing); |
---|
832 | if (m_NominalToBinary != null) |
---|
833 | instances = Filter.useFilter(instances, m_NominalToBinary); |
---|
834 | if (m_ActualFilter != null) |
---|
835 | instances = Filter.useFilter(instances, m_ActualFilter); |
---|
836 | |
---|
837 | // backup class attribute and remove it |
---|
838 | double[] classes = instances.attributeToDoubleArray(instances.classIndex()); |
---|
839 | int classIndex = instances.classIndex(); |
---|
840 | instances.setClassIndex(-1); |
---|
841 | instances.deleteAttributeAt(classIndex); |
---|
842 | |
---|
843 | // generate new header |
---|
844 | FastVector atts = new FastVector(); |
---|
845 | for (int j = 0; j < m_NumTrainInstances; j++) |
---|
846 | atts.addElement(new Attribute("Kernel " + j)); |
---|
847 | atts.addElement(new Attribute("Class")); |
---|
848 | Instances result = new Instances("Kernel", atts, 0); |
---|
849 | result.setClassIndex(result.numAttributes() - 1); |
---|
850 | |
---|
851 | // compute matrix |
---|
852 | for (int i = 0; i < instances.numInstances(); i++) { |
---|
853 | double[] k = new double[m_NumTrainInstances + 1]; |
---|
854 | |
---|
855 | for (int j = 0; j < m_NumTrainInstances; j++) { |
---|
856 | double v = m_ActualKernel.eval(-1, j, instances.instance(i)); |
---|
857 | k[j] = v; |
---|
858 | } |
---|
859 | k[k.length - 1] = classes[i]; |
---|
860 | |
---|
861 | // create new instance |
---|
862 | Instance in = new DenseInstance(1.0, k); |
---|
863 | result.add(in); |
---|
864 | } |
---|
865 | |
---|
866 | if (!isFirstBatchDone()) |
---|
867 | setOutputFormat(result); |
---|
868 | |
---|
869 | return result; |
---|
870 | } |
---|
871 | |
---|
872 | /** |
---|
873 | * Returns the revision string. |
---|
874 | * |
---|
875 | * @return the revision |
---|
876 | */ |
---|
877 | public String getRevision() { |
---|
878 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
879 | } |
---|
880 | |
---|
881 | /** |
---|
882 | * runs the filter with the given arguments |
---|
883 | * |
---|
884 | * @param args the commandline arguments |
---|
885 | */ |
---|
886 | public static void main(String[] args) { |
---|
887 | runFilter(new KernelFilter(), args); |
---|
888 | } |
---|
889 | } |
---|