| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * InterquartileRange.java |
|---|
| 19 | * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | */ |
|---|
| 21 | |
|---|
| 22 | package weka.filters.unsupervised.attribute; |
|---|
| 23 | |
|---|
| 24 | import weka.core.Attribute; |
|---|
| 25 | import weka.core.Capabilities; |
|---|
| 26 | import weka.core.FastVector; |
|---|
| 27 | import weka.core.Instance; |
|---|
| 28 | import weka.core.DenseInstance; |
|---|
| 29 | import weka.core.Instances; |
|---|
| 30 | import weka.core.Option; |
|---|
| 31 | import weka.core.Range; |
|---|
| 32 | import weka.core.RevisionUtils; |
|---|
| 33 | import weka.core.Utils; |
|---|
| 34 | import weka.core.Capabilities.Capability; |
|---|
| 35 | import weka.filters.SimpleBatchFilter; |
|---|
| 36 | |
|---|
| 37 | import java.util.Enumeration; |
|---|
| 38 | import java.util.Vector; |
|---|
| 39 | |
|---|
| 40 | /** |
|---|
| 41 | <!-- globalinfo-start --> |
|---|
| 42 | * A filter for detecting outliers and extreme values based on interquartile ranges. The filter skips the class attribute.<br/> |
|---|
| 43 | * <br/> |
|---|
| 44 | * Outliers:<br/> |
|---|
| 45 | * Q3 + OF*IQR < x <= Q3 + EVF*IQR<br/> |
|---|
| 46 | * or<br/> |
|---|
| 47 | * Q1 - EVF*IQR <= x < Q1 - OF*IQR<br/> |
|---|
| 48 | * <br/> |
|---|
| 49 | * Extreme values:<br/> |
|---|
| 50 | * x > Q3 + EVF*IQR<br/> |
|---|
| 51 | * or<br/> |
|---|
| 52 | * x < Q1 - EVF*IQR<br/> |
|---|
| 53 | * <br/> |
|---|
| 54 | * Key:<br/> |
|---|
| 55 | * Q1 = 25% quartile<br/> |
|---|
| 56 | * Q3 = 75% quartile<br/> |
|---|
| 57 | * IQR = Interquartile Range, difference between Q1 and Q3<br/> |
|---|
| 58 | * OF = Outlier Factor<br/> |
|---|
| 59 | * EVF = Extreme Value Factor |
|---|
| 60 | * <p/> |
|---|
| 61 | <!-- globalinfo-end --> |
|---|
| 62 | * |
|---|
| 63 | <!-- options-start --> |
|---|
| 64 | * Valid options are: <p/> |
|---|
| 65 | * |
|---|
| 66 | * <pre> -D |
|---|
| 67 | * Turns on output of debugging information.</pre> |
|---|
| 68 | * |
|---|
| 69 | * <pre> -R <col1,col2-col4,...> |
|---|
| 70 | * Specifies list of columns to base outlier/extreme value detection |
|---|
| 71 | * on. If an instance is considered in at least one of those |
|---|
| 72 | * attributes an outlier/extreme value, it is tagged accordingly. |
|---|
| 73 | * 'first' and 'last' are valid indexes. |
|---|
| 74 | * (default none)</pre> |
|---|
| 75 | * |
|---|
| 76 | * <pre> -O <num> |
|---|
| 77 | * The factor for outlier detection. |
|---|
| 78 | * (default: 3)</pre> |
|---|
| 79 | * |
|---|
| 80 | * <pre> -E <num> |
|---|
| 81 | * The factor for extreme values detection. |
|---|
| 82 | * (default: 2*Outlier Factor)</pre> |
|---|
| 83 | * |
|---|
| 84 | * <pre> -E-as-O |
|---|
| 85 | * Tags extreme values also as outliers. |
|---|
| 86 | * (default: off)</pre> |
|---|
| 87 | * |
|---|
| 88 | * <pre> -P |
|---|
| 89 | * Generates Outlier/ExtremeValue pair for each numeric attribute in |
|---|
| 90 | * the range, not just a single indicator pair for all the attributes. |
|---|
| 91 | * (default: off)</pre> |
|---|
| 92 | * |
|---|
| 93 | * <pre> -M |
|---|
| 94 | * Generates an additional attribute 'Offset' per Outlier/ExtremeValue |
|---|
| 95 | * pair that contains the multiplier that the value is off the median. |
|---|
| 96 | * value = median + 'multiplier' * IQR |
|---|
| 97 | * Note: implicitely sets '-P'. (default: off)</pre> |
|---|
| 98 | * |
|---|
| 99 | <!-- options-end --> |
|---|
| 100 | * |
|---|
| 101 | * Thanks to Dale for a few brainstorming sessions. |
|---|
| 102 | * |
|---|
| 103 | * @author Dale Fletcher (dale at cs dot waikato dot ac dot nz) |
|---|
| 104 | * @author fracpete (fracpete at waikato dot ac dot nz) |
|---|
| 105 | * @version $Revision: 5987 $ |
|---|
| 106 | */ |
|---|
| 107 | public class InterquartileRange |
|---|
| 108 | extends SimpleBatchFilter { |
|---|
| 109 | |
|---|
| 110 | /** for serialization */ |
|---|
| 111 | private static final long serialVersionUID = -227879653639723030L; |
|---|
| 112 | |
|---|
| 113 | /** indicator for non-numeric attributes */ |
|---|
| 114 | public final static int NON_NUMERIC = -1; |
|---|
| 115 | |
|---|
| 116 | /** the attribute range to work on */ |
|---|
| 117 | protected Range m_Attributes = new Range("first-last"); |
|---|
| 118 | |
|---|
| 119 | /** the generated indices (only for performance reasons) */ |
|---|
| 120 | protected int[] m_AttributeIndices = null; |
|---|
| 121 | |
|---|
| 122 | /** the factor for detecting outliers */ |
|---|
| 123 | protected double m_OutlierFactor = 3; |
|---|
| 124 | |
|---|
| 125 | /** the factor for detecting extreme values, by default 2*m_OutlierFactor */ |
|---|
| 126 | protected double m_ExtremeValuesFactor = 2*m_OutlierFactor; |
|---|
| 127 | |
|---|
| 128 | /** whether extreme values are also tagged as outliers */ |
|---|
| 129 | protected boolean m_ExtremeValuesAsOutliers = false; |
|---|
| 130 | |
|---|
| 131 | /** the upper extreme value threshold (= Q3 + EVF*IQR) */ |
|---|
| 132 | protected double[] m_UpperExtremeValue = null; |
|---|
| 133 | |
|---|
| 134 | /** the upper outlier threshold (= Q3 + OF*IQR) */ |
|---|
| 135 | protected double[] m_UpperOutlier = null; |
|---|
| 136 | |
|---|
| 137 | /** the lower outlier threshold (= Q1 - OF*IQR) */ |
|---|
| 138 | protected double[] m_LowerOutlier = null; |
|---|
| 139 | |
|---|
| 140 | /** the interquartile range */ |
|---|
| 141 | protected double[] m_IQR = null; |
|---|
| 142 | |
|---|
| 143 | /** the median */ |
|---|
| 144 | protected double[] m_Median = null; |
|---|
| 145 | |
|---|
| 146 | /** the lower extreme value threshold (= Q1 - EVF*IQR) */ |
|---|
| 147 | protected double[] m_LowerExtremeValue = null; |
|---|
| 148 | |
|---|
| 149 | /** whether to generate Outlier/ExtremeValue attributes for each attribute |
|---|
| 150 | * instead of a general one */ |
|---|
| 151 | protected boolean m_DetectionPerAttribute = false; |
|---|
| 152 | |
|---|
| 153 | /** the position of the outlier attribute */ |
|---|
| 154 | protected int[] m_OutlierAttributePosition = null; |
|---|
| 155 | |
|---|
| 156 | /** whether to add another attribute called "Offset", that lists the |
|---|
| 157 | * 'multiplier' by which the outlier/extreme value is away from the median, |
|---|
| 158 | * i.e., value = median + 'multiplier' * IQR <br/> |
|---|
| 159 | * automatically enables m_DetectionPerAttribute! |
|---|
| 160 | */ |
|---|
| 161 | protected boolean m_OutputOffsetMultiplier = false; |
|---|
| 162 | |
|---|
| 163 | /** |
|---|
| 164 | * Returns a string describing this filter |
|---|
| 165 | * |
|---|
| 166 | * @return a description of the filter suitable for |
|---|
| 167 | * displaying in the explorer/experimenter gui |
|---|
| 168 | */ |
|---|
| 169 | public String globalInfo() { |
|---|
| 170 | return |
|---|
| 171 | "A filter for detecting outliers and extreme values based on " |
|---|
| 172 | + "interquartile ranges. The filter skips the class attribute.\n\n" |
|---|
| 173 | + "Outliers:\n" |
|---|
| 174 | + " Q3 + OF*IQR < x <= Q3 + EVF*IQR\n" |
|---|
| 175 | + " or\n" |
|---|
| 176 | + " Q1 - EVF*IQR <= x < Q1 - OF*IQR\n" |
|---|
| 177 | + "\n" |
|---|
| 178 | + "Extreme values:\n" |
|---|
| 179 | + " x > Q3 + EVF*IQR\n" |
|---|
| 180 | + " or\n" |
|---|
| 181 | + " x < Q1 - EVF*IQR\n" |
|---|
| 182 | + "\n" |
|---|
| 183 | + "Key:\n" |
|---|
| 184 | + " Q1 = 25% quartile\n" |
|---|
| 185 | + " Q3 = 75% quartile\n" |
|---|
| 186 | + " IQR = Interquartile Range, difference between Q1 and Q3\n" |
|---|
| 187 | + " OF = Outlier Factor\n" |
|---|
| 188 | + " EVF = Extreme Value Factor"; |
|---|
| 189 | } |
|---|
| 190 | |
|---|
| 191 | /** |
|---|
| 192 | * Returns an enumeration describing the available options. |
|---|
| 193 | * |
|---|
| 194 | * @return an enumeration of all the available options. |
|---|
| 195 | */ |
|---|
| 196 | public Enumeration listOptions() { |
|---|
| 197 | Vector result = new Vector(); |
|---|
| 198 | Enumeration enm = super.listOptions(); |
|---|
| 199 | while (enm.hasMoreElements()) |
|---|
| 200 | result.add(enm.nextElement()); |
|---|
| 201 | |
|---|
| 202 | result.addElement(new Option( |
|---|
| 203 | "\tSpecifies list of columns to base outlier/extreme value detection\n" |
|---|
| 204 | + "\ton. If an instance is considered in at least one of those\n" |
|---|
| 205 | + "\tattributes an outlier/extreme value, it is tagged accordingly.\n" |
|---|
| 206 | + " 'first' and 'last' are valid indexes.\n" |
|---|
| 207 | + "\t(default none)", |
|---|
| 208 | "R", 1, "-R <col1,col2-col4,...>")); |
|---|
| 209 | |
|---|
| 210 | result.addElement(new Option( |
|---|
| 211 | "\tThe factor for outlier detection.\n" |
|---|
| 212 | + "\t(default: 3)", |
|---|
| 213 | "O", 1, "-O <num>")); |
|---|
| 214 | |
|---|
| 215 | result.addElement(new Option( |
|---|
| 216 | "\tThe factor for extreme values detection.\n" |
|---|
| 217 | + "\t(default: 2*Outlier Factor)", |
|---|
| 218 | "E", 1, "-E <num>")); |
|---|
| 219 | |
|---|
| 220 | result.addElement(new Option( |
|---|
| 221 | "\tTags extreme values also as outliers.\n" |
|---|
| 222 | + "\t(default: off)", |
|---|
| 223 | "E-as-O", 0, "-E-as-O")); |
|---|
| 224 | |
|---|
| 225 | result.addElement(new Option( |
|---|
| 226 | "\tGenerates Outlier/ExtremeValue pair for each numeric attribute in\n" |
|---|
| 227 | + "\tthe range, not just a single indicator pair for all the attributes.\n" |
|---|
| 228 | + "\t(default: off)", |
|---|
| 229 | "P", 0, "-P")); |
|---|
| 230 | |
|---|
| 231 | result.addElement(new Option( |
|---|
| 232 | "\tGenerates an additional attribute 'Offset' per Outlier/ExtremeValue\n" |
|---|
| 233 | + "\tpair that contains the multiplier that the value is off the median.\n" |
|---|
| 234 | + "\t value = median + 'multiplier' * IQR\n" |
|---|
| 235 | + "Note: implicitely sets '-P'." |
|---|
| 236 | + "\t(default: off)", |
|---|
| 237 | "M", 0, "-M")); |
|---|
| 238 | |
|---|
| 239 | return result.elements(); |
|---|
| 240 | } |
|---|
| 241 | |
|---|
| 242 | /** |
|---|
| 243 | * Parses a list of options for this object. <p/> |
|---|
| 244 | * |
|---|
| 245 | <!-- options-start --> |
|---|
| 246 | * Valid options are: <p/> |
|---|
| 247 | * |
|---|
| 248 | * <pre> -D |
|---|
| 249 | * Turns on output of debugging information.</pre> |
|---|
| 250 | * |
|---|
| 251 | * <pre> -R <col1,col2-col4,...> |
|---|
| 252 | * Specifies list of columns to base outlier/extreme value detection |
|---|
| 253 | * on. If an instance is considered in at least one of those |
|---|
| 254 | * attributes an outlier/extreme value, it is tagged accordingly. |
|---|
| 255 | * 'first' and 'last' are valid indexes. |
|---|
| 256 | * (default none)</pre> |
|---|
| 257 | * |
|---|
| 258 | * <pre> -O <num> |
|---|
| 259 | * The factor for outlier detection. |
|---|
| 260 | * (default: 3)</pre> |
|---|
| 261 | * |
|---|
| 262 | * <pre> -E <num> |
|---|
| 263 | * The factor for extreme values detection. |
|---|
| 264 | * (default: 2*Outlier Factor)</pre> |
|---|
| 265 | * |
|---|
| 266 | * <pre> -E-as-O |
|---|
| 267 | * Tags extreme values also as outliers. |
|---|
| 268 | * (default: off)</pre> |
|---|
| 269 | * |
|---|
| 270 | * <pre> -P |
|---|
| 271 | * Generates Outlier/ExtremeValue pair for each numeric attribute in |
|---|
| 272 | * the range, not just a single indicator pair for all the attributes. |
|---|
| 273 | * (default: off)</pre> |
|---|
| 274 | * |
|---|
| 275 | * <pre> -M |
|---|
| 276 | * Generates an additional attribute 'Offset' per Outlier/ExtremeValue |
|---|
| 277 | * pair that contains the multiplier that the value is off the median. |
|---|
| 278 | * value = median + 'multiplier' * IQR |
|---|
| 279 | * Note: implicitely sets '-P'. (default: off)</pre> |
|---|
| 280 | * |
|---|
| 281 | <!-- options-end --> |
|---|
| 282 | * |
|---|
| 283 | * @param options the list of options as an array of strings |
|---|
| 284 | * @throws Exception if an option is not supported |
|---|
| 285 | */ |
|---|
| 286 | public void setOptions(String[] options) throws Exception { |
|---|
| 287 | String tmpStr; |
|---|
| 288 | |
|---|
| 289 | super.setOptions(options); |
|---|
| 290 | |
|---|
| 291 | tmpStr = Utils.getOption("R", options); |
|---|
| 292 | if (tmpStr.length() != 0) |
|---|
| 293 | setAttributeIndices(tmpStr); |
|---|
| 294 | else |
|---|
| 295 | setAttributeIndices("first-last"); |
|---|
| 296 | |
|---|
| 297 | tmpStr = Utils.getOption("O", options); |
|---|
| 298 | if (tmpStr.length() != 0) |
|---|
| 299 | setOutlierFactor(Double.parseDouble(tmpStr)); |
|---|
| 300 | else |
|---|
| 301 | setOutlierFactor(3); |
|---|
| 302 | |
|---|
| 303 | tmpStr = Utils.getOption("E", options); |
|---|
| 304 | if (tmpStr.length() != 0) |
|---|
| 305 | setExtremeValuesFactor(Double.parseDouble(tmpStr)); |
|---|
| 306 | else |
|---|
| 307 | setExtremeValuesFactor(2*getOutlierFactor()); |
|---|
| 308 | |
|---|
| 309 | setExtremeValuesAsOutliers(Utils.getFlag("E-as-O", options)); |
|---|
| 310 | |
|---|
| 311 | setDetectionPerAttribute(Utils.getFlag("P", options)); |
|---|
| 312 | |
|---|
| 313 | setOutputOffsetMultiplier(Utils.getFlag("M", options)); |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | /** |
|---|
| 317 | * Gets the current settings of the filter. |
|---|
| 318 | * |
|---|
| 319 | * @return an array of strings suitable for passing to setOptions |
|---|
| 320 | */ |
|---|
| 321 | public String[] getOptions() { |
|---|
| 322 | Vector result; |
|---|
| 323 | String[] options; |
|---|
| 324 | int i; |
|---|
| 325 | |
|---|
| 326 | result = new Vector(); |
|---|
| 327 | |
|---|
| 328 | options = super.getOptions(); |
|---|
| 329 | for (i = 0; i < options.length; i++) |
|---|
| 330 | result.add(options[i]); |
|---|
| 331 | |
|---|
| 332 | result.add("-R"); |
|---|
| 333 | if (!getAttributeIndices().equals("")) |
|---|
| 334 | result.add(getAttributeIndices()); |
|---|
| 335 | else |
|---|
| 336 | result.add("first-last"); |
|---|
| 337 | |
|---|
| 338 | result.add("-O"); |
|---|
| 339 | result.add("" + getOutlierFactor()); |
|---|
| 340 | |
|---|
| 341 | result.add("-E"); |
|---|
| 342 | result.add("" + getExtremeValuesFactor()); |
|---|
| 343 | |
|---|
| 344 | if (getExtremeValuesAsOutliers()) |
|---|
| 345 | result.add("-E-as-O"); |
|---|
| 346 | |
|---|
| 347 | if (getDetectionPerAttribute()) |
|---|
| 348 | result.add("-P"); |
|---|
| 349 | |
|---|
| 350 | if (getOutputOffsetMultiplier()) |
|---|
| 351 | result.add("-M"); |
|---|
| 352 | |
|---|
| 353 | return (String[]) result.toArray(new String[result.size()]); |
|---|
| 354 | } |
|---|
| 355 | |
|---|
| 356 | /** |
|---|
| 357 | * Returns the tip text for this property |
|---|
| 358 | * |
|---|
| 359 | * @return tip text for this property suitable for |
|---|
| 360 | * displaying in the explorer/experimenter gui |
|---|
| 361 | */ |
|---|
| 362 | public String attributeIndicesTipText() { |
|---|
| 363 | return |
|---|
| 364 | "Specify range of attributes to act on; " |
|---|
| 365 | + " this is a comma separated list of attribute indices, with" |
|---|
| 366 | + " \"first\" and \"last\" valid values; specify an inclusive" |
|---|
| 367 | + " range with \"-\", eg: \"first-3,5,6-10,last\"."; |
|---|
| 368 | } |
|---|
| 369 | |
|---|
| 370 | /** |
|---|
| 371 | * Gets the current range selection |
|---|
| 372 | * |
|---|
| 373 | * @return a string containing a comma separated list of ranges |
|---|
| 374 | */ |
|---|
| 375 | public String getAttributeIndices() { |
|---|
| 376 | return m_Attributes.getRanges(); |
|---|
| 377 | } |
|---|
| 378 | |
|---|
| 379 | /** |
|---|
| 380 | * Sets which attributes are to be used for interquartile calculations and |
|---|
| 381 | * outlier/extreme value detection (only numeric attributes among the |
|---|
| 382 | * selection will be used). |
|---|
| 383 | * |
|---|
| 384 | * @param value a string representing the list of attributes. Since |
|---|
| 385 | * the string will typically come from a user, attributes |
|---|
| 386 | * are indexed from 1. <br> eg: first-3,5,6-last |
|---|
| 387 | * @throws IllegalArgumentException if an invalid range list is supplied |
|---|
| 388 | */ |
|---|
| 389 | public void setAttributeIndices(String value) { |
|---|
| 390 | m_Attributes.setRanges(value); |
|---|
| 391 | } |
|---|
| 392 | |
|---|
| 393 | /** |
|---|
| 394 | * Sets which attributes are to be used for interquartile calculations and |
|---|
| 395 | * outlier/extreme value detection (only numeric attributes among the |
|---|
| 396 | * selection will be used). |
|---|
| 397 | * |
|---|
| 398 | * @param value an array containing indexes of attributes to work on. |
|---|
| 399 | * Since the array will typically come from a program, |
|---|
| 400 | * attributes are indexed from 0. |
|---|
| 401 | * @throws IllegalArgumentException if an invalid set of ranges is supplied |
|---|
| 402 | */ |
|---|
| 403 | public void setAttributeIndicesArray(int[] value) { |
|---|
| 404 | setAttributeIndices(Range.indicesToRangeList(value)); |
|---|
| 405 | } |
|---|
| 406 | |
|---|
| 407 | /** |
|---|
| 408 | * Returns the tip text for this property |
|---|
| 409 | * |
|---|
| 410 | * @return tip text for this property suitable for |
|---|
| 411 | * displaying in the explorer/experimenter gui |
|---|
| 412 | */ |
|---|
| 413 | public String outlierFactorTipText() { |
|---|
| 414 | return "The factor for determining the thresholds for outliers."; |
|---|
| 415 | } |
|---|
| 416 | |
|---|
| 417 | /** |
|---|
| 418 | * Sets the factor for determining the thresholds for outliers. |
|---|
| 419 | * |
|---|
| 420 | * @param value the factor. |
|---|
| 421 | */ |
|---|
| 422 | public void setOutlierFactor(double value) { |
|---|
| 423 | if (value >= getExtremeValuesFactor()) |
|---|
| 424 | System.err.println("OutlierFactor must be smaller than ExtremeValueFactor"); |
|---|
| 425 | else |
|---|
| 426 | m_OutlierFactor = value; |
|---|
| 427 | } |
|---|
| 428 | |
|---|
| 429 | /** |
|---|
| 430 | * Gets the factor for determining the thresholds for outliers. |
|---|
| 431 | * |
|---|
| 432 | * @return the factor. |
|---|
| 433 | */ |
|---|
| 434 | public double getOutlierFactor() { |
|---|
| 435 | return m_OutlierFactor; |
|---|
| 436 | } |
|---|
| 437 | |
|---|
| 438 | /** |
|---|
| 439 | * Returns the tip text for this property |
|---|
| 440 | * |
|---|
| 441 | * @return tip text for this property suitable for |
|---|
| 442 | * displaying in the explorer/experimenter gui |
|---|
| 443 | */ |
|---|
| 444 | public String extremeValuesFactorTipText() { |
|---|
| 445 | return "The factor for determining the thresholds for extreme values."; |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | /** |
|---|
| 449 | * Sets the factor for determining the thresholds for extreme values. |
|---|
| 450 | * |
|---|
| 451 | * @param value the factor. |
|---|
| 452 | */ |
|---|
| 453 | public void setExtremeValuesFactor(double value) { |
|---|
| 454 | if (value <= getOutlierFactor()) |
|---|
| 455 | System.err.println("ExtremeValuesFactor must be greater than OutlierFactor!"); |
|---|
| 456 | else |
|---|
| 457 | m_ExtremeValuesFactor = value; |
|---|
| 458 | } |
|---|
| 459 | |
|---|
| 460 | /** |
|---|
| 461 | * Gets the factor for determining the thresholds for extreme values. |
|---|
| 462 | * |
|---|
| 463 | * @return the factor. |
|---|
| 464 | */ |
|---|
| 465 | public double getExtremeValuesFactor() { |
|---|
| 466 | return m_ExtremeValuesFactor; |
|---|
| 467 | } |
|---|
| 468 | |
|---|
| 469 | /** |
|---|
| 470 | * Returns the tip text for this property |
|---|
| 471 | * |
|---|
| 472 | * @return tip text for this property suitable for |
|---|
| 473 | * displaying in the explorer/experimenter gui |
|---|
| 474 | */ |
|---|
| 475 | public String extremeValuesAsOutliersTipText() { |
|---|
| 476 | return "Whether to tag extreme values also as outliers."; |
|---|
| 477 | } |
|---|
| 478 | |
|---|
| 479 | /** |
|---|
| 480 | * Set whether extreme values are also tagged as outliers. |
|---|
| 481 | * |
|---|
| 482 | * @param value whether or not to tag extreme values also as outliers. |
|---|
| 483 | */ |
|---|
| 484 | public void setExtremeValuesAsOutliers(boolean value) { |
|---|
| 485 | m_ExtremeValuesAsOutliers = value; |
|---|
| 486 | } |
|---|
| 487 | |
|---|
| 488 | /** |
|---|
| 489 | * Get whether extreme values are also tagged as outliers. |
|---|
| 490 | * |
|---|
| 491 | * @return true if extreme values are also tagged as outliers. |
|---|
| 492 | */ |
|---|
| 493 | public boolean getExtremeValuesAsOutliers() { |
|---|
| 494 | return m_ExtremeValuesAsOutliers; |
|---|
| 495 | } |
|---|
| 496 | |
|---|
| 497 | /** |
|---|
| 498 | * Returns the tip text for this property |
|---|
| 499 | * |
|---|
| 500 | * @return tip text for this property suitable for |
|---|
| 501 | * displaying in the explorer/experimenter gui |
|---|
| 502 | */ |
|---|
| 503 | public String detectionPerAttributeTipText() { |
|---|
| 504 | return |
|---|
| 505 | "Generates Outlier/ExtremeValue attribute pair for each numeric " |
|---|
| 506 | + "attribute, not just a single pair for all numeric attributes together."; |
|---|
| 507 | } |
|---|
| 508 | |
|---|
| 509 | /** |
|---|
| 510 | * Set whether an Outlier/ExtremeValue attribute pair is generated for |
|---|
| 511 | * each numeric attribute ("true") or just one pair for all numeric |
|---|
| 512 | * attributes together ("false"). |
|---|
| 513 | * |
|---|
| 514 | * @param value whether or not to generate indicator attribute pairs |
|---|
| 515 | * for each numeric attribute. |
|---|
| 516 | */ |
|---|
| 517 | public void setDetectionPerAttribute(boolean value) { |
|---|
| 518 | m_DetectionPerAttribute = value; |
|---|
| 519 | if (!m_DetectionPerAttribute) |
|---|
| 520 | m_OutputOffsetMultiplier = false; |
|---|
| 521 | } |
|---|
| 522 | |
|---|
| 523 | /** |
|---|
| 524 | * Gets whether an Outlier/ExtremeValue attribute pair is generated for |
|---|
| 525 | * each numeric attribute ("true") or just one pair for all numeric |
|---|
| 526 | * attributes together ("false"). |
|---|
| 527 | * |
|---|
| 528 | * @return true if indicator attribute pairs are generated for |
|---|
| 529 | * each numeric attribute. |
|---|
| 530 | */ |
|---|
| 531 | public boolean getDetectionPerAttribute() { |
|---|
| 532 | return m_DetectionPerAttribute; |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | /** |
|---|
| 536 | * Returns the tip text for this property |
|---|
| 537 | * |
|---|
| 538 | * @return tip text for this property suitable for |
|---|
| 539 | * displaying in the explorer/experimenter gui |
|---|
| 540 | */ |
|---|
| 541 | public String outputOffsetMultiplierTipText() { |
|---|
| 542 | return |
|---|
| 543 | "Generates an additional attribute 'Offset' that contains the " |
|---|
| 544 | + "multiplier the value is off the median: " |
|---|
| 545 | + "value = median + 'multiplier' * IQR"; |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | /** |
|---|
| 549 | * Set whether an additional attribute "Offset" is generated per |
|---|
| 550 | * Outlier/ExtremeValue attribute pair that lists the multiplier the value |
|---|
| 551 | * is off the median: value = median + 'multiplier' * IQR. |
|---|
| 552 | * |
|---|
| 553 | * @param value whether or not to generate the additional attribute. |
|---|
| 554 | */ |
|---|
| 555 | public void setOutputOffsetMultiplier(boolean value) { |
|---|
| 556 | m_OutputOffsetMultiplier = value; |
|---|
| 557 | if (m_OutputOffsetMultiplier) |
|---|
| 558 | m_DetectionPerAttribute = true; |
|---|
| 559 | } |
|---|
| 560 | |
|---|
| 561 | /** |
|---|
| 562 | * Gets whether an additional attribute "Offset" is generated per |
|---|
| 563 | * Outlier/ExtremeValue attribute pair that lists the multiplier the value |
|---|
| 564 | * is off the median: value = median + 'multiplier' * IQR. |
|---|
| 565 | * |
|---|
| 566 | * @return true if the additional attribute is generated. |
|---|
| 567 | */ |
|---|
| 568 | public boolean getOutputOffsetMultiplier() { |
|---|
| 569 | return m_OutputOffsetMultiplier; |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | /** |
|---|
| 573 | * Returns the Capabilities of this filter. |
|---|
| 574 | * |
|---|
| 575 | * @return the capabilities of this object |
|---|
| 576 | * @see Capabilities |
|---|
| 577 | */ |
|---|
| 578 | public Capabilities getCapabilities() { |
|---|
| 579 | Capabilities result = super.getCapabilities(); |
|---|
| 580 | result.disableAll(); |
|---|
| 581 | |
|---|
| 582 | // attributes |
|---|
| 583 | result.enableAllAttributes(); |
|---|
| 584 | result.enable(Capability.MISSING_VALUES); |
|---|
| 585 | |
|---|
| 586 | // class |
|---|
| 587 | result.enableAllClasses(); |
|---|
| 588 | result.enable(Capability.MISSING_CLASS_VALUES); |
|---|
| 589 | result.enable(Capability.NO_CLASS); |
|---|
| 590 | |
|---|
| 591 | return result; |
|---|
| 592 | } |
|---|
| 593 | |
|---|
| 594 | /** |
|---|
| 595 | * Determines the output format based on the input format and returns |
|---|
| 596 | * this. In case the output format cannot be returned immediately, i.e., |
|---|
| 597 | * hasImmediateOutputFormat() returns false, then this method will called |
|---|
| 598 | * from batchFinished() after the call of preprocess(Instances), in which, |
|---|
| 599 | * e.g., statistics for the actual processing step can be gathered. |
|---|
| 600 | * |
|---|
| 601 | * @param inputFormat the input format to base the output format on |
|---|
| 602 | * @return the output format |
|---|
| 603 | * @throws Exception in case the determination goes wrong |
|---|
| 604 | * @see #hasImmediateOutputFormat() |
|---|
| 605 | * @see #batchFinished() |
|---|
| 606 | */ |
|---|
| 607 | protected Instances determineOutputFormat(Instances inputFormat) |
|---|
| 608 | throws Exception { |
|---|
| 609 | |
|---|
| 610 | FastVector atts; |
|---|
| 611 | FastVector values; |
|---|
| 612 | Instances result; |
|---|
| 613 | int i; |
|---|
| 614 | |
|---|
| 615 | // attributes must be numeric |
|---|
| 616 | m_Attributes.setUpper(inputFormat.numAttributes() - 1); |
|---|
| 617 | m_AttributeIndices = m_Attributes.getSelection(); |
|---|
| 618 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 619 | // ignore class |
|---|
| 620 | if (m_AttributeIndices[i] == inputFormat.classIndex()) { |
|---|
| 621 | m_AttributeIndices[i] = NON_NUMERIC; |
|---|
| 622 | continue; |
|---|
| 623 | } |
|---|
| 624 | // not numeric -> ignore it |
|---|
| 625 | if (!inputFormat.attribute(m_AttributeIndices[i]).isNumeric()) |
|---|
| 626 | m_AttributeIndices[i] = NON_NUMERIC; |
|---|
| 627 | } |
|---|
| 628 | |
|---|
| 629 | // get old attributes |
|---|
| 630 | atts = new FastVector(); |
|---|
| 631 | for (i = 0; i < inputFormat.numAttributes(); i++) |
|---|
| 632 | atts.addElement(inputFormat.attribute(i)); |
|---|
| 633 | |
|---|
| 634 | if (!getDetectionPerAttribute()) { |
|---|
| 635 | m_OutlierAttributePosition = new int[1]; |
|---|
| 636 | m_OutlierAttributePosition[0] = atts.size(); |
|---|
| 637 | |
|---|
| 638 | // add 2 new attributes |
|---|
| 639 | values = new FastVector(); |
|---|
| 640 | values.addElement("no"); |
|---|
| 641 | values.addElement("yes"); |
|---|
| 642 | atts.addElement(new Attribute("Outlier", values)); |
|---|
| 643 | |
|---|
| 644 | values = new FastVector(); |
|---|
| 645 | values.addElement("no"); |
|---|
| 646 | values.addElement("yes"); |
|---|
| 647 | atts.addElement(new Attribute("ExtremeValue", values)); |
|---|
| 648 | } |
|---|
| 649 | else { |
|---|
| 650 | m_OutlierAttributePosition = new int[m_AttributeIndices.length]; |
|---|
| 651 | |
|---|
| 652 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 653 | if (m_AttributeIndices[i] == NON_NUMERIC) |
|---|
| 654 | continue; |
|---|
| 655 | |
|---|
| 656 | m_OutlierAttributePosition[i] = atts.size(); |
|---|
| 657 | |
|---|
| 658 | // add new attributes |
|---|
| 659 | values = new FastVector(); |
|---|
| 660 | values.addElement("no"); |
|---|
| 661 | values.addElement("yes"); |
|---|
| 662 | atts.addElement( |
|---|
| 663 | new Attribute( |
|---|
| 664 | inputFormat.attribute( |
|---|
| 665 | m_AttributeIndices[i]).name() + "_Outlier", values)); |
|---|
| 666 | |
|---|
| 667 | values = new FastVector(); |
|---|
| 668 | values.addElement("no"); |
|---|
| 669 | values.addElement("yes"); |
|---|
| 670 | atts.addElement( |
|---|
| 671 | new Attribute( |
|---|
| 672 | inputFormat.attribute( |
|---|
| 673 | m_AttributeIndices[i]).name() + "_ExtremeValue", values)); |
|---|
| 674 | |
|---|
| 675 | if (getOutputOffsetMultiplier()) |
|---|
| 676 | atts.addElement( |
|---|
| 677 | new Attribute( |
|---|
| 678 | inputFormat.attribute( |
|---|
| 679 | m_AttributeIndices[i]).name() + "_Offset")); |
|---|
| 680 | } |
|---|
| 681 | } |
|---|
| 682 | |
|---|
| 683 | // generate header |
|---|
| 684 | result = new Instances(inputFormat.relationName(), atts, 0); |
|---|
| 685 | result.setClassIndex(inputFormat.classIndex()); |
|---|
| 686 | |
|---|
| 687 | return result; |
|---|
| 688 | } |
|---|
| 689 | |
|---|
| 690 | /** |
|---|
| 691 | * computes the thresholds for outliers and extreme values |
|---|
| 692 | * |
|---|
| 693 | * @param instances the data to work on |
|---|
| 694 | */ |
|---|
| 695 | protected void computeThresholds(Instances instances) { |
|---|
| 696 | int i; |
|---|
| 697 | double[] values; |
|---|
| 698 | int[] sortedIndices; |
|---|
| 699 | int half; |
|---|
| 700 | int quarter; |
|---|
| 701 | double q1; |
|---|
| 702 | double q2; |
|---|
| 703 | double q3; |
|---|
| 704 | |
|---|
| 705 | m_UpperExtremeValue = new double[m_AttributeIndices.length]; |
|---|
| 706 | m_UpperOutlier = new double[m_AttributeIndices.length]; |
|---|
| 707 | m_LowerOutlier = new double[m_AttributeIndices.length]; |
|---|
| 708 | m_LowerExtremeValue = new double[m_AttributeIndices.length]; |
|---|
| 709 | m_Median = new double[m_AttributeIndices.length]; |
|---|
| 710 | m_IQR = new double[m_AttributeIndices.length]; |
|---|
| 711 | |
|---|
| 712 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 713 | // non-numeric attribute? |
|---|
| 714 | if (m_AttributeIndices[i] == NON_NUMERIC) |
|---|
| 715 | continue; |
|---|
| 716 | |
|---|
| 717 | // sort attribute data |
|---|
| 718 | values = instances.attributeToDoubleArray(m_AttributeIndices[i]); |
|---|
| 719 | sortedIndices = Utils.sort(values); |
|---|
| 720 | |
|---|
| 721 | // determine indices |
|---|
| 722 | half = sortedIndices.length / 2; |
|---|
| 723 | quarter = half / 2; |
|---|
| 724 | |
|---|
| 725 | if (sortedIndices.length % 2 == 1) { |
|---|
| 726 | q2 = values[sortedIndices[half]]; |
|---|
| 727 | } |
|---|
| 728 | else { |
|---|
| 729 | q2 = (values[sortedIndices[half]] + values[sortedIndices[half + 1]]) / 2; |
|---|
| 730 | } |
|---|
| 731 | |
|---|
| 732 | if (half % 2 == 1) { |
|---|
| 733 | q1 = values[sortedIndices[quarter]]; |
|---|
| 734 | q3 = values[sortedIndices[sortedIndices.length - quarter - 1]]; |
|---|
| 735 | } |
|---|
| 736 | else { |
|---|
| 737 | q1 = (values[sortedIndices[quarter]] + values[sortedIndices[quarter + 1]]) / 2; |
|---|
| 738 | q3 = (values[sortedIndices[sortedIndices.length - quarter - 1]] + values[sortedIndices[sortedIndices.length - quarter]]) / 2; |
|---|
| 739 | } |
|---|
| 740 | |
|---|
| 741 | // determine thresholds and other values |
|---|
| 742 | m_Median[i] = q2; |
|---|
| 743 | m_IQR[i] = q3 - q1; |
|---|
| 744 | m_UpperExtremeValue[i] = q3 + getExtremeValuesFactor() * m_IQR[i]; |
|---|
| 745 | m_UpperOutlier[i] = q3 + getOutlierFactor() * m_IQR[i]; |
|---|
| 746 | m_LowerOutlier[i] = q1 - getOutlierFactor() * m_IQR[i]; |
|---|
| 747 | m_LowerExtremeValue[i] = q1 - getExtremeValuesFactor() * m_IQR[i]; |
|---|
| 748 | } |
|---|
| 749 | } |
|---|
| 750 | |
|---|
| 751 | /** |
|---|
| 752 | * returns whether the instance has an outlier in the specified attribute |
|---|
| 753 | * or not |
|---|
| 754 | * |
|---|
| 755 | * @param inst the instance to test |
|---|
| 756 | * @param index the attribute index |
|---|
| 757 | * @return true if the instance is an outlier |
|---|
| 758 | */ |
|---|
| 759 | protected boolean isOutlier(Instance inst, int index) { |
|---|
| 760 | boolean result; |
|---|
| 761 | double value; |
|---|
| 762 | |
|---|
| 763 | value = inst.value(m_AttributeIndices[index]); |
|---|
| 764 | result = ((m_UpperOutlier[index] < value) && (value <= m_UpperExtremeValue[index])) |
|---|
| 765 | || ((m_LowerExtremeValue[index] <= value) && (value < m_LowerOutlier[index])); |
|---|
| 766 | |
|---|
| 767 | return result; |
|---|
| 768 | } |
|---|
| 769 | |
|---|
| 770 | /** |
|---|
| 771 | * returns whether the instance is an outlier or not |
|---|
| 772 | * |
|---|
| 773 | * @param inst the instance to test |
|---|
| 774 | * @return true if the instance is an outlier |
|---|
| 775 | */ |
|---|
| 776 | protected boolean isOutlier(Instance inst) { |
|---|
| 777 | boolean result; |
|---|
| 778 | int i; |
|---|
| 779 | |
|---|
| 780 | result = false; |
|---|
| 781 | |
|---|
| 782 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 783 | // non-numeric attribute? |
|---|
| 784 | if (m_AttributeIndices[i] == NON_NUMERIC) |
|---|
| 785 | continue; |
|---|
| 786 | |
|---|
| 787 | result = isOutlier(inst, i); |
|---|
| 788 | |
|---|
| 789 | if (result) |
|---|
| 790 | break; |
|---|
| 791 | } |
|---|
| 792 | |
|---|
| 793 | return result; |
|---|
| 794 | } |
|---|
| 795 | |
|---|
| 796 | /** |
|---|
| 797 | * returns whether the instance has an extreme value in the specified |
|---|
| 798 | * attribute or not |
|---|
| 799 | * |
|---|
| 800 | * @param inst the instance to test |
|---|
| 801 | * @param index the attribute index |
|---|
| 802 | * @return true if the instance is an extreme value |
|---|
| 803 | */ |
|---|
| 804 | protected boolean isExtremeValue(Instance inst, int index) { |
|---|
| 805 | boolean result; |
|---|
| 806 | double value; |
|---|
| 807 | |
|---|
| 808 | value = inst.value(m_AttributeIndices[index]); |
|---|
| 809 | result = (value > m_UpperExtremeValue[index]) |
|---|
| 810 | || (value < m_LowerExtremeValue[index]); |
|---|
| 811 | |
|---|
| 812 | return result; |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | /** |
|---|
| 816 | * returns whether the instance is an extreme value or not |
|---|
| 817 | * |
|---|
| 818 | * @param inst the instance to test |
|---|
| 819 | * @return true if the instance is an extreme value |
|---|
| 820 | */ |
|---|
| 821 | protected boolean isExtremeValue(Instance inst) { |
|---|
| 822 | boolean result; |
|---|
| 823 | int i; |
|---|
| 824 | |
|---|
| 825 | result = false; |
|---|
| 826 | |
|---|
| 827 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 828 | // non-numeric attribute? |
|---|
| 829 | if (m_AttributeIndices[i] == NON_NUMERIC) |
|---|
| 830 | continue; |
|---|
| 831 | |
|---|
| 832 | result = isExtremeValue(inst, i); |
|---|
| 833 | |
|---|
| 834 | if (result) |
|---|
| 835 | break; |
|---|
| 836 | } |
|---|
| 837 | |
|---|
| 838 | return result; |
|---|
| 839 | } |
|---|
| 840 | |
|---|
| 841 | /** |
|---|
| 842 | * returns the mulitplier of the IQR the instance is off the median for this |
|---|
| 843 | * particular attribute. |
|---|
| 844 | * |
|---|
| 845 | * @param inst the instance to test |
|---|
| 846 | * @param index the attribute index |
|---|
| 847 | * @return the multiplier |
|---|
| 848 | */ |
|---|
| 849 | protected double calculateMultiplier(Instance inst, int index) { |
|---|
| 850 | double result; |
|---|
| 851 | double value; |
|---|
| 852 | |
|---|
| 853 | value = inst.value(m_AttributeIndices[index]); |
|---|
| 854 | result = (value - m_Median[index]) / m_IQR[index]; |
|---|
| 855 | |
|---|
| 856 | return result; |
|---|
| 857 | } |
|---|
| 858 | |
|---|
| 859 | /** |
|---|
| 860 | * Processes the given data (may change the provided dataset) and returns |
|---|
| 861 | * the modified version. This method is called in batchFinished(). |
|---|
| 862 | * This implementation only calls process(Instance) for each instance |
|---|
| 863 | * in the given dataset. |
|---|
| 864 | * |
|---|
| 865 | * @param instances the data to process |
|---|
| 866 | * @return the modified data |
|---|
| 867 | * @throws Exception in case the processing goes wrong |
|---|
| 868 | * @see #batchFinished() |
|---|
| 869 | */ |
|---|
| 870 | protected Instances process(Instances instances) throws Exception { |
|---|
| 871 | Instances result; |
|---|
| 872 | Instance instOld; |
|---|
| 873 | Instance instNew; |
|---|
| 874 | int i; |
|---|
| 875 | int n; |
|---|
| 876 | double[] values; |
|---|
| 877 | int numAttNew; |
|---|
| 878 | int numAttOld; |
|---|
| 879 | |
|---|
| 880 | if (!isFirstBatchDone()) |
|---|
| 881 | computeThresholds(instances); |
|---|
| 882 | |
|---|
| 883 | result = getOutputFormat(); |
|---|
| 884 | numAttOld = instances.numAttributes(); |
|---|
| 885 | numAttNew = result.numAttributes(); |
|---|
| 886 | |
|---|
| 887 | for (n = 0; n < instances.numInstances(); n++) { |
|---|
| 888 | instOld = instances.instance(n); |
|---|
| 889 | values = new double[numAttNew]; |
|---|
| 890 | System.arraycopy(instOld.toDoubleArray(), 0, values, 0, numAttOld); |
|---|
| 891 | |
|---|
| 892 | // generate new instance |
|---|
| 893 | instNew = new DenseInstance(1.0, values); |
|---|
| 894 | instNew.setDataset(result); |
|---|
| 895 | |
|---|
| 896 | // per attribute? |
|---|
| 897 | if (!getDetectionPerAttribute()) { |
|---|
| 898 | // outlier? |
|---|
| 899 | if (isOutlier(instOld)) |
|---|
| 900 | instNew.setValue(m_OutlierAttributePosition[0], 1); |
|---|
| 901 | // extreme value? |
|---|
| 902 | if (isExtremeValue(instOld)) { |
|---|
| 903 | instNew.setValue(m_OutlierAttributePosition[0] + 1, 1); |
|---|
| 904 | // tag extreme values also as outliers? |
|---|
| 905 | if (getExtremeValuesAsOutliers()) |
|---|
| 906 | instNew.setValue(m_OutlierAttributePosition[0], 1); |
|---|
| 907 | } |
|---|
| 908 | } |
|---|
| 909 | else { |
|---|
| 910 | for (i = 0; i < m_AttributeIndices.length; i++) { |
|---|
| 911 | // non-numeric attribute? |
|---|
| 912 | if (m_AttributeIndices[i] == NON_NUMERIC) |
|---|
| 913 | continue; |
|---|
| 914 | |
|---|
| 915 | // outlier? |
|---|
| 916 | if (isOutlier(instOld, m_AttributeIndices[i])) |
|---|
| 917 | instNew.setValue(m_OutlierAttributePosition[i], 1); |
|---|
| 918 | // extreme value? |
|---|
| 919 | if (isExtremeValue(instOld, m_AttributeIndices[i])) { |
|---|
| 920 | instNew.setValue(m_OutlierAttributePosition[i] + 1, 1); |
|---|
| 921 | // tag extreme values also as outliers? |
|---|
| 922 | if (getExtremeValuesAsOutliers()) |
|---|
| 923 | instNew.setValue(m_OutlierAttributePosition[i], 1); |
|---|
| 924 | } |
|---|
| 925 | // add multiplier? |
|---|
| 926 | if (getOutputOffsetMultiplier()) |
|---|
| 927 | instNew.setValue( |
|---|
| 928 | m_OutlierAttributePosition[i] + 2, |
|---|
| 929 | calculateMultiplier(instOld, m_AttributeIndices[i])); |
|---|
| 930 | } |
|---|
| 931 | } |
|---|
| 932 | |
|---|
| 933 | // copy possible strings, relational values... |
|---|
| 934 | copyValues(instNew, false, instOld.dataset(), getOutputFormat()); |
|---|
| 935 | |
|---|
| 936 | // add to output |
|---|
| 937 | result.add(instNew); |
|---|
| 938 | } |
|---|
| 939 | |
|---|
| 940 | return result; |
|---|
| 941 | } |
|---|
| 942 | |
|---|
| 943 | /** |
|---|
| 944 | * Returns the revision string. |
|---|
| 945 | * |
|---|
| 946 | * @return the revision |
|---|
| 947 | */ |
|---|
| 948 | public String getRevision() { |
|---|
| 949 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 950 | } |
|---|
| 951 | |
|---|
| 952 | /** |
|---|
| 953 | * Main method for testing this class. |
|---|
| 954 | * |
|---|
| 955 | * @param args should contain arguments to the filter: use -h for help |
|---|
| 956 | */ |
|---|
| 957 | public static void main(String[] args) { |
|---|
| 958 | runFilter(new InterquartileRange(), args); |
|---|
| 959 | } |
|---|
| 960 | } |
|---|