1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AddCluster.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.filters.unsupervised.attribute; |
---|
24 | |
---|
25 | import weka.clusterers.AbstractClusterer; |
---|
26 | import weka.clusterers.Clusterer; |
---|
27 | import weka.core.Attribute; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.FastVector; |
---|
30 | import weka.core.Instance; |
---|
31 | import weka.core.DenseInstance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.OptionHandler; |
---|
35 | import weka.core.Range; |
---|
36 | import weka.core.RevisionUtils; |
---|
37 | import weka.core.SparseInstance; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WekaException; |
---|
40 | import weka.filters.Filter; |
---|
41 | import weka.filters.UnsupervisedFilter; |
---|
42 | |
---|
43 | import java.io.File; |
---|
44 | import java.io.FileInputStream; |
---|
45 | import java.io.FileNotFoundException; |
---|
46 | import java.io.ObjectInputStream; |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Vector; |
---|
49 | |
---|
50 | /** |
---|
51 | <!-- globalinfo-start --> |
---|
52 | * A filter that adds a new nominal attribute representing the cluster assigned to each instance by the specified clustering algorithm.<br/> |
---|
53 | * Either the clustering algorithm gets built with the first batch of data or one specifies are serialized clusterer model file to use instead. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- options-start --> |
---|
58 | * Valid options are: <p/> |
---|
59 | * |
---|
60 | * <pre> -W <clusterer specification> |
---|
61 | * Full class name of clusterer to use, followed |
---|
62 | * by scheme options. eg: |
---|
63 | * "weka.clusterers.SimpleKMeans -N 3" |
---|
64 | * (default: weka.clusterers.SimpleKMeans)</pre> |
---|
65 | * |
---|
66 | * <pre> -serialized <file> |
---|
67 | * Instead of building a clusterer on the data, one can also provide |
---|
68 | * a serialized model and use that for adding the clusters.</pre> |
---|
69 | * |
---|
70 | * <pre> -I <att1,att2-att4,...> |
---|
71 | * The range of attributes the clusterer should ignore. |
---|
72 | * </pre> |
---|
73 | * |
---|
74 | <!-- options-end --> |
---|
75 | * |
---|
76 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
77 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
78 | * @version $Revision: 5987 $ |
---|
79 | */ |
---|
80 | public class AddCluster |
---|
81 | extends Filter |
---|
82 | implements UnsupervisedFilter, OptionHandler { |
---|
83 | |
---|
84 | /** for serialization. */ |
---|
85 | static final long serialVersionUID = 7414280611943807337L; |
---|
86 | |
---|
87 | /** The clusterer used to do the cleansing. */ |
---|
88 | protected Clusterer m_Clusterer = new weka.clusterers.SimpleKMeans(); |
---|
89 | |
---|
90 | /** The file from which to load a serialized clusterer. */ |
---|
91 | protected File m_SerializedClustererFile = new File(System.getProperty("user.dir")); |
---|
92 | |
---|
93 | /** The actual clusterer used to do the clustering. */ |
---|
94 | protected Clusterer m_ActualClusterer = null; |
---|
95 | |
---|
96 | /** Range of attributes to ignore. */ |
---|
97 | protected Range m_IgnoreAttributesRange = null; |
---|
98 | |
---|
99 | /** Filter for removing attributes. */ |
---|
100 | protected Filter m_removeAttributes = new Remove(); |
---|
101 | |
---|
102 | /** |
---|
103 | * Returns the Capabilities of this filter, makes sure that the class is |
---|
104 | * never set (for the clusterer). |
---|
105 | * |
---|
106 | * @param data the data to use for customization |
---|
107 | * @return the capabilities of this object, based on the data |
---|
108 | * @see #getCapabilities() |
---|
109 | */ |
---|
110 | public Capabilities getCapabilities(Instances data) { |
---|
111 | Instances newData; |
---|
112 | |
---|
113 | newData = new Instances(data, 0); |
---|
114 | newData.setClassIndex(-1); |
---|
115 | |
---|
116 | return super.getCapabilities(newData); |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Returns the Capabilities of this filter. |
---|
121 | * |
---|
122 | * @return the capabilities of this object |
---|
123 | * @see Capabilities |
---|
124 | */ |
---|
125 | public Capabilities getCapabilities() { |
---|
126 | Capabilities result = m_Clusterer.getCapabilities(); |
---|
127 | |
---|
128 | result.setMinimumNumberInstances(0); |
---|
129 | |
---|
130 | return result; |
---|
131 | } |
---|
132 | |
---|
133 | /** |
---|
134 | * tests the data whether the filter can actually handle it. |
---|
135 | * |
---|
136 | * @param instanceInfo the data to test |
---|
137 | * @throws Exception if the test fails |
---|
138 | */ |
---|
139 | protected void testInputFormat(Instances instanceInfo) throws Exception { |
---|
140 | getCapabilities(instanceInfo).testWithFail(removeIgnored(instanceInfo)); |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * Sets the format of the input instances. |
---|
145 | * |
---|
146 | * @param instanceInfo an Instances object containing the input instance |
---|
147 | * structure (any instances contained in the object are ignored - only the |
---|
148 | * structure is required). |
---|
149 | * @return true if the outputFormat may be collected immediately |
---|
150 | * @throws Exception if the inputFormat can't be set successfully |
---|
151 | */ |
---|
152 | public boolean setInputFormat(Instances instanceInfo) throws Exception { |
---|
153 | super.setInputFormat(instanceInfo); |
---|
154 | |
---|
155 | m_removeAttributes = null; |
---|
156 | |
---|
157 | return false; |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * filters all attributes that should be ignored. |
---|
162 | * |
---|
163 | * @param data the data to filter |
---|
164 | * @return the filtered data |
---|
165 | * @throws Exception if filtering fails |
---|
166 | */ |
---|
167 | protected Instances removeIgnored(Instances data) throws Exception { |
---|
168 | Instances result = data; |
---|
169 | |
---|
170 | if (m_IgnoreAttributesRange != null || data.classIndex() >= 0) { |
---|
171 | m_removeAttributes = new Remove(); |
---|
172 | String rangeString = ""; |
---|
173 | if (m_IgnoreAttributesRange != null) { |
---|
174 | rangeString += m_IgnoreAttributesRange.getRanges(); |
---|
175 | } |
---|
176 | if (data.classIndex() >= 0) { |
---|
177 | if (rangeString.length() > 0) { |
---|
178 | rangeString += "," + (data.classIndex() + 1); |
---|
179 | } else { |
---|
180 | rangeString = "" + (data.classIndex() + 1); |
---|
181 | } |
---|
182 | } |
---|
183 | ((Remove) m_removeAttributes).setAttributeIndices(rangeString); |
---|
184 | ((Remove) m_removeAttributes).setInvertSelection(false); |
---|
185 | m_removeAttributes.setInputFormat(data); |
---|
186 | result = Filter.useFilter(data, m_removeAttributes); |
---|
187 | } |
---|
188 | |
---|
189 | return result; |
---|
190 | } |
---|
191 | |
---|
192 | /** |
---|
193 | * Signify that this batch of input to the filter is finished. |
---|
194 | * |
---|
195 | * @return true if there are instances pending output |
---|
196 | * @throws IllegalStateException if no input structure has been defined |
---|
197 | */ |
---|
198 | public boolean batchFinished() throws Exception { |
---|
199 | if (getInputFormat() == null) |
---|
200 | throw new IllegalStateException("No input instance format defined"); |
---|
201 | |
---|
202 | Instances toFilter = getInputFormat(); |
---|
203 | |
---|
204 | if (!isFirstBatchDone()) { |
---|
205 | // filter out attributes if necessary |
---|
206 | Instances toFilterIgnoringAttributes = removeIgnored(toFilter); |
---|
207 | |
---|
208 | // serialized model or build clusterer from scratch? |
---|
209 | File file = getSerializedClustererFile(); |
---|
210 | if (!file.isDirectory()) { |
---|
211 | ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file)); |
---|
212 | m_ActualClusterer = (Clusterer) ois.readObject(); |
---|
213 | Instances header = null; |
---|
214 | // let's see whether there's an Instances header stored as well |
---|
215 | try { |
---|
216 | header = (Instances) ois.readObject(); |
---|
217 | } |
---|
218 | catch (Exception e) { |
---|
219 | // ignored |
---|
220 | } |
---|
221 | ois.close(); |
---|
222 | // same dataset format? |
---|
223 | if ((header != null) && (!header.equalHeaders(toFilterIgnoringAttributes))) |
---|
224 | throw new WekaException( |
---|
225 | "Training header of clusterer and filter dataset don't match:\n" |
---|
226 | + header.equalHeadersMsg(toFilterIgnoringAttributes)); |
---|
227 | } |
---|
228 | else { |
---|
229 | m_ActualClusterer = AbstractClusterer.makeCopy(m_Clusterer); |
---|
230 | m_ActualClusterer.buildClusterer(toFilterIgnoringAttributes); |
---|
231 | } |
---|
232 | |
---|
233 | // create output dataset with new attribute |
---|
234 | Instances filtered = new Instances(toFilter, 0); |
---|
235 | FastVector nominal_values = new FastVector(m_ActualClusterer.numberOfClusters()); |
---|
236 | for (int i = 0; i < m_ActualClusterer.numberOfClusters(); i++) { |
---|
237 | nominal_values.addElement("cluster" + (i+1)); |
---|
238 | } |
---|
239 | filtered.insertAttributeAt(new Attribute("cluster", nominal_values), |
---|
240 | filtered.numAttributes()); |
---|
241 | |
---|
242 | setOutputFormat(filtered); |
---|
243 | } |
---|
244 | |
---|
245 | // build new dataset |
---|
246 | for (int i=0; i<toFilter.numInstances(); i++) { |
---|
247 | convertInstance(toFilter.instance(i)); |
---|
248 | } |
---|
249 | |
---|
250 | flushInput(); |
---|
251 | m_NewBatch = true; |
---|
252 | m_FirstBatchDone = true; |
---|
253 | |
---|
254 | return (numPendingOutput() != 0); |
---|
255 | } |
---|
256 | |
---|
257 | /** |
---|
258 | * Input an instance for filtering. Ordinarily the instance is processed |
---|
259 | * and made available for output immediately. Some filters require all |
---|
260 | * instances be read before producing output. |
---|
261 | * |
---|
262 | * @param instance the input instance |
---|
263 | * @return true if the filtered instance may now be |
---|
264 | * collected with output(). |
---|
265 | * @throws IllegalStateException if no input format has been defined. |
---|
266 | */ |
---|
267 | public boolean input(Instance instance) throws Exception { |
---|
268 | if (getInputFormat() == null) |
---|
269 | throw new IllegalStateException("No input instance format defined"); |
---|
270 | |
---|
271 | if (m_NewBatch) { |
---|
272 | resetQueue(); |
---|
273 | m_NewBatch = false; |
---|
274 | } |
---|
275 | |
---|
276 | if (outputFormatPeek() != null) { |
---|
277 | convertInstance(instance); |
---|
278 | return true; |
---|
279 | } |
---|
280 | |
---|
281 | bufferInput(instance); |
---|
282 | return false; |
---|
283 | } |
---|
284 | |
---|
285 | /** |
---|
286 | * Convert a single instance over. The converted instance is added to |
---|
287 | * the end of the output queue. |
---|
288 | * |
---|
289 | * @param instance the instance to convert |
---|
290 | * @throws Exception if something goes wrong |
---|
291 | */ |
---|
292 | protected void convertInstance(Instance instance) throws Exception { |
---|
293 | Instance original, processed; |
---|
294 | original = instance; |
---|
295 | |
---|
296 | // copy values |
---|
297 | double[] instanceVals = new double[instance.numAttributes()+1]; |
---|
298 | for(int j = 0; j < instance.numAttributes(); j++) { |
---|
299 | instanceVals[j] = original.value(j); |
---|
300 | } |
---|
301 | Instance filteredI = null; |
---|
302 | if (m_removeAttributes != null) { |
---|
303 | m_removeAttributes.input(instance); |
---|
304 | filteredI = m_removeAttributes.output(); |
---|
305 | } else { |
---|
306 | filteredI = instance; |
---|
307 | } |
---|
308 | |
---|
309 | // add cluster to end |
---|
310 | try { |
---|
311 | instanceVals[instance.numAttributes()] = m_ActualClusterer.clusterInstance(filteredI); |
---|
312 | } |
---|
313 | catch (Exception e) { |
---|
314 | // clusterer couldn't cluster instance -> missing |
---|
315 | instanceVals[instance.numAttributes()] = Utils.missingValue(); |
---|
316 | } |
---|
317 | |
---|
318 | // create new instance |
---|
319 | if (original instanceof SparseInstance) { |
---|
320 | processed = new SparseInstance(original.weight(), instanceVals); |
---|
321 | } else { |
---|
322 | processed = new DenseInstance(original.weight(), instanceVals); |
---|
323 | } |
---|
324 | |
---|
325 | processed.setDataset(instance.dataset()); |
---|
326 | copyValues(processed, false, instance.dataset(), getOutputFormat()); |
---|
327 | processed.setDataset(getOutputFormat()); |
---|
328 | |
---|
329 | push(processed); |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * Returns an enumeration describing the available options. |
---|
334 | * |
---|
335 | * @return an enumeration of all the available options. |
---|
336 | */ |
---|
337 | public Enumeration listOptions() { |
---|
338 | Vector result = new Vector(); |
---|
339 | |
---|
340 | result.addElement(new Option( |
---|
341 | "\tFull class name of clusterer to use, followed\n" |
---|
342 | + "\tby scheme options. eg:\n" |
---|
343 | + "\t\t\"weka.clusterers.SimpleKMeans -N 3\"\n" |
---|
344 | + "\t(default: weka.clusterers.SimpleKMeans)", |
---|
345 | "W", 1, "-W <clusterer specification>")); |
---|
346 | |
---|
347 | result.addElement(new Option( |
---|
348 | "\tInstead of building a clusterer on the data, one can also provide\n" |
---|
349 | + "\ta serialized model and use that for adding the clusters.", |
---|
350 | "serialized", 1, "-serialized <file>")); |
---|
351 | |
---|
352 | result.addElement(new Option( |
---|
353 | "\tThe range of attributes the clusterer should ignore.\n", |
---|
354 | "I", 1,"-I <att1,att2-att4,...>")); |
---|
355 | |
---|
356 | return result.elements(); |
---|
357 | } |
---|
358 | |
---|
359 | |
---|
360 | /** |
---|
361 | * Parses a given list of options. <p/> |
---|
362 | * |
---|
363 | <!-- options-start --> |
---|
364 | * Valid options are: <p/> |
---|
365 | * |
---|
366 | * <pre> -W <clusterer specification> |
---|
367 | * Full class name of clusterer to use, followed |
---|
368 | * by scheme options. eg: |
---|
369 | * "weka.clusterers.SimpleKMeans -N 3" |
---|
370 | * (default: weka.clusterers.SimpleKMeans)</pre> |
---|
371 | * |
---|
372 | * <pre> -serialized <file> |
---|
373 | * Instead of building a clusterer on the data, one can also provide |
---|
374 | * a serialized model and use that for adding the clusters.</pre> |
---|
375 | * |
---|
376 | * <pre> -I <att1,att2-att4,...> |
---|
377 | * The range of attributes the clusterer should ignore. |
---|
378 | * </pre> |
---|
379 | * |
---|
380 | <!-- options-end --> |
---|
381 | * |
---|
382 | * @param options the list of options as an array of strings |
---|
383 | * @throws Exception if an option is not supported |
---|
384 | */ |
---|
385 | public void setOptions(String[] options) throws Exception { |
---|
386 | String tmpStr; |
---|
387 | String[] tmpOptions; |
---|
388 | File file; |
---|
389 | boolean serializedModel; |
---|
390 | |
---|
391 | serializedModel = false; |
---|
392 | tmpStr = Utils.getOption("serialized", options); |
---|
393 | if (tmpStr.length() != 0) { |
---|
394 | file = new File(tmpStr); |
---|
395 | if (!file.exists()) |
---|
396 | throw new FileNotFoundException( |
---|
397 | "File '" + file.getAbsolutePath() + "' not found!"); |
---|
398 | if (file.isDirectory()) |
---|
399 | throw new FileNotFoundException( |
---|
400 | "'" + file.getAbsolutePath() + "' points to a directory not a file!"); |
---|
401 | setSerializedClustererFile(file); |
---|
402 | serializedModel = true; |
---|
403 | } |
---|
404 | else { |
---|
405 | setSerializedClustererFile(null); |
---|
406 | } |
---|
407 | |
---|
408 | if (!serializedModel) { |
---|
409 | tmpStr = Utils.getOption('W', options); |
---|
410 | if (tmpStr.length() == 0) |
---|
411 | tmpStr = weka.clusterers.SimpleKMeans.class.getName(); |
---|
412 | tmpOptions = Utils.splitOptions(tmpStr); |
---|
413 | if (tmpOptions.length == 0) { |
---|
414 | throw new Exception("Invalid clusterer specification string"); |
---|
415 | } |
---|
416 | tmpStr = tmpOptions[0]; |
---|
417 | tmpOptions[0] = ""; |
---|
418 | setClusterer(AbstractClusterer.forName(tmpStr, tmpOptions)); |
---|
419 | } |
---|
420 | |
---|
421 | setIgnoredAttributeIndices(Utils.getOption('I', options)); |
---|
422 | |
---|
423 | Utils.checkForRemainingOptions(options); |
---|
424 | } |
---|
425 | |
---|
426 | /** |
---|
427 | * Gets the current settings of the filter. |
---|
428 | * |
---|
429 | * @return an array of strings suitable for passing to setOptions |
---|
430 | */ |
---|
431 | public String[] getOptions() { |
---|
432 | Vector<String> result; |
---|
433 | File file; |
---|
434 | |
---|
435 | result = new Vector<String>(); |
---|
436 | |
---|
437 | file = getSerializedClustererFile(); |
---|
438 | if ((file != null) && (!file.isDirectory())) { |
---|
439 | result.add("-serialized"); |
---|
440 | result.add(file.getAbsolutePath()); |
---|
441 | } |
---|
442 | else { |
---|
443 | result.add("-W"); |
---|
444 | result.add(getClustererSpec()); |
---|
445 | } |
---|
446 | |
---|
447 | if (!getIgnoredAttributeIndices().equals("")) { |
---|
448 | result.add("-I"); |
---|
449 | result.add(getIgnoredAttributeIndices()); |
---|
450 | } |
---|
451 | |
---|
452 | return result.toArray(new String[result.size()]); |
---|
453 | } |
---|
454 | |
---|
455 | /** |
---|
456 | * Returns a string describing this filter. |
---|
457 | * |
---|
458 | * @return a description of the filter suitable for |
---|
459 | * displaying in the explorer/experimenter gui |
---|
460 | */ |
---|
461 | public String globalInfo() { |
---|
462 | return |
---|
463 | "A filter that adds a new nominal attribute representing the cluster " |
---|
464 | + "assigned to each instance by the specified clustering algorithm.\n" |
---|
465 | + "Either the clustering algorithm gets built with the first batch of " |
---|
466 | + "data or one specifies are serialized clusterer model file to use " |
---|
467 | + "instead."; |
---|
468 | } |
---|
469 | |
---|
470 | /** |
---|
471 | * Returns the tip text for this property. |
---|
472 | * |
---|
473 | * @return tip text for this property suitable for |
---|
474 | * displaying in the explorer/experimenter gui |
---|
475 | */ |
---|
476 | public String clustererTipText() { |
---|
477 | return "The clusterer to assign clusters with."; |
---|
478 | } |
---|
479 | |
---|
480 | /** |
---|
481 | * Sets the clusterer to assign clusters with. |
---|
482 | * |
---|
483 | * @param clusterer The clusterer to be used (with its options set). |
---|
484 | */ |
---|
485 | public void setClusterer(Clusterer clusterer) { |
---|
486 | m_Clusterer = clusterer; |
---|
487 | } |
---|
488 | |
---|
489 | /** |
---|
490 | * Gets the clusterer used by the filter. |
---|
491 | * |
---|
492 | * @return The clusterer being used. |
---|
493 | */ |
---|
494 | public Clusterer getClusterer() { |
---|
495 | return m_Clusterer; |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Gets the clusterer specification string, which contains the class name of |
---|
500 | * the clusterer and any options to the clusterer. |
---|
501 | * |
---|
502 | * @return the clusterer string. |
---|
503 | */ |
---|
504 | protected String getClustererSpec() { |
---|
505 | Clusterer c = getClusterer(); |
---|
506 | if (c instanceof OptionHandler) { |
---|
507 | return c.getClass().getName() + " " |
---|
508 | + Utils.joinOptions(((OptionHandler)c).getOptions()); |
---|
509 | } |
---|
510 | return c.getClass().getName(); |
---|
511 | } |
---|
512 | |
---|
513 | /** |
---|
514 | * Returns the tip text for this property. |
---|
515 | * |
---|
516 | * @return tip text for this property suitable for |
---|
517 | * displaying in the explorer/experimenter gui |
---|
518 | */ |
---|
519 | public String ignoredAttributeIndicesTipText() { |
---|
520 | return "The range of attributes to be ignored by the clusterer. eg: first-3,5,9-last"; |
---|
521 | } |
---|
522 | |
---|
523 | /** |
---|
524 | * Gets ranges of attributes to be ignored. |
---|
525 | * |
---|
526 | * @return a string containing a comma-separated list of ranges |
---|
527 | */ |
---|
528 | public String getIgnoredAttributeIndices() { |
---|
529 | if (m_IgnoreAttributesRange == null) |
---|
530 | return ""; |
---|
531 | else |
---|
532 | return m_IgnoreAttributesRange.getRanges(); |
---|
533 | } |
---|
534 | |
---|
535 | /** |
---|
536 | * Sets the ranges of attributes to be ignored. If provided string |
---|
537 | * is null, no attributes will be ignored. |
---|
538 | * |
---|
539 | * @param rangeList a string representing the list of attributes. |
---|
540 | * eg: first-3,5,6-last |
---|
541 | * @throws IllegalArgumentException if an invalid range list is supplied |
---|
542 | */ |
---|
543 | public void setIgnoredAttributeIndices(String rangeList) { |
---|
544 | if ((rangeList == null) || (rangeList.length() == 0)) { |
---|
545 | m_IgnoreAttributesRange = null; |
---|
546 | } else { |
---|
547 | m_IgnoreAttributesRange = new Range(); |
---|
548 | m_IgnoreAttributesRange.setRanges(rangeList); |
---|
549 | } |
---|
550 | } |
---|
551 | |
---|
552 | /** |
---|
553 | * Gets the file pointing to a serialized, built clusterer. If it is |
---|
554 | * null or pointing to a directory it will not be used. |
---|
555 | * |
---|
556 | * @return the file the serialized, built clusterer is located in |
---|
557 | */ |
---|
558 | public File getSerializedClustererFile() { |
---|
559 | return m_SerializedClustererFile; |
---|
560 | } |
---|
561 | |
---|
562 | /** |
---|
563 | * Sets the file pointing to a serialized, built clusterer. If the |
---|
564 | * argument is null, doesn't exist or pointing to a directory, then the |
---|
565 | * value is ignored. |
---|
566 | * |
---|
567 | * @param value the file pointing to the serialized, built clusterer |
---|
568 | */ |
---|
569 | public void setSerializedClustererFile(File value) { |
---|
570 | if ((value == null) || (!value.exists())) |
---|
571 | value = new File(System.getProperty("user.dir")); |
---|
572 | |
---|
573 | m_SerializedClustererFile = value; |
---|
574 | } |
---|
575 | |
---|
576 | /** |
---|
577 | * Returns the tip text for this property. |
---|
578 | * |
---|
579 | * @return tip text for this property suitable for |
---|
580 | * displaying in the explorer/experimenter gui |
---|
581 | */ |
---|
582 | public String serializedClustererFileTipText() { |
---|
583 | return "A file containing the serialized model of a built clusterer."; |
---|
584 | } |
---|
585 | |
---|
586 | /** |
---|
587 | * Returns the revision string. |
---|
588 | * |
---|
589 | * @return the revision |
---|
590 | */ |
---|
591 | public String getRevision() { |
---|
592 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
593 | } |
---|
594 | |
---|
595 | /** |
---|
596 | * Main method for testing this class. |
---|
597 | * |
---|
598 | * @param argv should contain arguments to the filter: use -h for help |
---|
599 | */ |
---|
600 | public static void main(String[] argv) { |
---|
601 | runFilter(new AddCluster(), argv); |
---|
602 | } |
---|
603 | } |
---|