1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Resample.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.filters.supervised.instance; |
---|
24 | |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.OptionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | import weka.core.Capabilities.Capability; |
---|
33 | import weka.filters.Filter; |
---|
34 | import weka.filters.SupervisedFilter; |
---|
35 | |
---|
36 | import java.util.Collections; |
---|
37 | import java.util.Enumeration; |
---|
38 | import java.util.Random; |
---|
39 | import java.util.Vector; |
---|
40 | |
---|
41 | /** |
---|
42 | <!-- globalinfo-start --> |
---|
43 | * Produces a random subsample of a dataset using either sampling with replacement or without replacement.<br/> |
---|
44 | * The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled. |
---|
45 | * <p/> |
---|
46 | <!-- globalinfo-end --> |
---|
47 | * |
---|
48 | <!-- options-start --> |
---|
49 | * Valid options are: <p/> |
---|
50 | * |
---|
51 | * <pre> -S <num> |
---|
52 | * Specify the random number seed (default 1)</pre> |
---|
53 | * |
---|
54 | * <pre> -Z <num> |
---|
55 | * The size of the output dataset, as a percentage of |
---|
56 | * the input dataset (default 100)</pre> |
---|
57 | * |
---|
58 | * <pre> -B <num> |
---|
59 | * Bias factor towards uniform class distribution. |
---|
60 | * 0 = distribution in input data -- 1 = uniform distribution. |
---|
61 | * (default 0)</pre> |
---|
62 | * |
---|
63 | * <pre> -no-replacement |
---|
64 | * Disables replacement of instances |
---|
65 | * (default: with replacement)</pre> |
---|
66 | * |
---|
67 | * <pre> -V |
---|
68 | * Inverts the selection - only available with '-no-replacement'.</pre> |
---|
69 | * |
---|
70 | <!-- options-end --> |
---|
71 | * |
---|
72 | * @author Len Trigg (len@reeltwo.com) |
---|
73 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
74 | * @version $Revision: 5492 $ |
---|
75 | */ |
---|
76 | public class Resample |
---|
77 | extends Filter |
---|
78 | implements SupervisedFilter, OptionHandler { |
---|
79 | |
---|
80 | /** for serialization. */ |
---|
81 | static final long serialVersionUID = 7079064953548300681L; |
---|
82 | |
---|
83 | /** The subsample size, percent of original set, default 100%. */ |
---|
84 | protected double m_SampleSizePercent = 100; |
---|
85 | |
---|
86 | /** The random number generator seed. */ |
---|
87 | protected int m_RandomSeed = 1; |
---|
88 | |
---|
89 | /** The degree of bias towards uniform (nominal) class distribution. */ |
---|
90 | protected double m_BiasToUniformClass = 0; |
---|
91 | |
---|
92 | /** Whether to perform sampling with replacement or without. */ |
---|
93 | protected boolean m_NoReplacement = false; |
---|
94 | |
---|
95 | /** Whether to invert the selection (only if instances are drawn WITHOUT |
---|
96 | * replacement). |
---|
97 | * @see #m_NoReplacement */ |
---|
98 | protected boolean m_InvertSelection = false; |
---|
99 | |
---|
100 | /** |
---|
101 | * Returns a string describing this filter. |
---|
102 | * |
---|
103 | * @return a description of the filter suitable for |
---|
104 | * displaying in the explorer/experimenter gui |
---|
105 | */ |
---|
106 | public String globalInfo() { |
---|
107 | return |
---|
108 | "Produces a random subsample of a dataset using either sampling " |
---|
109 | + "with replacement or without replacement.\n" |
---|
110 | + "The original dataset must " |
---|
111 | + "fit entirely in memory. The number of instances in the generated " |
---|
112 | + "dataset may be specified. The dataset must have a nominal class " |
---|
113 | + "attribute. If not, use the unsupervised version. The filter can be " |
---|
114 | + "made to maintain the class distribution in the subsample, or to bias " |
---|
115 | + "the class distribution toward a uniform distribution. When used in batch " |
---|
116 | + "mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled."; |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Returns an enumeration describing the available options. |
---|
121 | * |
---|
122 | * @return an enumeration of all the available options. |
---|
123 | */ |
---|
124 | public Enumeration listOptions() { |
---|
125 | Vector result = new Vector(); |
---|
126 | |
---|
127 | result.addElement(new Option( |
---|
128 | "\tSpecify the random number seed (default 1)", |
---|
129 | "S", 1, "-S <num>")); |
---|
130 | |
---|
131 | result.addElement(new Option( |
---|
132 | "\tThe size of the output dataset, as a percentage of\n" |
---|
133 | +"\tthe input dataset (default 100)", |
---|
134 | "Z", 1, "-Z <num>")); |
---|
135 | |
---|
136 | result.addElement(new Option( |
---|
137 | "\tBias factor towards uniform class distribution.\n" |
---|
138 | +"\t0 = distribution in input data -- 1 = uniform distribution.\n" |
---|
139 | +"\t(default 0)", |
---|
140 | "B", 1, "-B <num>")); |
---|
141 | |
---|
142 | result.addElement(new Option( |
---|
143 | "\tDisables replacement of instances\n" |
---|
144 | +"\t(default: with replacement)", |
---|
145 | "no-replacement", 0, "-no-replacement")); |
---|
146 | |
---|
147 | result.addElement(new Option( |
---|
148 | "\tInverts the selection - only available with '-no-replacement'.", |
---|
149 | "V", 0, "-V")); |
---|
150 | |
---|
151 | return result.elements(); |
---|
152 | } |
---|
153 | |
---|
154 | |
---|
155 | /** |
---|
156 | * Parses a given list of options. <p/> |
---|
157 | * |
---|
158 | <!-- options-start --> |
---|
159 | * Valid options are: <p/> |
---|
160 | * |
---|
161 | * <pre> -S <num> |
---|
162 | * Specify the random number seed (default 1)</pre> |
---|
163 | * |
---|
164 | * <pre> -Z <num> |
---|
165 | * The size of the output dataset, as a percentage of |
---|
166 | * the input dataset (default 100)</pre> |
---|
167 | * |
---|
168 | * <pre> -B <num> |
---|
169 | * Bias factor towards uniform class distribution. |
---|
170 | * 0 = distribution in input data -- 1 = uniform distribution. |
---|
171 | * (default 0)</pre> |
---|
172 | * |
---|
173 | * <pre> -no-replacement |
---|
174 | * Disables replacement of instances |
---|
175 | * (default: with replacement)</pre> |
---|
176 | * |
---|
177 | * <pre> -V |
---|
178 | * Inverts the selection - only available with '-no-replacement'.</pre> |
---|
179 | * |
---|
180 | <!-- options-end --> |
---|
181 | * |
---|
182 | * @param options the list of options as an array of strings |
---|
183 | * @throws Exception if an option is not supported |
---|
184 | */ |
---|
185 | public void setOptions(String[] options) throws Exception { |
---|
186 | String tmpStr; |
---|
187 | |
---|
188 | tmpStr = Utils.getOption('S', options); |
---|
189 | if (tmpStr.length() != 0) |
---|
190 | setRandomSeed(Integer.parseInt(tmpStr)); |
---|
191 | else |
---|
192 | setRandomSeed(1); |
---|
193 | |
---|
194 | tmpStr = Utils.getOption('B', options); |
---|
195 | if (tmpStr.length() != 0) |
---|
196 | setBiasToUniformClass(Double.parseDouble(tmpStr)); |
---|
197 | else |
---|
198 | setBiasToUniformClass(0); |
---|
199 | |
---|
200 | tmpStr = Utils.getOption('Z', options); |
---|
201 | if (tmpStr.length() != 0) |
---|
202 | setSampleSizePercent(Double.parseDouble(tmpStr)); |
---|
203 | else |
---|
204 | setSampleSizePercent(100); |
---|
205 | |
---|
206 | setNoReplacement(Utils.getFlag("no-replacement", options)); |
---|
207 | |
---|
208 | if (getNoReplacement()) |
---|
209 | setInvertSelection(Utils.getFlag('V', options)); |
---|
210 | |
---|
211 | if (getInputFormat() != null) { |
---|
212 | setInputFormat(getInputFormat()); |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | /** |
---|
217 | * Gets the current settings of the filter. |
---|
218 | * |
---|
219 | * @return an array of strings suitable for passing to setOptions |
---|
220 | */ |
---|
221 | public String [] getOptions() { |
---|
222 | Vector<String> result; |
---|
223 | |
---|
224 | result = new Vector<String>(); |
---|
225 | |
---|
226 | result.add("-B"); |
---|
227 | result.add("" + getBiasToUniformClass()); |
---|
228 | |
---|
229 | result.add("-S"); |
---|
230 | result.add("" + getRandomSeed()); |
---|
231 | |
---|
232 | result.add("-Z"); |
---|
233 | result.add("" + getSampleSizePercent()); |
---|
234 | |
---|
235 | if (getNoReplacement()) { |
---|
236 | result.add("-no-replacement"); |
---|
237 | if (getInvertSelection()) |
---|
238 | result.add("-V"); |
---|
239 | } |
---|
240 | |
---|
241 | return result.toArray(new String[result.size()]); |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Returns the tip text for this property. |
---|
246 | * |
---|
247 | * @return tip text for this property suitable for |
---|
248 | * displaying in the explorer/experimenter gui |
---|
249 | */ |
---|
250 | public String biasToUniformClassTipText() { |
---|
251 | return "Whether to use bias towards a uniform class. A value of 0 leaves the class " |
---|
252 | + "distribution as-is, a value of 1 ensures the class distribution is " |
---|
253 | + "uniform in the output data."; |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Gets the bias towards a uniform class. A value of 0 leaves the class |
---|
258 | * distribution as-is, a value of 1 ensures the class distributions are |
---|
259 | * uniform in the output data. |
---|
260 | * |
---|
261 | * @return the current bias |
---|
262 | */ |
---|
263 | public double getBiasToUniformClass() { |
---|
264 | return m_BiasToUniformClass; |
---|
265 | } |
---|
266 | |
---|
267 | /** |
---|
268 | * Sets the bias towards a uniform class. A value of 0 leaves the class |
---|
269 | * distribution as-is, a value of 1 ensures the class distributions are |
---|
270 | * uniform in the output data. |
---|
271 | * |
---|
272 | * @param newBiasToUniformClass the new bias value, between 0 and 1. |
---|
273 | */ |
---|
274 | public void setBiasToUniformClass(double newBiasToUniformClass) { |
---|
275 | m_BiasToUniformClass = newBiasToUniformClass; |
---|
276 | } |
---|
277 | |
---|
278 | /** |
---|
279 | * Returns the tip text for this property. |
---|
280 | * |
---|
281 | * @return tip text for this property suitable for |
---|
282 | * displaying in the explorer/experimenter gui |
---|
283 | */ |
---|
284 | public String randomSeedTipText() { |
---|
285 | return "Sets the random number seed for subsampling."; |
---|
286 | } |
---|
287 | |
---|
288 | /** |
---|
289 | * Gets the random number seed. |
---|
290 | * |
---|
291 | * @return the random number seed. |
---|
292 | */ |
---|
293 | public int getRandomSeed() { |
---|
294 | return m_RandomSeed; |
---|
295 | } |
---|
296 | |
---|
297 | /** |
---|
298 | * Sets the random number seed. |
---|
299 | * |
---|
300 | * @param newSeed the new random number seed. |
---|
301 | */ |
---|
302 | public void setRandomSeed(int newSeed) { |
---|
303 | m_RandomSeed = newSeed; |
---|
304 | } |
---|
305 | |
---|
306 | /** |
---|
307 | * Returns the tip text for this property. |
---|
308 | * |
---|
309 | * @return tip text for this property suitable for |
---|
310 | * displaying in the explorer/experimenter gui |
---|
311 | */ |
---|
312 | public String sampleSizePercentTipText() { |
---|
313 | return "The subsample size as a percentage of the original set."; |
---|
314 | } |
---|
315 | |
---|
316 | /** |
---|
317 | * Gets the subsample size as a percentage of the original set. |
---|
318 | * |
---|
319 | * @return the subsample size |
---|
320 | */ |
---|
321 | public double getSampleSizePercent() { |
---|
322 | return m_SampleSizePercent; |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * Sets the size of the subsample, as a percentage of the original set. |
---|
327 | * |
---|
328 | * @param newSampleSizePercent the subsample set size, between 0 and 100. |
---|
329 | */ |
---|
330 | public void setSampleSizePercent(double newSampleSizePercent) { |
---|
331 | m_SampleSizePercent = newSampleSizePercent; |
---|
332 | } |
---|
333 | |
---|
334 | /** |
---|
335 | * Returns the tip text for this property. |
---|
336 | * |
---|
337 | * @return tip text for this property suitable for |
---|
338 | * displaying in the explorer/experimenter gui |
---|
339 | */ |
---|
340 | public String noReplacementTipText() { |
---|
341 | return "Disables the replacement of instances."; |
---|
342 | } |
---|
343 | |
---|
344 | /** |
---|
345 | * Gets whether instances are drawn with or without replacement. |
---|
346 | * |
---|
347 | * @return true if the replacement is disabled |
---|
348 | */ |
---|
349 | public boolean getNoReplacement() { |
---|
350 | return m_NoReplacement; |
---|
351 | } |
---|
352 | |
---|
353 | /** |
---|
354 | * Sets whether instances are drawn with or with out replacement. |
---|
355 | * |
---|
356 | * @param value if true then the replacement of instances is disabled |
---|
357 | */ |
---|
358 | public void setNoReplacement(boolean value) { |
---|
359 | m_NoReplacement = value; |
---|
360 | } |
---|
361 | |
---|
362 | /** |
---|
363 | * Returns the tip text for this property. |
---|
364 | * |
---|
365 | * @return tip text for this property suitable for |
---|
366 | * displaying in the explorer/experimenter gui |
---|
367 | */ |
---|
368 | public String invertSelectionTipText() { |
---|
369 | return "Inverts the selection (only if instances are drawn WITHOUT replacement)."; |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * Gets whether selection is inverted (only if instances are drawn WIHTOUT |
---|
374 | * replacement). |
---|
375 | * |
---|
376 | * @return true if the replacement is disabled |
---|
377 | * @see #m_NoReplacement |
---|
378 | */ |
---|
379 | public boolean getInvertSelection() { |
---|
380 | return m_InvertSelection; |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * Sets whether the selection is inverted (only if instances are drawn WIHTOUT |
---|
385 | * replacement). |
---|
386 | * |
---|
387 | * @param value if true then selection is inverted |
---|
388 | */ |
---|
389 | public void setInvertSelection(boolean value) { |
---|
390 | m_InvertSelection = value; |
---|
391 | } |
---|
392 | |
---|
393 | /** |
---|
394 | * Returns the Capabilities of this filter. |
---|
395 | * |
---|
396 | * @return the capabilities of this object |
---|
397 | * @see Capabilities |
---|
398 | */ |
---|
399 | public Capabilities getCapabilities() { |
---|
400 | Capabilities result = super.getCapabilities(); |
---|
401 | result.disableAll(); |
---|
402 | |
---|
403 | // attributes |
---|
404 | result.enableAllAttributes(); |
---|
405 | result.enable(Capability.MISSING_VALUES); |
---|
406 | |
---|
407 | // class |
---|
408 | result.enable(Capability.NOMINAL_CLASS); |
---|
409 | |
---|
410 | return result; |
---|
411 | } |
---|
412 | |
---|
413 | /** |
---|
414 | * Sets the format of the input instances. |
---|
415 | * |
---|
416 | * @param instanceInfo an Instances object containing the input |
---|
417 | * instance structure (any instances contained in the object are |
---|
418 | * ignored - only the structure is required). |
---|
419 | * @return true if the outputFormat may be collected immediately |
---|
420 | * @throws Exception if the input format can't be set |
---|
421 | * successfully |
---|
422 | */ |
---|
423 | public boolean setInputFormat(Instances instanceInfo) |
---|
424 | throws Exception { |
---|
425 | |
---|
426 | super.setInputFormat(instanceInfo); |
---|
427 | setOutputFormat(instanceInfo); |
---|
428 | return true; |
---|
429 | } |
---|
430 | |
---|
431 | /** |
---|
432 | * Input an instance for filtering. Filter requires all |
---|
433 | * training instances be read before producing output. |
---|
434 | * |
---|
435 | * @param instance the input instance |
---|
436 | * @return true if the filtered instance may now be |
---|
437 | * collected with output(). |
---|
438 | * @throws IllegalStateException if no input structure has been defined |
---|
439 | */ |
---|
440 | public boolean input(Instance instance) { |
---|
441 | |
---|
442 | if (getInputFormat() == null) { |
---|
443 | throw new IllegalStateException("No input instance format defined"); |
---|
444 | } |
---|
445 | if (m_NewBatch) { |
---|
446 | resetQueue(); |
---|
447 | m_NewBatch = false; |
---|
448 | } |
---|
449 | if (isFirstBatchDone()) { |
---|
450 | push(instance); |
---|
451 | return true; |
---|
452 | } else { |
---|
453 | bufferInput(instance); |
---|
454 | return false; |
---|
455 | } |
---|
456 | } |
---|
457 | |
---|
458 | /** |
---|
459 | * Signify that this batch of input to the filter is finished. |
---|
460 | * If the filter requires all instances prior to filtering, |
---|
461 | * output() may now be called to retrieve the filtered instances. |
---|
462 | * |
---|
463 | * @return true if there are instances pending output |
---|
464 | * @throws IllegalStateException if no input structure has been defined |
---|
465 | */ |
---|
466 | public boolean batchFinished() { |
---|
467 | |
---|
468 | if (getInputFormat() == null) { |
---|
469 | throw new IllegalStateException("No input instance format defined"); |
---|
470 | } |
---|
471 | |
---|
472 | if (!isFirstBatchDone()) { |
---|
473 | // Do the subsample, and clear the input instances. |
---|
474 | createSubsample(); |
---|
475 | } |
---|
476 | flushInput(); |
---|
477 | |
---|
478 | m_NewBatch = true; |
---|
479 | m_FirstBatchDone = true; |
---|
480 | return (numPendingOutput() != 0); |
---|
481 | } |
---|
482 | |
---|
483 | /** |
---|
484 | * creates the subsample with replacement. |
---|
485 | * |
---|
486 | * @param random the random number generator to use |
---|
487 | * @param origSize the original size of the dataset |
---|
488 | * @param sampleSize the size to generate |
---|
489 | * @param actualClasses the number of classes found in the data |
---|
490 | * @param classIndices the indices where classes start |
---|
491 | */ |
---|
492 | public void createSubsampleWithReplacement(Random random, int origSize, |
---|
493 | int sampleSize, int actualClasses, int[] classIndices) { |
---|
494 | |
---|
495 | for (int i = 0; i < sampleSize; i++) { |
---|
496 | int index = 0; |
---|
497 | if (random.nextDouble() < m_BiasToUniformClass) { |
---|
498 | // Pick a random class (of those classes that actually appear) |
---|
499 | int cIndex = random.nextInt(actualClasses); |
---|
500 | for (int j = 0, k = 0; j < classIndices.length - 1; j++) { |
---|
501 | if ((classIndices[j] != classIndices[j + 1]) && (k++ >= cIndex)) { |
---|
502 | // Pick a random instance of the designated class |
---|
503 | index = classIndices[j] |
---|
504 | + random.nextInt(classIndices[j + 1] - classIndices[j]); |
---|
505 | break; |
---|
506 | } |
---|
507 | } |
---|
508 | } |
---|
509 | else { |
---|
510 | index = random.nextInt(origSize); |
---|
511 | } |
---|
512 | push((Instance) getInputFormat().instance(index).copy()); |
---|
513 | } |
---|
514 | } |
---|
515 | |
---|
516 | /** |
---|
517 | * creates the subsample without replacement. |
---|
518 | * |
---|
519 | * @param random the random number generator to use |
---|
520 | * @param origSize the original size of the dataset |
---|
521 | * @param sampleSize the size to generate |
---|
522 | * @param actualClasses the number of classes found in the data |
---|
523 | * @param classIndices the indices where classes start |
---|
524 | */ |
---|
525 | public void createSubsampleWithoutReplacement(Random random, int origSize, |
---|
526 | int sampleSize, int actualClasses, int[] classIndices) { |
---|
527 | |
---|
528 | if (sampleSize > origSize) { |
---|
529 | sampleSize = origSize; |
---|
530 | System.err.println( |
---|
531 | "Resampling without replacement can only use percentage <=100% - " |
---|
532 | + "Using full dataset!"); |
---|
533 | } |
---|
534 | |
---|
535 | Vector<Integer>[] indices = new Vector[classIndices.length - 1]; |
---|
536 | Vector<Integer>[] indicesNew = new Vector[classIndices.length - 1]; |
---|
537 | |
---|
538 | // generate list of all indices to draw from |
---|
539 | for (int i = 0; i < classIndices.length - 1; i++) { |
---|
540 | indices[i] = new Vector<Integer>(classIndices[i + 1] - classIndices[i]); |
---|
541 | indicesNew[i] = new Vector<Integer>(indices[i].capacity()); |
---|
542 | for (int n = classIndices[i]; n < classIndices[i + 1]; n++) |
---|
543 | indices[i].add(n); |
---|
544 | } |
---|
545 | |
---|
546 | // draw X samples |
---|
547 | int currentSize = origSize; |
---|
548 | for (int i = 0; i < sampleSize; i++) { |
---|
549 | int index = 0; |
---|
550 | if (random.nextDouble() < m_BiasToUniformClass) { |
---|
551 | // Pick a random class (of those classes that actually appear) |
---|
552 | int cIndex = random.nextInt(actualClasses); |
---|
553 | for (int j = 0, k = 0; j < classIndices.length - 1; j++) { |
---|
554 | if ((classIndices[j] != classIndices[j + 1]) && (k++ >= cIndex)) { |
---|
555 | // no more indices for this class left, try again |
---|
556 | if (indices[j].size() == 0) { |
---|
557 | i--; |
---|
558 | break; |
---|
559 | } |
---|
560 | // Pick a random instance of the designated class |
---|
561 | index = random.nextInt(indices[j].size()); |
---|
562 | indicesNew[j].add(indices[j].get(index)); |
---|
563 | indices[j].remove(index); |
---|
564 | break; |
---|
565 | } |
---|
566 | } |
---|
567 | } |
---|
568 | else { |
---|
569 | index = random.nextInt(currentSize); |
---|
570 | for (int n = 0; n < actualClasses; n++) { |
---|
571 | if (index < indices[n].size()) { |
---|
572 | indicesNew[n].add(indices[n].get(index)); |
---|
573 | indices[n].remove(index); |
---|
574 | break; |
---|
575 | } |
---|
576 | else { |
---|
577 | index -= indices[n].size(); |
---|
578 | } |
---|
579 | } |
---|
580 | currentSize--; |
---|
581 | } |
---|
582 | } |
---|
583 | |
---|
584 | // sort indices |
---|
585 | if (getInvertSelection()) { |
---|
586 | indicesNew = indices; |
---|
587 | } |
---|
588 | else { |
---|
589 | for (int i = 0; i < indicesNew.length; i++) |
---|
590 | Collections.sort(indicesNew[i]); |
---|
591 | } |
---|
592 | |
---|
593 | // add to ouput |
---|
594 | for (int i = 0; i < indicesNew.length; i++) { |
---|
595 | for (int n = 0; n < indicesNew[i].size(); n++) |
---|
596 | push((Instance) getInputFormat().instance(indicesNew[i].get(n)).copy()); |
---|
597 | } |
---|
598 | |
---|
599 | // clean up |
---|
600 | for (int i = 0; i < indices.length; i++) { |
---|
601 | indices[i].clear(); |
---|
602 | indicesNew[i].clear(); |
---|
603 | } |
---|
604 | indices = null; |
---|
605 | indicesNew = null; |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Creates a subsample of the current set of input instances. The output |
---|
610 | * instances are pushed onto the output queue for collection. |
---|
611 | */ |
---|
612 | protected void createSubsample() { |
---|
613 | int origSize = getInputFormat().numInstances(); |
---|
614 | int sampleSize = (int) (origSize * m_SampleSizePercent / 100); |
---|
615 | |
---|
616 | // Subsample that takes class distribution into consideration |
---|
617 | |
---|
618 | // Sort according to class attribute. |
---|
619 | getInputFormat().sort(getInputFormat().classIndex()); |
---|
620 | |
---|
621 | // Create an index of where each class value starts |
---|
622 | int[] classIndices = new int [getInputFormat().numClasses() + 1]; |
---|
623 | int currentClass = 0; |
---|
624 | classIndices[currentClass] = 0; |
---|
625 | for (int i = 0; i < getInputFormat().numInstances(); i++) { |
---|
626 | Instance current = getInputFormat().instance(i); |
---|
627 | if (current.classIsMissing()) { |
---|
628 | for (int j = currentClass + 1; j < classIndices.length; j++) { |
---|
629 | classIndices[j] = i; |
---|
630 | } |
---|
631 | break; |
---|
632 | } else if (current.classValue() != currentClass) { |
---|
633 | for (int j = currentClass + 1; j <= current.classValue(); j++) { |
---|
634 | classIndices[j] = i; |
---|
635 | } |
---|
636 | currentClass = (int) current.classValue(); |
---|
637 | } |
---|
638 | } |
---|
639 | if (currentClass <= getInputFormat().numClasses()) { |
---|
640 | for (int j = currentClass + 1; j < classIndices.length; j++) { |
---|
641 | classIndices[j] = getInputFormat().numInstances(); |
---|
642 | } |
---|
643 | } |
---|
644 | |
---|
645 | int actualClasses = 0; |
---|
646 | for (int i = 0; i < classIndices.length - 1; i++) { |
---|
647 | if (classIndices[i] != classIndices[i + 1]) { |
---|
648 | actualClasses++; |
---|
649 | } |
---|
650 | } |
---|
651 | |
---|
652 | // Create the new sample |
---|
653 | Random random = new Random(m_RandomSeed); |
---|
654 | |
---|
655 | // Convert pending input instances |
---|
656 | if (getNoReplacement()) |
---|
657 | createSubsampleWithoutReplacement( |
---|
658 | random, origSize, sampleSize, actualClasses, classIndices); |
---|
659 | else |
---|
660 | createSubsampleWithReplacement( |
---|
661 | random, origSize, sampleSize, actualClasses, classIndices); |
---|
662 | } |
---|
663 | |
---|
664 | /** |
---|
665 | * Returns the revision string. |
---|
666 | * |
---|
667 | * @return the revision |
---|
668 | */ |
---|
669 | public String getRevision() { |
---|
670 | return RevisionUtils.extract("$Revision: 5492 $"); |
---|
671 | } |
---|
672 | |
---|
673 | /** |
---|
674 | * Main method for testing this class. |
---|
675 | * |
---|
676 | * @param argv should contain arguments to the filter: |
---|
677 | * use -h for help |
---|
678 | */ |
---|
679 | public static void main(String [] argv) { |
---|
680 | runFilter(new Resample(), argv); |
---|
681 | } |
---|
682 | } |
---|