| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * Discretize.java |
|---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | |
|---|
| 24 | package weka.filters.supervised.attribute; |
|---|
| 25 | |
|---|
| 26 | import weka.core.Attribute; |
|---|
| 27 | import weka.core.Capabilities; |
|---|
| 28 | import weka.core.ContingencyTables; |
|---|
| 29 | import weka.core.FastVector; |
|---|
| 30 | import weka.core.Instance; |
|---|
| 31 | import weka.core.DenseInstance; |
|---|
| 32 | import weka.core.Instances; |
|---|
| 33 | import weka.core.Option; |
|---|
| 34 | import weka.core.OptionHandler; |
|---|
| 35 | import weka.core.Range; |
|---|
| 36 | import weka.core.RevisionUtils; |
|---|
| 37 | import weka.core.SparseInstance; |
|---|
| 38 | import weka.core.SpecialFunctions; |
|---|
| 39 | import weka.core.TechnicalInformation; |
|---|
| 40 | import weka.core.TechnicalInformationHandler; |
|---|
| 41 | import weka.core.Utils; |
|---|
| 42 | import weka.core.WeightedInstancesHandler; |
|---|
| 43 | import weka.core.Capabilities.Capability; |
|---|
| 44 | import weka.core.TechnicalInformation.Field; |
|---|
| 45 | import weka.core.TechnicalInformation.Type; |
|---|
| 46 | import weka.filters.Filter; |
|---|
| 47 | import weka.filters.SupervisedFilter; |
|---|
| 48 | |
|---|
| 49 | import java.util.Enumeration; |
|---|
| 50 | import java.util.Vector; |
|---|
| 51 | |
|---|
| 52 | /** |
|---|
| 53 | <!-- globalinfo-start --> |
|---|
| 54 | * An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by Fayyad & Irani's MDL method (the default).<br/> |
|---|
| 55 | * <br/> |
|---|
| 56 | * For more information, see:<br/> |
|---|
| 57 | * <br/> |
|---|
| 58 | * Usama M. Fayyad, Keki B. Irani: Multi-interval discretization of continuousvalued attributes for classification learning. In: Thirteenth International Joint Conference on Articial Intelligence, 1022-1027, 1993.<br/> |
|---|
| 59 | * <br/> |
|---|
| 60 | * Igor Kononenko: On Biases in Estimating Multi-Valued Attributes. In: 14th International Joint Conference on Articial Intelligence, 1034-1040, 1995. |
|---|
| 61 | * <p/> |
|---|
| 62 | <!-- globalinfo-end --> |
|---|
| 63 | * |
|---|
| 64 | <!-- technical-bibtex-start --> |
|---|
| 65 | * BibTeX: |
|---|
| 66 | * <pre> |
|---|
| 67 | * @inproceedings{Fayyad1993, |
|---|
| 68 | * author = {Usama M. Fayyad and Keki B. Irani}, |
|---|
| 69 | * booktitle = {Thirteenth International Joint Conference on Articial Intelligence}, |
|---|
| 70 | * pages = {1022-1027}, |
|---|
| 71 | * publisher = {Morgan Kaufmann Publishers}, |
|---|
| 72 | * title = {Multi-interval discretization of continuousvalued attributes for classification learning}, |
|---|
| 73 | * volume = {2}, |
|---|
| 74 | * year = {1993} |
|---|
| 75 | * } |
|---|
| 76 | * |
|---|
| 77 | * @inproceedings{Kononenko1995, |
|---|
| 78 | * author = {Igor Kononenko}, |
|---|
| 79 | * booktitle = {14th International Joint Conference on Articial Intelligence}, |
|---|
| 80 | * pages = {1034-1040}, |
|---|
| 81 | * title = {On Biases in Estimating Multi-Valued Attributes}, |
|---|
| 82 | * year = {1995}, |
|---|
| 83 | * PS = {http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz} |
|---|
| 84 | * } |
|---|
| 85 | * </pre> |
|---|
| 86 | * <p/> |
|---|
| 87 | <!-- technical-bibtex-end --> |
|---|
| 88 | * |
|---|
| 89 | <!-- options-start --> |
|---|
| 90 | * Valid options are: <p/> |
|---|
| 91 | * |
|---|
| 92 | * <pre> -R <col1,col2-col4,...> |
|---|
| 93 | * Specifies list of columns to Discretize. First and last are valid indexes. |
|---|
| 94 | * (default none)</pre> |
|---|
| 95 | * |
|---|
| 96 | * <pre> -V |
|---|
| 97 | * Invert matching sense of column indexes.</pre> |
|---|
| 98 | * |
|---|
| 99 | * <pre> -D |
|---|
| 100 | * Output binary attributes for discretized attributes.</pre> |
|---|
| 101 | * |
|---|
| 102 | * <pre> -E |
|---|
| 103 | * Use better encoding of split point for MDL.</pre> |
|---|
| 104 | * |
|---|
| 105 | * <pre> -K |
|---|
| 106 | * Use Kononenko's MDL criterion.</pre> |
|---|
| 107 | * |
|---|
| 108 | <!-- options-end --> |
|---|
| 109 | * |
|---|
| 110 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
|---|
| 111 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
|---|
| 112 | * @version $Revision: 5987 $ |
|---|
| 113 | */ |
|---|
| 114 | public class Discretize |
|---|
| 115 | extends Filter |
|---|
| 116 | implements SupervisedFilter, OptionHandler, WeightedInstancesHandler, |
|---|
| 117 | TechnicalInformationHandler { |
|---|
| 118 | |
|---|
| 119 | /** for serialization */ |
|---|
| 120 | static final long serialVersionUID = -3141006402280129097L; |
|---|
| 121 | |
|---|
| 122 | /** Stores which columns to Discretize */ |
|---|
| 123 | protected Range m_DiscretizeCols = new Range(); |
|---|
| 124 | |
|---|
| 125 | /** Store the current cutpoints */ |
|---|
| 126 | protected double [][] m_CutPoints = null; |
|---|
| 127 | |
|---|
| 128 | /** Output binary attributes for discretized attributes. */ |
|---|
| 129 | protected boolean m_MakeBinary = false; |
|---|
| 130 | |
|---|
| 131 | /** Use better encoding of split point for MDL. */ |
|---|
| 132 | protected boolean m_UseBetterEncoding = false; |
|---|
| 133 | |
|---|
| 134 | /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */ |
|---|
| 135 | protected boolean m_UseKononenko = false; |
|---|
| 136 | |
|---|
| 137 | /** Constructor - initialises the filter */ |
|---|
| 138 | public Discretize() { |
|---|
| 139 | |
|---|
| 140 | setAttributeIndices("first-last"); |
|---|
| 141 | } |
|---|
| 142 | |
|---|
| 143 | |
|---|
| 144 | /** |
|---|
| 145 | * Gets an enumeration describing the available options. |
|---|
| 146 | * |
|---|
| 147 | * @return an enumeration of all the available options. |
|---|
| 148 | */ |
|---|
| 149 | public Enumeration listOptions() { |
|---|
| 150 | |
|---|
| 151 | Vector newVector = new Vector(7); |
|---|
| 152 | |
|---|
| 153 | newVector.addElement(new Option( |
|---|
| 154 | "\tSpecifies list of columns to Discretize. First" |
|---|
| 155 | + " and last are valid indexes.\n" |
|---|
| 156 | + "\t(default none)", |
|---|
| 157 | "R", 1, "-R <col1,col2-col4,...>")); |
|---|
| 158 | |
|---|
| 159 | newVector.addElement(new Option( |
|---|
| 160 | "\tInvert matching sense of column indexes.", |
|---|
| 161 | "V", 0, "-V")); |
|---|
| 162 | |
|---|
| 163 | newVector.addElement(new Option( |
|---|
| 164 | "\tOutput binary attributes for discretized attributes.", |
|---|
| 165 | "D", 0, "-D")); |
|---|
| 166 | |
|---|
| 167 | newVector.addElement(new Option( |
|---|
| 168 | "\tUse better encoding of split point for MDL.", |
|---|
| 169 | "E", 0, "-E")); |
|---|
| 170 | |
|---|
| 171 | newVector.addElement(new Option( |
|---|
| 172 | "\tUse Kononenko's MDL criterion.", |
|---|
| 173 | "K", 0, "-K")); |
|---|
| 174 | |
|---|
| 175 | return newVector.elements(); |
|---|
| 176 | } |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | /** |
|---|
| 180 | * Parses a given list of options. <p/> |
|---|
| 181 | * |
|---|
| 182 | <!-- options-start --> |
|---|
| 183 | * Valid options are: <p/> |
|---|
| 184 | * |
|---|
| 185 | * <pre> -R <col1,col2-col4,...> |
|---|
| 186 | * Specifies list of columns to Discretize. First and last are valid indexes. |
|---|
| 187 | * (default none)</pre> |
|---|
| 188 | * |
|---|
| 189 | * <pre> -V |
|---|
| 190 | * Invert matching sense of column indexes.</pre> |
|---|
| 191 | * |
|---|
| 192 | * <pre> -D |
|---|
| 193 | * Output binary attributes for discretized attributes.</pre> |
|---|
| 194 | * |
|---|
| 195 | * <pre> -E |
|---|
| 196 | * Use better encoding of split point for MDL.</pre> |
|---|
| 197 | * |
|---|
| 198 | * <pre> -K |
|---|
| 199 | * Use Kononenko's MDL criterion.</pre> |
|---|
| 200 | * |
|---|
| 201 | <!-- options-end --> |
|---|
| 202 | * |
|---|
| 203 | * @param options the list of options as an array of strings |
|---|
| 204 | * @throws Exception if an option is not supported |
|---|
| 205 | */ |
|---|
| 206 | public void setOptions(String[] options) throws Exception { |
|---|
| 207 | |
|---|
| 208 | setMakeBinary(Utils.getFlag('D', options)); |
|---|
| 209 | setUseBetterEncoding(Utils.getFlag('E', options)); |
|---|
| 210 | setUseKononenko(Utils.getFlag('K', options)); |
|---|
| 211 | setInvertSelection(Utils.getFlag('V', options)); |
|---|
| 212 | |
|---|
| 213 | String convertList = Utils.getOption('R', options); |
|---|
| 214 | if (convertList.length() != 0) { |
|---|
| 215 | setAttributeIndices(convertList); |
|---|
| 216 | } else { |
|---|
| 217 | setAttributeIndices("first-last"); |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | if (getInputFormat() != null) { |
|---|
| 221 | setInputFormat(getInputFormat()); |
|---|
| 222 | } |
|---|
| 223 | } |
|---|
| 224 | /** |
|---|
| 225 | * Gets the current settings of the filter. |
|---|
| 226 | * |
|---|
| 227 | * @return an array of strings suitable for passing to setOptions |
|---|
| 228 | */ |
|---|
| 229 | public String [] getOptions() { |
|---|
| 230 | |
|---|
| 231 | String [] options = new String [12]; |
|---|
| 232 | int current = 0; |
|---|
| 233 | |
|---|
| 234 | if (getMakeBinary()) { |
|---|
| 235 | options[current++] = "-D"; |
|---|
| 236 | } |
|---|
| 237 | if (getUseBetterEncoding()) { |
|---|
| 238 | options[current++] = "-E"; |
|---|
| 239 | } |
|---|
| 240 | if (getUseKononenko()) { |
|---|
| 241 | options[current++] = "-K"; |
|---|
| 242 | } |
|---|
| 243 | if (getInvertSelection()) { |
|---|
| 244 | options[current++] = "-V"; |
|---|
| 245 | } |
|---|
| 246 | if (!getAttributeIndices().equals("")) { |
|---|
| 247 | options[current++] = "-R"; options[current++] = getAttributeIndices(); |
|---|
| 248 | } |
|---|
| 249 | while (current < options.length) { |
|---|
| 250 | options[current++] = ""; |
|---|
| 251 | } |
|---|
| 252 | return options; |
|---|
| 253 | } |
|---|
| 254 | |
|---|
| 255 | /** |
|---|
| 256 | * Returns the Capabilities of this filter. |
|---|
| 257 | * |
|---|
| 258 | * @return the capabilities of this object |
|---|
| 259 | * @see Capabilities |
|---|
| 260 | */ |
|---|
| 261 | public Capabilities getCapabilities() { |
|---|
| 262 | Capabilities result = super.getCapabilities(); |
|---|
| 263 | result.disableAll(); |
|---|
| 264 | |
|---|
| 265 | // attributes |
|---|
| 266 | result.enableAllAttributes(); |
|---|
| 267 | result.enable(Capability.MISSING_VALUES); |
|---|
| 268 | |
|---|
| 269 | // class |
|---|
| 270 | result.enable(Capability.NOMINAL_CLASS); |
|---|
| 271 | |
|---|
| 272 | return result; |
|---|
| 273 | } |
|---|
| 274 | |
|---|
| 275 | /** |
|---|
| 276 | * Sets the format of the input instances. |
|---|
| 277 | * |
|---|
| 278 | * @param instanceInfo an Instances object containing the input instance |
|---|
| 279 | * structure (any instances contained in the object are ignored - only the |
|---|
| 280 | * structure is required). |
|---|
| 281 | * @return true if the outputFormat may be collected immediately |
|---|
| 282 | * @throws Exception if the input format can't be set successfully |
|---|
| 283 | */ |
|---|
| 284 | public boolean setInputFormat(Instances instanceInfo) throws Exception { |
|---|
| 285 | |
|---|
| 286 | super.setInputFormat(instanceInfo); |
|---|
| 287 | |
|---|
| 288 | m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1); |
|---|
| 289 | m_CutPoints = null; |
|---|
| 290 | |
|---|
| 291 | // If we implement loading cutfiles, then load |
|---|
| 292 | //them here and set the output format |
|---|
| 293 | return false; |
|---|
| 294 | } |
|---|
| 295 | |
|---|
| 296 | |
|---|
| 297 | |
|---|
| 298 | /** |
|---|
| 299 | * Input an instance for filtering. Ordinarily the instance is processed |
|---|
| 300 | * and made available for output immediately. Some filters require all |
|---|
| 301 | * instances be read before producing output. |
|---|
| 302 | * |
|---|
| 303 | * @param instance the input instance |
|---|
| 304 | * @return true if the filtered instance may now be |
|---|
| 305 | * collected with output(). |
|---|
| 306 | * @throws IllegalStateException if no input format has been defined. |
|---|
| 307 | */ |
|---|
| 308 | public boolean input(Instance instance) { |
|---|
| 309 | |
|---|
| 310 | if (getInputFormat() == null) { |
|---|
| 311 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 312 | } |
|---|
| 313 | if (m_NewBatch) { |
|---|
| 314 | resetQueue(); |
|---|
| 315 | m_NewBatch = false; |
|---|
| 316 | } |
|---|
| 317 | |
|---|
| 318 | if (m_CutPoints != null) { |
|---|
| 319 | convertInstance(instance); |
|---|
| 320 | return true; |
|---|
| 321 | } |
|---|
| 322 | |
|---|
| 323 | bufferInput(instance); |
|---|
| 324 | return false; |
|---|
| 325 | } |
|---|
| 326 | |
|---|
| 327 | |
|---|
| 328 | /** |
|---|
| 329 | * Signifies that this batch of input to the filter is finished. If the |
|---|
| 330 | * filter requires all instances prior to filtering, output() may now |
|---|
| 331 | * be called to retrieve the filtered instances. |
|---|
| 332 | * |
|---|
| 333 | * @return true if there are instances pending output |
|---|
| 334 | * @throws IllegalStateException if no input structure has been defined |
|---|
| 335 | */ |
|---|
| 336 | public boolean batchFinished() { |
|---|
| 337 | |
|---|
| 338 | if (getInputFormat() == null) { |
|---|
| 339 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 340 | } |
|---|
| 341 | if (m_CutPoints == null) { |
|---|
| 342 | calculateCutPoints(); |
|---|
| 343 | |
|---|
| 344 | setOutputFormat(); |
|---|
| 345 | |
|---|
| 346 | // If we implement saving cutfiles, save the cuts here |
|---|
| 347 | |
|---|
| 348 | // Convert pending input instances |
|---|
| 349 | for(int i = 0; i < getInputFormat().numInstances(); i++) { |
|---|
| 350 | convertInstance(getInputFormat().instance(i)); |
|---|
| 351 | } |
|---|
| 352 | } |
|---|
| 353 | flushInput(); |
|---|
| 354 | |
|---|
| 355 | m_NewBatch = true; |
|---|
| 356 | return (numPendingOutput() != 0); |
|---|
| 357 | } |
|---|
| 358 | |
|---|
| 359 | /** |
|---|
| 360 | * Returns a string describing this filter |
|---|
| 361 | * |
|---|
| 362 | * @return a description of the filter suitable for |
|---|
| 363 | * displaying in the explorer/experimenter gui |
|---|
| 364 | */ |
|---|
| 365 | public String globalInfo() { |
|---|
| 366 | |
|---|
| 367 | return "An instance filter that discretizes a range of numeric" |
|---|
| 368 | + " attributes in the dataset into nominal attributes." |
|---|
| 369 | + " Discretization is by Fayyad & Irani's MDL method (the default).\n\n" |
|---|
| 370 | + "For more information, see:\n\n" |
|---|
| 371 | + getTechnicalInformation().toString(); |
|---|
| 372 | } |
|---|
| 373 | |
|---|
| 374 | /** |
|---|
| 375 | * Returns an instance of a TechnicalInformation object, containing |
|---|
| 376 | * detailed information about the technical background of this class, |
|---|
| 377 | * e.g., paper reference or book this class is based on. |
|---|
| 378 | * |
|---|
| 379 | * @return the technical information about this class |
|---|
| 380 | */ |
|---|
| 381 | public TechnicalInformation getTechnicalInformation() { |
|---|
| 382 | TechnicalInformation result; |
|---|
| 383 | TechnicalInformation additional; |
|---|
| 384 | |
|---|
| 385 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
|---|
| 386 | result.setValue(Field.AUTHOR, "Usama M. Fayyad and Keki B. Irani"); |
|---|
| 387 | result.setValue(Field.TITLE, "Multi-interval discretization of continuousvalued attributes for classification learning"); |
|---|
| 388 | result.setValue(Field.BOOKTITLE, "Thirteenth International Joint Conference on Articial Intelligence"); |
|---|
| 389 | result.setValue(Field.YEAR, "1993"); |
|---|
| 390 | result.setValue(Field.VOLUME, "2"); |
|---|
| 391 | result.setValue(Field.PAGES, "1022-1027"); |
|---|
| 392 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); |
|---|
| 393 | |
|---|
| 394 | additional = result.add(Type.INPROCEEDINGS); |
|---|
| 395 | additional.setValue(Field.AUTHOR, "Igor Kononenko"); |
|---|
| 396 | additional.setValue(Field.TITLE, "On Biases in Estimating Multi-Valued Attributes"); |
|---|
| 397 | additional.setValue(Field.BOOKTITLE, "14th International Joint Conference on Articial Intelligence"); |
|---|
| 398 | additional.setValue(Field.YEAR, "1995"); |
|---|
| 399 | additional.setValue(Field.PAGES, "1034-1040"); |
|---|
| 400 | additional.setValue(Field.PS, "http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz"); |
|---|
| 401 | |
|---|
| 402 | return result; |
|---|
| 403 | } |
|---|
| 404 | |
|---|
| 405 | /** |
|---|
| 406 | * Returns the tip text for this property |
|---|
| 407 | * |
|---|
| 408 | * @return tip text for this property suitable for |
|---|
| 409 | * displaying in the explorer/experimenter gui |
|---|
| 410 | */ |
|---|
| 411 | public String makeBinaryTipText() { |
|---|
| 412 | |
|---|
| 413 | return "Make resulting attributes binary."; |
|---|
| 414 | } |
|---|
| 415 | |
|---|
| 416 | /** |
|---|
| 417 | * Gets whether binary attributes should be made for discretized ones. |
|---|
| 418 | * |
|---|
| 419 | * @return true if attributes will be binarized |
|---|
| 420 | */ |
|---|
| 421 | public boolean getMakeBinary() { |
|---|
| 422 | |
|---|
| 423 | return m_MakeBinary; |
|---|
| 424 | } |
|---|
| 425 | |
|---|
| 426 | /** |
|---|
| 427 | * Sets whether binary attributes should be made for discretized ones. |
|---|
| 428 | * |
|---|
| 429 | * @param makeBinary if binary attributes are to be made |
|---|
| 430 | */ |
|---|
| 431 | public void setMakeBinary(boolean makeBinary) { |
|---|
| 432 | |
|---|
| 433 | m_MakeBinary = makeBinary; |
|---|
| 434 | } |
|---|
| 435 | |
|---|
| 436 | /** |
|---|
| 437 | * Returns the tip text for this property |
|---|
| 438 | * |
|---|
| 439 | * @return tip text for this property suitable for |
|---|
| 440 | * displaying in the explorer/experimenter gui |
|---|
| 441 | */ |
|---|
| 442 | public String useKononenkoTipText() { |
|---|
| 443 | |
|---|
| 444 | return "Use Kononenko's MDL criterion. If set to false" |
|---|
| 445 | + " uses the Fayyad & Irani criterion."; |
|---|
| 446 | } |
|---|
| 447 | |
|---|
| 448 | /** |
|---|
| 449 | * Gets whether Kononenko's MDL criterion is to be used. |
|---|
| 450 | * |
|---|
| 451 | * @return true if Kononenko's criterion will be used. |
|---|
| 452 | */ |
|---|
| 453 | public boolean getUseKononenko() { |
|---|
| 454 | |
|---|
| 455 | return m_UseKononenko; |
|---|
| 456 | } |
|---|
| 457 | |
|---|
| 458 | /** |
|---|
| 459 | * Sets whether Kononenko's MDL criterion is to be used. |
|---|
| 460 | * |
|---|
| 461 | * @param useKon true if Kononenko's one is to be used |
|---|
| 462 | */ |
|---|
| 463 | public void setUseKononenko(boolean useKon) { |
|---|
| 464 | |
|---|
| 465 | m_UseKononenko = useKon; |
|---|
| 466 | } |
|---|
| 467 | |
|---|
| 468 | /** |
|---|
| 469 | * Returns the tip text for this property |
|---|
| 470 | * |
|---|
| 471 | * @return tip text for this property suitable for |
|---|
| 472 | * displaying in the explorer/experimenter gui |
|---|
| 473 | */ |
|---|
| 474 | public String useBetterEncodingTipText() { |
|---|
| 475 | |
|---|
| 476 | return "Uses a more efficient split point encoding."; |
|---|
| 477 | } |
|---|
| 478 | |
|---|
| 479 | /** |
|---|
| 480 | * Gets whether better encoding is to be used for MDL. |
|---|
| 481 | * |
|---|
| 482 | * @return true if the better MDL encoding will be used |
|---|
| 483 | */ |
|---|
| 484 | public boolean getUseBetterEncoding() { |
|---|
| 485 | |
|---|
| 486 | return m_UseBetterEncoding; |
|---|
| 487 | } |
|---|
| 488 | |
|---|
| 489 | /** |
|---|
| 490 | * Sets whether better encoding is to be used for MDL. |
|---|
| 491 | * |
|---|
| 492 | * @param useBetterEncoding true if better encoding to be used. |
|---|
| 493 | */ |
|---|
| 494 | public void setUseBetterEncoding(boolean useBetterEncoding) { |
|---|
| 495 | |
|---|
| 496 | m_UseBetterEncoding = useBetterEncoding; |
|---|
| 497 | } |
|---|
| 498 | |
|---|
| 499 | /** |
|---|
| 500 | * Returns the tip text for this property |
|---|
| 501 | * |
|---|
| 502 | * @return tip text for this property suitable for |
|---|
| 503 | * displaying in the explorer/experimenter gui |
|---|
| 504 | */ |
|---|
| 505 | public String invertSelectionTipText() { |
|---|
| 506 | |
|---|
| 507 | return "Set attribute selection mode. If false, only selected" |
|---|
| 508 | + " (numeric) attributes in the range will be discretized; if" |
|---|
| 509 | + " true, only non-selected attributes will be discretized."; |
|---|
| 510 | } |
|---|
| 511 | |
|---|
| 512 | /** |
|---|
| 513 | * Gets whether the supplied columns are to be removed or kept |
|---|
| 514 | * |
|---|
| 515 | * @return true if the supplied columns will be kept |
|---|
| 516 | */ |
|---|
| 517 | public boolean getInvertSelection() { |
|---|
| 518 | |
|---|
| 519 | return m_DiscretizeCols.getInvert(); |
|---|
| 520 | } |
|---|
| 521 | |
|---|
| 522 | /** |
|---|
| 523 | * Sets whether selected columns should be removed or kept. If true the |
|---|
| 524 | * selected columns are kept and unselected columns are deleted. If false |
|---|
| 525 | * selected columns are deleted and unselected columns are kept. |
|---|
| 526 | * |
|---|
| 527 | * @param invert the new invert setting |
|---|
| 528 | */ |
|---|
| 529 | public void setInvertSelection(boolean invert) { |
|---|
| 530 | |
|---|
| 531 | m_DiscretizeCols.setInvert(invert); |
|---|
| 532 | } |
|---|
| 533 | |
|---|
| 534 | /** |
|---|
| 535 | * Returns the tip text for this property |
|---|
| 536 | * |
|---|
| 537 | * @return tip text for this property suitable for |
|---|
| 538 | * displaying in the explorer/experimenter gui |
|---|
| 539 | */ |
|---|
| 540 | public String attributeIndicesTipText() { |
|---|
| 541 | return "Specify range of attributes to act on." |
|---|
| 542 | + " This is a comma separated list of attribute indices, with" |
|---|
| 543 | + " \"first\" and \"last\" valid values. Specify an inclusive" |
|---|
| 544 | + " range with \"-\". E.g: \"first-3,5,6-10,last\"."; |
|---|
| 545 | } |
|---|
| 546 | |
|---|
| 547 | /** |
|---|
| 548 | * Gets the current range selection |
|---|
| 549 | * |
|---|
| 550 | * @return a string containing a comma separated list of ranges |
|---|
| 551 | */ |
|---|
| 552 | public String getAttributeIndices() { |
|---|
| 553 | |
|---|
| 554 | return m_DiscretizeCols.getRanges(); |
|---|
| 555 | } |
|---|
| 556 | |
|---|
| 557 | /** |
|---|
| 558 | * Sets which attributes are to be Discretized (only numeric |
|---|
| 559 | * attributes among the selection will be Discretized). |
|---|
| 560 | * |
|---|
| 561 | * @param rangeList a string representing the list of attributes. Since |
|---|
| 562 | * the string will typically come from a user, attributes are indexed from |
|---|
| 563 | * 1. <br> |
|---|
| 564 | * eg: first-3,5,6-last |
|---|
| 565 | * @throws IllegalArgumentException if an invalid range list is supplied |
|---|
| 566 | */ |
|---|
| 567 | public void setAttributeIndices(String rangeList) { |
|---|
| 568 | |
|---|
| 569 | m_DiscretizeCols.setRanges(rangeList); |
|---|
| 570 | } |
|---|
| 571 | |
|---|
| 572 | /** |
|---|
| 573 | * Sets which attributes are to be Discretized (only numeric |
|---|
| 574 | * attributes among the selection will be Discretized). |
|---|
| 575 | * |
|---|
| 576 | * @param attributes an array containing indexes of attributes to Discretize. |
|---|
| 577 | * Since the array will typically come from a program, attributes are indexed |
|---|
| 578 | * from 0. |
|---|
| 579 | * @throws IllegalArgumentException if an invalid set of ranges |
|---|
| 580 | * is supplied |
|---|
| 581 | */ |
|---|
| 582 | public void setAttributeIndicesArray(int [] attributes) { |
|---|
| 583 | |
|---|
| 584 | setAttributeIndices(Range.indicesToRangeList(attributes)); |
|---|
| 585 | } |
|---|
| 586 | |
|---|
| 587 | /** |
|---|
| 588 | * Gets the cut points for an attribute |
|---|
| 589 | * |
|---|
| 590 | * @param attributeIndex the index (from 0) of the attribute to get the cut points of |
|---|
| 591 | * @return an array containing the cutpoints (or null if the |
|---|
| 592 | * attribute requested isn't being Discretized |
|---|
| 593 | */ |
|---|
| 594 | public double [] getCutPoints(int attributeIndex) { |
|---|
| 595 | |
|---|
| 596 | if (m_CutPoints == null) { |
|---|
| 597 | return null; |
|---|
| 598 | } |
|---|
| 599 | return m_CutPoints[attributeIndex]; |
|---|
| 600 | } |
|---|
| 601 | |
|---|
| 602 | /** Generate the cutpoints for each attribute */ |
|---|
| 603 | protected void calculateCutPoints() { |
|---|
| 604 | |
|---|
| 605 | Instances copy = null; |
|---|
| 606 | |
|---|
| 607 | m_CutPoints = new double [getInputFormat().numAttributes()] []; |
|---|
| 608 | for(int i = getInputFormat().numAttributes() - 1; i >= 0; i--) { |
|---|
| 609 | if ((m_DiscretizeCols.isInRange(i)) && |
|---|
| 610 | (getInputFormat().attribute(i).isNumeric())) { |
|---|
| 611 | |
|---|
| 612 | // Use copy to preserve order |
|---|
| 613 | if (copy == null) { |
|---|
| 614 | copy = new Instances(getInputFormat()); |
|---|
| 615 | } |
|---|
| 616 | calculateCutPointsByMDL(i, copy); |
|---|
| 617 | } |
|---|
| 618 | } |
|---|
| 619 | } |
|---|
| 620 | |
|---|
| 621 | /** |
|---|
| 622 | * Set cutpoints for a single attribute using MDL. |
|---|
| 623 | * |
|---|
| 624 | * @param index the index of the attribute to set cutpoints for |
|---|
| 625 | * @param data the data to work with |
|---|
| 626 | */ |
|---|
| 627 | protected void calculateCutPointsByMDL(int index, |
|---|
| 628 | Instances data) { |
|---|
| 629 | |
|---|
| 630 | // Sort instances |
|---|
| 631 | data.sort(data.attribute(index)); |
|---|
| 632 | |
|---|
| 633 | // Find first instances that's missing |
|---|
| 634 | int firstMissing = data.numInstances(); |
|---|
| 635 | for (int i = 0; i < data.numInstances(); i++) { |
|---|
| 636 | if (data.instance(i).isMissing(index)) { |
|---|
| 637 | firstMissing = i; |
|---|
| 638 | break; |
|---|
| 639 | } |
|---|
| 640 | } |
|---|
| 641 | m_CutPoints[index] = cutPointsForSubset(data, index, 0, firstMissing); |
|---|
| 642 | } |
|---|
| 643 | |
|---|
| 644 | /** |
|---|
| 645 | * Test using Kononenko's MDL criterion. |
|---|
| 646 | * |
|---|
| 647 | * @param priorCounts |
|---|
| 648 | * @param bestCounts |
|---|
| 649 | * @param numInstances |
|---|
| 650 | * @param numCutPoints |
|---|
| 651 | * @return true if the split is acceptable |
|---|
| 652 | */ |
|---|
| 653 | private boolean KononenkosMDL(double[] priorCounts, |
|---|
| 654 | double[][] bestCounts, |
|---|
| 655 | double numInstances, |
|---|
| 656 | int numCutPoints) { |
|---|
| 657 | |
|---|
| 658 | double distPrior, instPrior, distAfter = 0, sum, instAfter = 0; |
|---|
| 659 | double before, after; |
|---|
| 660 | int numClassesTotal; |
|---|
| 661 | |
|---|
| 662 | // Number of classes occuring in the set |
|---|
| 663 | numClassesTotal = 0; |
|---|
| 664 | for (int i = 0; i < priorCounts.length; i++) { |
|---|
| 665 | if (priorCounts[i] > 0) { |
|---|
| 666 | numClassesTotal++; |
|---|
| 667 | } |
|---|
| 668 | } |
|---|
| 669 | |
|---|
| 670 | // Encode distribution prior to split |
|---|
| 671 | distPrior = SpecialFunctions.log2Binomial(numInstances |
|---|
| 672 | + numClassesTotal - 1, |
|---|
| 673 | numClassesTotal - 1); |
|---|
| 674 | |
|---|
| 675 | // Encode instances prior to split. |
|---|
| 676 | instPrior = SpecialFunctions.log2Multinomial(numInstances, |
|---|
| 677 | priorCounts); |
|---|
| 678 | |
|---|
| 679 | before = instPrior + distPrior; |
|---|
| 680 | |
|---|
| 681 | // Encode distributions and instances after split. |
|---|
| 682 | for (int i = 0; i < bestCounts.length; i++) { |
|---|
| 683 | sum = Utils.sum(bestCounts[i]); |
|---|
| 684 | distAfter += SpecialFunctions.log2Binomial(sum + numClassesTotal - 1, |
|---|
| 685 | numClassesTotal - 1); |
|---|
| 686 | instAfter += SpecialFunctions.log2Multinomial(sum, |
|---|
| 687 | bestCounts[i]); |
|---|
| 688 | } |
|---|
| 689 | |
|---|
| 690 | // Coding cost after split |
|---|
| 691 | after = Utils.log2(numCutPoints) + distAfter + instAfter; |
|---|
| 692 | |
|---|
| 693 | // Check if split is to be accepted |
|---|
| 694 | return (before > after); |
|---|
| 695 | } |
|---|
| 696 | |
|---|
| 697 | |
|---|
| 698 | /** |
|---|
| 699 | * Test using Fayyad and Irani's MDL criterion. |
|---|
| 700 | * |
|---|
| 701 | * @param priorCounts |
|---|
| 702 | * @param bestCounts |
|---|
| 703 | * @param numInstances |
|---|
| 704 | * @param numCutPoints |
|---|
| 705 | * @return true if the splits is acceptable |
|---|
| 706 | */ |
|---|
| 707 | private boolean FayyadAndIranisMDL(double[] priorCounts, |
|---|
| 708 | double[][] bestCounts, |
|---|
| 709 | double numInstances, |
|---|
| 710 | int numCutPoints) { |
|---|
| 711 | |
|---|
| 712 | double priorEntropy, entropy, gain; |
|---|
| 713 | double entropyLeft, entropyRight, delta; |
|---|
| 714 | int numClassesTotal, numClassesRight, numClassesLeft; |
|---|
| 715 | |
|---|
| 716 | // Compute entropy before split. |
|---|
| 717 | priorEntropy = ContingencyTables.entropy(priorCounts); |
|---|
| 718 | |
|---|
| 719 | // Compute entropy after split. |
|---|
| 720 | entropy = ContingencyTables.entropyConditionedOnRows(bestCounts); |
|---|
| 721 | |
|---|
| 722 | // Compute information gain. |
|---|
| 723 | gain = priorEntropy - entropy; |
|---|
| 724 | |
|---|
| 725 | // Number of classes occuring in the set |
|---|
| 726 | numClassesTotal = 0; |
|---|
| 727 | for (int i = 0; i < priorCounts.length; i++) { |
|---|
| 728 | if (priorCounts[i] > 0) { |
|---|
| 729 | numClassesTotal++; |
|---|
| 730 | } |
|---|
| 731 | } |
|---|
| 732 | |
|---|
| 733 | // Number of classes occuring in the left subset |
|---|
| 734 | numClassesLeft = 0; |
|---|
| 735 | for (int i = 0; i < bestCounts[0].length; i++) { |
|---|
| 736 | if (bestCounts[0][i] > 0) { |
|---|
| 737 | numClassesLeft++; |
|---|
| 738 | } |
|---|
| 739 | } |
|---|
| 740 | |
|---|
| 741 | // Number of classes occuring in the right subset |
|---|
| 742 | numClassesRight = 0; |
|---|
| 743 | for (int i = 0; i < bestCounts[1].length; i++) { |
|---|
| 744 | if (bestCounts[1][i] > 0) { |
|---|
| 745 | numClassesRight++; |
|---|
| 746 | } |
|---|
| 747 | } |
|---|
| 748 | |
|---|
| 749 | // Entropy of the left and the right subsets |
|---|
| 750 | entropyLeft = ContingencyTables.entropy(bestCounts[0]); |
|---|
| 751 | entropyRight = ContingencyTables.entropy(bestCounts[1]); |
|---|
| 752 | |
|---|
| 753 | // Compute terms for MDL formula |
|---|
| 754 | delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) - |
|---|
| 755 | (((double) numClassesTotal * priorEntropy) - |
|---|
| 756 | (numClassesRight * entropyRight) - |
|---|
| 757 | (numClassesLeft * entropyLeft)); |
|---|
| 758 | |
|---|
| 759 | // Check if split is to be accepted |
|---|
| 760 | return (gain > (Utils.log2(numCutPoints) + delta) / (double)numInstances); |
|---|
| 761 | } |
|---|
| 762 | |
|---|
| 763 | |
|---|
| 764 | /** |
|---|
| 765 | * Selects cutpoints for sorted subset. |
|---|
| 766 | * |
|---|
| 767 | * @param instances |
|---|
| 768 | * @param attIndex |
|---|
| 769 | * @param first |
|---|
| 770 | * @param lastPlusOne |
|---|
| 771 | * @return |
|---|
| 772 | */ |
|---|
| 773 | private double[] cutPointsForSubset(Instances instances, int attIndex, |
|---|
| 774 | int first, int lastPlusOne) { |
|---|
| 775 | |
|---|
| 776 | double[][] counts, bestCounts; |
|---|
| 777 | double[] priorCounts, left, right, cutPoints; |
|---|
| 778 | double currentCutPoint = -Double.MAX_VALUE, bestCutPoint = -1, |
|---|
| 779 | currentEntropy, bestEntropy, priorEntropy, gain; |
|---|
| 780 | int bestIndex = -1, numInstances = 0, numCutPoints = 0; |
|---|
| 781 | |
|---|
| 782 | // Compute number of instances in set |
|---|
| 783 | if ((lastPlusOne - first) < 2) { |
|---|
| 784 | return null; |
|---|
| 785 | } |
|---|
| 786 | |
|---|
| 787 | // Compute class counts. |
|---|
| 788 | counts = new double[2][instances.numClasses()]; |
|---|
| 789 | for (int i = first; i < lastPlusOne; i++) { |
|---|
| 790 | numInstances += instances.instance(i).weight(); |
|---|
| 791 | counts[1][(int)instances.instance(i).classValue()] += |
|---|
| 792 | instances.instance(i).weight(); |
|---|
| 793 | } |
|---|
| 794 | |
|---|
| 795 | // Save prior counts |
|---|
| 796 | priorCounts = new double[instances.numClasses()]; |
|---|
| 797 | System.arraycopy(counts[1], 0, priorCounts, 0, |
|---|
| 798 | instances.numClasses()); |
|---|
| 799 | |
|---|
| 800 | // Entropy of the full set |
|---|
| 801 | priorEntropy = ContingencyTables.entropy(priorCounts); |
|---|
| 802 | bestEntropy = priorEntropy; |
|---|
| 803 | |
|---|
| 804 | // Find best entropy. |
|---|
| 805 | bestCounts = new double[2][instances.numClasses()]; |
|---|
| 806 | for (int i = first; i < (lastPlusOne - 1); i++) { |
|---|
| 807 | counts[0][(int)instances.instance(i).classValue()] += |
|---|
| 808 | instances.instance(i).weight(); |
|---|
| 809 | counts[1][(int)instances.instance(i).classValue()] -= |
|---|
| 810 | instances.instance(i).weight(); |
|---|
| 811 | if (instances.instance(i).value(attIndex) < |
|---|
| 812 | instances.instance(i + 1).value(attIndex)) { |
|---|
| 813 | currentCutPoint = (instances.instance(i).value(attIndex) + |
|---|
| 814 | instances.instance(i + 1).value(attIndex)) / 2.0; |
|---|
| 815 | currentEntropy = ContingencyTables.entropyConditionedOnRows(counts); |
|---|
| 816 | if (currentEntropy < bestEntropy) { |
|---|
| 817 | bestCutPoint = currentCutPoint; |
|---|
| 818 | bestEntropy = currentEntropy; |
|---|
| 819 | bestIndex = i; |
|---|
| 820 | System.arraycopy(counts[0], 0, |
|---|
| 821 | bestCounts[0], 0, instances.numClasses()); |
|---|
| 822 | System.arraycopy(counts[1], 0, |
|---|
| 823 | bestCounts[1], 0, instances.numClasses()); |
|---|
| 824 | } |
|---|
| 825 | numCutPoints++; |
|---|
| 826 | } |
|---|
| 827 | } |
|---|
| 828 | |
|---|
| 829 | // Use worse encoding? |
|---|
| 830 | if (!m_UseBetterEncoding) { |
|---|
| 831 | numCutPoints = (lastPlusOne - first) - 1; |
|---|
| 832 | } |
|---|
| 833 | |
|---|
| 834 | // Checks if gain is zero |
|---|
| 835 | gain = priorEntropy - bestEntropy; |
|---|
| 836 | if (gain <= 0) { |
|---|
| 837 | return null; |
|---|
| 838 | } |
|---|
| 839 | |
|---|
| 840 | // Check if split is to be accepted |
|---|
| 841 | if ((m_UseKononenko && KononenkosMDL(priorCounts, bestCounts, |
|---|
| 842 | numInstances, numCutPoints)) || |
|---|
| 843 | (!m_UseKononenko && FayyadAndIranisMDL(priorCounts, bestCounts, |
|---|
| 844 | numInstances, numCutPoints))) { |
|---|
| 845 | |
|---|
| 846 | // Select split points for the left and right subsets |
|---|
| 847 | left = cutPointsForSubset(instances, attIndex, first, bestIndex + 1); |
|---|
| 848 | right = cutPointsForSubset(instances, attIndex, |
|---|
| 849 | bestIndex + 1, lastPlusOne); |
|---|
| 850 | |
|---|
| 851 | // Merge cutpoints and return them |
|---|
| 852 | if ((left == null) && (right) == null) { |
|---|
| 853 | cutPoints = new double[1]; |
|---|
| 854 | cutPoints[0] = bestCutPoint; |
|---|
| 855 | } else if (right == null) { |
|---|
| 856 | cutPoints = new double[left.length + 1]; |
|---|
| 857 | System.arraycopy(left, 0, cutPoints, 0, left.length); |
|---|
| 858 | cutPoints[left.length] = bestCutPoint; |
|---|
| 859 | } else if (left == null) { |
|---|
| 860 | cutPoints = new double[1 + right.length]; |
|---|
| 861 | cutPoints[0] = bestCutPoint; |
|---|
| 862 | System.arraycopy(right, 0, cutPoints, 1, right.length); |
|---|
| 863 | } else { |
|---|
| 864 | cutPoints = new double[left.length + right.length + 1]; |
|---|
| 865 | System.arraycopy(left, 0, cutPoints, 0, left.length); |
|---|
| 866 | cutPoints[left.length] = bestCutPoint; |
|---|
| 867 | System.arraycopy(right, 0, cutPoints, left.length + 1, right.length); |
|---|
| 868 | } |
|---|
| 869 | |
|---|
| 870 | return cutPoints; |
|---|
| 871 | } else |
|---|
| 872 | return null; |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | /** |
|---|
| 876 | * Set the output format. Takes the currently defined cutpoints and |
|---|
| 877 | * m_InputFormat and calls setOutputFormat(Instances) appropriately. |
|---|
| 878 | */ |
|---|
| 879 | protected void setOutputFormat() { |
|---|
| 880 | |
|---|
| 881 | if (m_CutPoints == null) { |
|---|
| 882 | setOutputFormat(null); |
|---|
| 883 | return; |
|---|
| 884 | } |
|---|
| 885 | FastVector attributes = new FastVector(getInputFormat().numAttributes()); |
|---|
| 886 | int classIndex = getInputFormat().classIndex(); |
|---|
| 887 | for(int i = 0; i < getInputFormat().numAttributes(); i++) { |
|---|
| 888 | if ((m_DiscretizeCols.isInRange(i)) |
|---|
| 889 | && (getInputFormat().attribute(i).isNumeric())) { |
|---|
| 890 | if (!m_MakeBinary) { |
|---|
| 891 | FastVector attribValues = new FastVector(1); |
|---|
| 892 | if (m_CutPoints[i] == null) { |
|---|
| 893 | attribValues.addElement("'All'"); |
|---|
| 894 | } else { |
|---|
| 895 | for(int j = 0; j <= m_CutPoints[i].length; j++) { |
|---|
| 896 | if (j == 0) { |
|---|
| 897 | attribValues.addElement("'(-inf-" |
|---|
| 898 | + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); |
|---|
| 899 | } else if (j == m_CutPoints[i].length) { |
|---|
| 900 | attribValues.addElement("'(" |
|---|
| 901 | + Utils.doubleToString(m_CutPoints[i][j - 1], 6) |
|---|
| 902 | + "-inf)'"); |
|---|
| 903 | } else { |
|---|
| 904 | attribValues.addElement("'(" |
|---|
| 905 | + Utils.doubleToString(m_CutPoints[i][j - 1], 6) + "-" |
|---|
| 906 | + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); |
|---|
| 907 | } |
|---|
| 908 | } |
|---|
| 909 | } |
|---|
| 910 | attributes.addElement(new Attribute(getInputFormat(). |
|---|
| 911 | attribute(i).name(), |
|---|
| 912 | attribValues)); |
|---|
| 913 | } else { |
|---|
| 914 | if (m_CutPoints[i] == null) { |
|---|
| 915 | FastVector attribValues = new FastVector(1); |
|---|
| 916 | attribValues.addElement("'All'"); |
|---|
| 917 | attributes.addElement(new Attribute(getInputFormat(). |
|---|
| 918 | attribute(i).name(), |
|---|
| 919 | attribValues)); |
|---|
| 920 | } else { |
|---|
| 921 | if (i < getInputFormat().classIndex()) { |
|---|
| 922 | classIndex += m_CutPoints[i].length - 1; |
|---|
| 923 | } |
|---|
| 924 | for(int j = 0; j < m_CutPoints[i].length; j++) { |
|---|
| 925 | FastVector attribValues = new FastVector(2); |
|---|
| 926 | attribValues.addElement("'(-inf-" |
|---|
| 927 | + Utils.doubleToString(m_CutPoints[i][j], 6) + "]'"); |
|---|
| 928 | attribValues.addElement("'(" |
|---|
| 929 | + Utils.doubleToString(m_CutPoints[i][j], 6) + "-inf)'"); |
|---|
| 930 | attributes.addElement(new Attribute(getInputFormat(). |
|---|
| 931 | attribute(i).name(), |
|---|
| 932 | attribValues)); |
|---|
| 933 | } |
|---|
| 934 | } |
|---|
| 935 | } |
|---|
| 936 | } else { |
|---|
| 937 | attributes.addElement(getInputFormat().attribute(i).copy()); |
|---|
| 938 | } |
|---|
| 939 | } |
|---|
| 940 | Instances outputFormat = |
|---|
| 941 | new Instances(getInputFormat().relationName(), attributes, 0); |
|---|
| 942 | outputFormat.setClassIndex(classIndex); |
|---|
| 943 | setOutputFormat(outputFormat); |
|---|
| 944 | } |
|---|
| 945 | |
|---|
| 946 | /** |
|---|
| 947 | * Convert a single instance over. The converted instance is added to |
|---|
| 948 | * the end of the output queue. |
|---|
| 949 | * |
|---|
| 950 | * @param instance the instance to convert |
|---|
| 951 | */ |
|---|
| 952 | protected void convertInstance(Instance instance) { |
|---|
| 953 | |
|---|
| 954 | int index = 0; |
|---|
| 955 | double [] vals = new double [outputFormatPeek().numAttributes()]; |
|---|
| 956 | // Copy and convert the values |
|---|
| 957 | for(int i = 0; i < getInputFormat().numAttributes(); i++) { |
|---|
| 958 | if (m_DiscretizeCols.isInRange(i) && |
|---|
| 959 | getInputFormat().attribute(i).isNumeric()) { |
|---|
| 960 | int j; |
|---|
| 961 | double currentVal = instance.value(i); |
|---|
| 962 | if (m_CutPoints[i] == null) { |
|---|
| 963 | if (instance.isMissing(i)) { |
|---|
| 964 | vals[index] = Utils.missingValue(); |
|---|
| 965 | } else { |
|---|
| 966 | vals[index] = 0; |
|---|
| 967 | } |
|---|
| 968 | index++; |
|---|
| 969 | } else { |
|---|
| 970 | if (!m_MakeBinary) { |
|---|
| 971 | if (instance.isMissing(i)) { |
|---|
| 972 | vals[index] = Utils.missingValue(); |
|---|
| 973 | } else { |
|---|
| 974 | for (j = 0; j < m_CutPoints[i].length; j++) { |
|---|
| 975 | if (currentVal <= m_CutPoints[i][j]) { |
|---|
| 976 | break; |
|---|
| 977 | } |
|---|
| 978 | } |
|---|
| 979 | vals[index] = j; |
|---|
| 980 | } |
|---|
| 981 | index++; |
|---|
| 982 | } else { |
|---|
| 983 | for (j = 0; j < m_CutPoints[i].length; j++) { |
|---|
| 984 | if (instance.isMissing(i)) { |
|---|
| 985 | vals[index] = Utils.missingValue(); |
|---|
| 986 | } else if (currentVal <= m_CutPoints[i][j]) { |
|---|
| 987 | vals[index] = 0; |
|---|
| 988 | } else { |
|---|
| 989 | vals[index] = 1; |
|---|
| 990 | } |
|---|
| 991 | index++; |
|---|
| 992 | } |
|---|
| 993 | } |
|---|
| 994 | } |
|---|
| 995 | } else { |
|---|
| 996 | vals[index] = instance.value(i); |
|---|
| 997 | index++; |
|---|
| 998 | } |
|---|
| 999 | } |
|---|
| 1000 | |
|---|
| 1001 | Instance inst = null; |
|---|
| 1002 | if (instance instanceof SparseInstance) { |
|---|
| 1003 | inst = new SparseInstance(instance.weight(), vals); |
|---|
| 1004 | } else { |
|---|
| 1005 | inst = new DenseInstance(instance.weight(), vals); |
|---|
| 1006 | } |
|---|
| 1007 | inst.setDataset(getOutputFormat()); |
|---|
| 1008 | copyValues(inst, false, instance.dataset(), getOutputFormat()); |
|---|
| 1009 | inst.setDataset(getOutputFormat()); |
|---|
| 1010 | push(inst); |
|---|
| 1011 | } |
|---|
| 1012 | |
|---|
| 1013 | /** |
|---|
| 1014 | * Returns the revision string. |
|---|
| 1015 | * |
|---|
| 1016 | * @return the revision |
|---|
| 1017 | */ |
|---|
| 1018 | public String getRevision() { |
|---|
| 1019 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 1020 | } |
|---|
| 1021 | |
|---|
| 1022 | /** |
|---|
| 1023 | * Main method for testing this class. |
|---|
| 1024 | * |
|---|
| 1025 | * @param argv should contain arguments to the filter: use -h for help |
|---|
| 1026 | */ |
|---|
| 1027 | public static void main(String [] argv) { |
|---|
| 1028 | runFilter(new Discretize(), argv); |
|---|
| 1029 | } |
|---|
| 1030 | } |
|---|