1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * AttributeSelection.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.filters.supervised.attribute; |
---|
24 | |
---|
25 | import weka.attributeSelection.ASEvaluation; |
---|
26 | import weka.attributeSelection.ASSearch; |
---|
27 | import weka.attributeSelection.AttributeEvaluator; |
---|
28 | import weka.attributeSelection.AttributeTransformer; |
---|
29 | import weka.attributeSelection.BestFirst; |
---|
30 | import weka.attributeSelection.CfsSubsetEval; |
---|
31 | import weka.attributeSelection.Ranker; |
---|
32 | import weka.attributeSelection.UnsupervisedAttributeEvaluator; |
---|
33 | import weka.attributeSelection.UnsupervisedSubsetEvaluator; |
---|
34 | import weka.core.Capabilities; |
---|
35 | import weka.core.FastVector; |
---|
36 | import weka.core.Instance; |
---|
37 | import weka.core.DenseInstance; |
---|
38 | import weka.core.Instances; |
---|
39 | import weka.core.Option; |
---|
40 | import weka.core.OptionHandler; |
---|
41 | import weka.core.RevisionUtils; |
---|
42 | import weka.core.SparseInstance; |
---|
43 | import weka.core.Utils; |
---|
44 | import weka.core.Capabilities.Capability; |
---|
45 | import weka.filters.Filter; |
---|
46 | import weka.filters.SupervisedFilter; |
---|
47 | |
---|
48 | import java.util.Enumeration; |
---|
49 | import java.util.Vector; |
---|
50 | |
---|
51 | /** |
---|
52 | <!-- globalinfo-start --> |
---|
53 | * A supervised attribute filter that can be used to select attributes. It is very flexible and allows various search and evaluation methods to be combined. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- options-start --> |
---|
58 | * Valid options are: <p/> |
---|
59 | * |
---|
60 | * <pre> -S <"Name of search class [search options]"> |
---|
61 | * Sets search method for subset evaluators. |
---|
62 | * eg. -S "weka.attributeSelection.BestFirst -S 8"</pre> |
---|
63 | * |
---|
64 | * <pre> -E <"Name of attribute/subset evaluation class [evaluator options]"> |
---|
65 | * Sets attribute/subset evaluator. |
---|
66 | * eg. -E "weka.attributeSelection.CfsSubsetEval -L"</pre> |
---|
67 | * |
---|
68 | * <pre> |
---|
69 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
70 | * </pre> |
---|
71 | * |
---|
72 | * <pre> -M |
---|
73 | * Treat missing values as a seperate value.</pre> |
---|
74 | * |
---|
75 | * <pre> -L |
---|
76 | * Don't include locally predictive attributes.</pre> |
---|
77 | * |
---|
78 | * <pre> |
---|
79 | * Options specific to search weka.attributeSelection.BestFirst: |
---|
80 | * </pre> |
---|
81 | * |
---|
82 | * <pre> -P <start set> |
---|
83 | * Specify a starting set of attributes. |
---|
84 | * Eg. 1,3,5-7.</pre> |
---|
85 | * |
---|
86 | * <pre> -D <0 = backward | 1 = forward | 2 = bi-directional> |
---|
87 | * Direction of search. (default = 1).</pre> |
---|
88 | * |
---|
89 | * <pre> -N <num> |
---|
90 | * Number of non-improving nodes to |
---|
91 | * consider before terminating search.</pre> |
---|
92 | * |
---|
93 | * <pre> -S <num> |
---|
94 | * Size of lookup cache for evaluated subsets. |
---|
95 | * Expressed as a multiple of the number of |
---|
96 | * attributes in the data set. (default = 1)</pre> |
---|
97 | * |
---|
98 | <!-- options-end --> |
---|
99 | * |
---|
100 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
101 | * @version $Revision: 5987 $ |
---|
102 | */ |
---|
103 | public class AttributeSelection |
---|
104 | extends Filter |
---|
105 | implements SupervisedFilter, OptionHandler { |
---|
106 | |
---|
107 | /** for serialization */ |
---|
108 | static final long serialVersionUID = -296211247688169716L; |
---|
109 | |
---|
110 | /** the attribute selection evaluation object */ |
---|
111 | private weka.attributeSelection.AttributeSelection m_trainSelector; |
---|
112 | |
---|
113 | /** the attribute evaluator to use */ |
---|
114 | private ASEvaluation m_ASEvaluator; |
---|
115 | |
---|
116 | /** the search method if any */ |
---|
117 | private ASSearch m_ASSearch; |
---|
118 | |
---|
119 | /** holds a copy of the full set of valid options passed to the filter */ |
---|
120 | private String [] m_FilterOptions; |
---|
121 | |
---|
122 | /** holds the selected attributes */ |
---|
123 | private int [] m_SelectedAttributes; |
---|
124 | |
---|
125 | /** |
---|
126 | * Returns a string describing this filter |
---|
127 | * |
---|
128 | * @return a description of the filter suitable for |
---|
129 | * displaying in the explorer/experimenter gui |
---|
130 | */ |
---|
131 | public String globalInfo() { |
---|
132 | |
---|
133 | return "A supervised attribute filter that can be used to select " |
---|
134 | + "attributes. It is very flexible and allows various search " |
---|
135 | + "and evaluation methods to be combined."; |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Constructor |
---|
140 | */ |
---|
141 | public AttributeSelection () { |
---|
142 | |
---|
143 | resetOptions(); |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Returns an enumeration describing the available options. |
---|
148 | * @return an enumeration of all the available options. |
---|
149 | */ |
---|
150 | public Enumeration listOptions() { |
---|
151 | |
---|
152 | Vector newVector = new Vector(6); |
---|
153 | |
---|
154 | newVector.addElement(new Option( |
---|
155 | "\tSets search method for subset evaluators.\n" |
---|
156 | + "\teg. -S \"weka.attributeSelection.BestFirst -S 8\"", |
---|
157 | "S", 1, |
---|
158 | "-S <\"Name of search class [search options]\">")); |
---|
159 | |
---|
160 | newVector.addElement(new Option( |
---|
161 | "\tSets attribute/subset evaluator.\n" |
---|
162 | + "\teg. -E \"weka.attributeSelection.CfsSubsetEval -L\"", |
---|
163 | "E", 1, |
---|
164 | "-E <\"Name of attribute/subset evaluation class [evaluator options]\">")); |
---|
165 | |
---|
166 | if ((m_ASEvaluator != null) && (m_ASEvaluator instanceof OptionHandler)) { |
---|
167 | Enumeration enu = ((OptionHandler)m_ASEvaluator).listOptions(); |
---|
168 | |
---|
169 | newVector.addElement(new Option("", "", 0, "\nOptions specific to " |
---|
170 | + "evaluator " + m_ASEvaluator.getClass().getName() + ":")); |
---|
171 | while (enu.hasMoreElements()) { |
---|
172 | newVector.addElement((Option)enu.nextElement()); |
---|
173 | } |
---|
174 | } |
---|
175 | |
---|
176 | if ((m_ASSearch != null) && (m_ASSearch instanceof OptionHandler)) { |
---|
177 | Enumeration enu = ((OptionHandler)m_ASSearch).listOptions(); |
---|
178 | |
---|
179 | newVector.addElement(new Option("", "", 0, "\nOptions specific to " |
---|
180 | + "search " + m_ASSearch.getClass().getName() + ":")); |
---|
181 | while (enu.hasMoreElements()) { |
---|
182 | newVector.addElement((Option)enu.nextElement()); |
---|
183 | } |
---|
184 | } |
---|
185 | return newVector.elements(); |
---|
186 | } |
---|
187 | |
---|
188 | /** |
---|
189 | * Parses a given list of options. <p/> |
---|
190 | * |
---|
191 | <!-- options-start --> |
---|
192 | * Valid options are: <p/> |
---|
193 | * |
---|
194 | * <pre> -S <"Name of search class [search options]"> |
---|
195 | * Sets search method for subset evaluators. |
---|
196 | * eg. -S "weka.attributeSelection.BestFirst -S 8"</pre> |
---|
197 | * |
---|
198 | * <pre> -E <"Name of attribute/subset evaluation class [evaluator options]"> |
---|
199 | * Sets attribute/subset evaluator. |
---|
200 | * eg. -E "weka.attributeSelection.CfsSubsetEval -L"</pre> |
---|
201 | * |
---|
202 | * <pre> |
---|
203 | * Options specific to evaluator weka.attributeSelection.CfsSubsetEval: |
---|
204 | * </pre> |
---|
205 | * |
---|
206 | * <pre> -M |
---|
207 | * Treat missing values as a seperate value.</pre> |
---|
208 | * |
---|
209 | * <pre> -L |
---|
210 | * Don't include locally predictive attributes.</pre> |
---|
211 | * |
---|
212 | * <pre> |
---|
213 | * Options specific to search weka.attributeSelection.BestFirst: |
---|
214 | * </pre> |
---|
215 | * |
---|
216 | * <pre> -P <start set> |
---|
217 | * Specify a starting set of attributes. |
---|
218 | * Eg. 1,3,5-7.</pre> |
---|
219 | * |
---|
220 | * <pre> -D <0 = backward | 1 = forward | 2 = bi-directional> |
---|
221 | * Direction of search. (default = 1).</pre> |
---|
222 | * |
---|
223 | * <pre> -N <num> |
---|
224 | * Number of non-improving nodes to |
---|
225 | * consider before terminating search.</pre> |
---|
226 | * |
---|
227 | * <pre> -S <num> |
---|
228 | * Size of lookup cache for evaluated subsets. |
---|
229 | * Expressed as a multiple of the number of |
---|
230 | * attributes in the data set. (default = 1)</pre> |
---|
231 | * |
---|
232 | <!-- options-end --> |
---|
233 | * |
---|
234 | * @param options the list of options as an array of strings |
---|
235 | * @throws Exception if an option is not supported |
---|
236 | */ |
---|
237 | public void setOptions(String[] options) throws Exception { |
---|
238 | |
---|
239 | String optionString; |
---|
240 | resetOptions(); |
---|
241 | |
---|
242 | if (Utils.getFlag('X',options)) { |
---|
243 | throw new Exception("Cross validation is not a valid option" |
---|
244 | + " when using attribute selection as a Filter."); |
---|
245 | } |
---|
246 | |
---|
247 | optionString = Utils.getOption('E',options); |
---|
248 | if (optionString.length() != 0) { |
---|
249 | optionString = optionString.trim(); |
---|
250 | // split a quoted evaluator name from its options (if any) |
---|
251 | int breakLoc = optionString.indexOf(' '); |
---|
252 | String evalClassName = optionString; |
---|
253 | String evalOptionsString = ""; |
---|
254 | String [] evalOptions=null; |
---|
255 | if (breakLoc != -1) { |
---|
256 | evalClassName = optionString.substring(0, breakLoc); |
---|
257 | evalOptionsString = optionString.substring(breakLoc).trim(); |
---|
258 | evalOptions = Utils.splitOptions(evalOptionsString); |
---|
259 | } |
---|
260 | setEvaluator(ASEvaluation.forName(evalClassName, evalOptions)); |
---|
261 | } |
---|
262 | |
---|
263 | if (m_ASEvaluator instanceof AttributeEvaluator) { |
---|
264 | setSearch(new Ranker()); |
---|
265 | } |
---|
266 | |
---|
267 | optionString = Utils.getOption('S',options); |
---|
268 | if (optionString.length() != 0) { |
---|
269 | optionString = optionString.trim(); |
---|
270 | int breakLoc = optionString.indexOf(' '); |
---|
271 | String SearchClassName = optionString; |
---|
272 | String SearchOptionsString = ""; |
---|
273 | String [] SearchOptions=null; |
---|
274 | if (breakLoc != -1) { |
---|
275 | SearchClassName = optionString.substring(0, breakLoc); |
---|
276 | SearchOptionsString = optionString.substring(breakLoc).trim(); |
---|
277 | SearchOptions = Utils.splitOptions(SearchOptionsString); |
---|
278 | } |
---|
279 | setSearch(ASSearch.forName(SearchClassName, SearchOptions)); |
---|
280 | } |
---|
281 | |
---|
282 | Utils.checkForRemainingOptions(options); |
---|
283 | } |
---|
284 | |
---|
285 | |
---|
286 | /** |
---|
287 | * Gets the current settings for the attribute selection (search, evaluator) |
---|
288 | * etc. |
---|
289 | * |
---|
290 | * @return an array of strings suitable for passing to setOptions() |
---|
291 | */ |
---|
292 | public String [] getOptions() { |
---|
293 | String [] EvaluatorOptions = new String[0]; |
---|
294 | String [] SearchOptions = new String[0]; |
---|
295 | int current = 0; |
---|
296 | |
---|
297 | if (m_ASEvaluator instanceof OptionHandler) { |
---|
298 | EvaluatorOptions = ((OptionHandler)m_ASEvaluator).getOptions(); |
---|
299 | } |
---|
300 | |
---|
301 | if (m_ASSearch instanceof OptionHandler) { |
---|
302 | SearchOptions = ((OptionHandler)m_ASSearch).getOptions(); |
---|
303 | } |
---|
304 | |
---|
305 | String [] setOptions = new String [10]; |
---|
306 | setOptions[current++]="-E"; |
---|
307 | setOptions[current++]= getEvaluator().getClass().getName() |
---|
308 | +" "+Utils.joinOptions(EvaluatorOptions); |
---|
309 | |
---|
310 | setOptions[current++]="-S"; |
---|
311 | setOptions[current++]=getSearch().getClass().getName() |
---|
312 | + " "+Utils.joinOptions(SearchOptions); |
---|
313 | |
---|
314 | while (current < setOptions.length) { |
---|
315 | setOptions[current++] = ""; |
---|
316 | } |
---|
317 | |
---|
318 | return setOptions; |
---|
319 | } |
---|
320 | |
---|
321 | /** |
---|
322 | * Returns the tip text for this property |
---|
323 | * |
---|
324 | * @return tip text for this property suitable for |
---|
325 | * displaying in the explorer/experimenter gui |
---|
326 | */ |
---|
327 | public String evaluatorTipText() { |
---|
328 | |
---|
329 | return "Determines how attributes/attribute subsets are evaluated."; |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * set attribute/subset evaluator |
---|
334 | * |
---|
335 | * @param evaluator the evaluator to use |
---|
336 | */ |
---|
337 | public void setEvaluator(ASEvaluation evaluator) { |
---|
338 | m_ASEvaluator = evaluator; |
---|
339 | } |
---|
340 | |
---|
341 | /** |
---|
342 | * Returns the tip text for this property |
---|
343 | * |
---|
344 | * @return tip text for this property suitable for |
---|
345 | * displaying in the explorer/experimenter gui |
---|
346 | */ |
---|
347 | public String searchTipText() { |
---|
348 | |
---|
349 | return "Determines the search method."; |
---|
350 | } |
---|
351 | |
---|
352 | /** |
---|
353 | * Set search class |
---|
354 | * |
---|
355 | * @param search the search class to use |
---|
356 | */ |
---|
357 | public void setSearch(ASSearch search) { |
---|
358 | m_ASSearch = search; |
---|
359 | } |
---|
360 | |
---|
361 | /** |
---|
362 | * Get the name of the attribute/subset evaluator |
---|
363 | * |
---|
364 | * @return the name of the attribute/subset evaluator as a string |
---|
365 | */ |
---|
366 | public ASEvaluation getEvaluator() { |
---|
367 | |
---|
368 | return m_ASEvaluator; |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * Get the name of the search method |
---|
373 | * |
---|
374 | * @return the name of the search method as a string |
---|
375 | */ |
---|
376 | public ASSearch getSearch() { |
---|
377 | |
---|
378 | return m_ASSearch; |
---|
379 | } |
---|
380 | |
---|
381 | /** |
---|
382 | * Returns the Capabilities of this filter. |
---|
383 | * |
---|
384 | * @return the capabilities of this object |
---|
385 | * @see Capabilities |
---|
386 | */ |
---|
387 | public Capabilities getCapabilities() { |
---|
388 | Capabilities result; |
---|
389 | |
---|
390 | if (m_ASEvaluator == null) { |
---|
391 | result = super.getCapabilities(); |
---|
392 | result.disableAll(); |
---|
393 | } else { |
---|
394 | result = m_ASEvaluator.getCapabilities(); |
---|
395 | // class index will be set if necessary, so we always allow the dataset |
---|
396 | // to have no class attribute set. see the following method: |
---|
397 | // weka.attributeSelection.AttributeSelection.SelectAttributes(Instances) |
---|
398 | result.enable(Capability.NO_CLASS); |
---|
399 | } |
---|
400 | |
---|
401 | result.setMinimumNumberInstances(0); |
---|
402 | |
---|
403 | return result; |
---|
404 | } |
---|
405 | |
---|
406 | /** |
---|
407 | * Input an instance for filtering. Ordinarily the instance is processed |
---|
408 | * and made available for output immediately. Some filters require all |
---|
409 | * instances be read before producing output. |
---|
410 | * |
---|
411 | * @param instance the input instance |
---|
412 | * @return true if the filtered instance may now be |
---|
413 | * collected with output(). |
---|
414 | * @throws IllegalStateException if no input format has been defined. |
---|
415 | * @throws Exception if the input instance was not of the correct format |
---|
416 | * or if there was a problem with the filtering. |
---|
417 | */ |
---|
418 | public boolean input(Instance instance) throws Exception { |
---|
419 | |
---|
420 | if (getInputFormat() == null) { |
---|
421 | throw new IllegalStateException("No input instance format defined"); |
---|
422 | } |
---|
423 | |
---|
424 | if (m_NewBatch) { |
---|
425 | resetQueue(); |
---|
426 | m_NewBatch = false; |
---|
427 | } |
---|
428 | |
---|
429 | if (isOutputFormatDefined()) { |
---|
430 | convertInstance(instance); |
---|
431 | return true; |
---|
432 | } |
---|
433 | |
---|
434 | bufferInput(instance); |
---|
435 | return false; |
---|
436 | } |
---|
437 | |
---|
438 | /** |
---|
439 | * Signify that this batch of input to the filter is finished. If the filter |
---|
440 | * requires all instances prior to filtering, output() may now be called |
---|
441 | * to retrieve the filtered instances. |
---|
442 | * |
---|
443 | * @return true if there are instances pending output. |
---|
444 | * @throws IllegalStateException if no input structure has been defined. |
---|
445 | * @throws Exception if there is a problem during the attribute selection. |
---|
446 | */ |
---|
447 | public boolean batchFinished() throws Exception { |
---|
448 | |
---|
449 | if (getInputFormat() == null) { |
---|
450 | throw new IllegalStateException("No input instance format defined"); |
---|
451 | } |
---|
452 | |
---|
453 | if (!isOutputFormatDefined()) { |
---|
454 | m_trainSelector.setEvaluator(m_ASEvaluator); |
---|
455 | m_trainSelector.setSearch(m_ASSearch); |
---|
456 | m_trainSelector.SelectAttributes(getInputFormat()); |
---|
457 | // System.out.println(m_trainSelector.toResultsString()); |
---|
458 | |
---|
459 | m_SelectedAttributes = m_trainSelector.selectedAttributes(); |
---|
460 | if (m_SelectedAttributes == null) { |
---|
461 | throw new Exception("No selected attributes\n"); |
---|
462 | } |
---|
463 | |
---|
464 | setOutputFormat(); |
---|
465 | |
---|
466 | // Convert pending input instances |
---|
467 | for (int i = 0; i < getInputFormat().numInstances(); i++) { |
---|
468 | convertInstance(getInputFormat().instance(i)); |
---|
469 | } |
---|
470 | flushInput(); |
---|
471 | } |
---|
472 | |
---|
473 | m_NewBatch = true; |
---|
474 | return (numPendingOutput() != 0); |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * Set the output format. Takes the currently defined attribute set |
---|
479 | * m_InputFormat and calls setOutputFormat(Instances) appropriately. |
---|
480 | * |
---|
481 | * @throws Exception if something goes wrong |
---|
482 | */ |
---|
483 | protected void setOutputFormat() throws Exception { |
---|
484 | Instances informat; |
---|
485 | |
---|
486 | if (m_SelectedAttributes == null) { |
---|
487 | setOutputFormat(null); |
---|
488 | return; |
---|
489 | } |
---|
490 | |
---|
491 | FastVector attributes = new FastVector(m_SelectedAttributes.length); |
---|
492 | |
---|
493 | int i; |
---|
494 | if (m_ASEvaluator instanceof AttributeTransformer) { |
---|
495 | informat = ((AttributeTransformer)m_ASEvaluator).transformedHeader(); |
---|
496 | } else { |
---|
497 | informat = getInputFormat(); |
---|
498 | } |
---|
499 | |
---|
500 | for (i=0;i < m_SelectedAttributes.length;i++) { |
---|
501 | attributes. |
---|
502 | addElement(informat.attribute(m_SelectedAttributes[i]).copy()); |
---|
503 | } |
---|
504 | |
---|
505 | Instances outputFormat = |
---|
506 | new Instances(getInputFormat().relationName(), attributes, 0); |
---|
507 | |
---|
508 | |
---|
509 | if (!(m_ASEvaluator instanceof UnsupervisedSubsetEvaluator) && |
---|
510 | !(m_ASEvaluator instanceof UnsupervisedAttributeEvaluator)) { |
---|
511 | outputFormat.setClassIndex(m_SelectedAttributes.length - 1); |
---|
512 | } |
---|
513 | |
---|
514 | setOutputFormat(outputFormat); |
---|
515 | } |
---|
516 | |
---|
517 | /** |
---|
518 | * Convert a single instance over. Selected attributes only are transfered. |
---|
519 | * The converted instance is added to the end of |
---|
520 | * the output queue. |
---|
521 | * |
---|
522 | * @param instance the instance to convert |
---|
523 | * @throws Exception if something goes wrong |
---|
524 | */ |
---|
525 | protected void convertInstance(Instance instance) throws Exception { |
---|
526 | double[] newVals = new double[getOutputFormat().numAttributes()]; |
---|
527 | |
---|
528 | if (m_ASEvaluator instanceof AttributeTransformer) { |
---|
529 | Instance tempInstance = ((AttributeTransformer)m_ASEvaluator). |
---|
530 | convertInstance(instance); |
---|
531 | for (int i = 0; i < m_SelectedAttributes.length; i++) { |
---|
532 | int current = m_SelectedAttributes[i]; |
---|
533 | newVals[i] = tempInstance.value(current); |
---|
534 | } |
---|
535 | } else { |
---|
536 | for (int i = 0; i < m_SelectedAttributes.length; i++) { |
---|
537 | int current = m_SelectedAttributes[i]; |
---|
538 | newVals[i] = instance.value(current); |
---|
539 | } |
---|
540 | } |
---|
541 | if (instance instanceof SparseInstance) { |
---|
542 | push(new SparseInstance(instance.weight(), newVals)); |
---|
543 | } else { |
---|
544 | push(new DenseInstance(instance.weight(), newVals)); |
---|
545 | } |
---|
546 | } |
---|
547 | |
---|
548 | /** |
---|
549 | * set options to their default values |
---|
550 | */ |
---|
551 | protected void resetOptions() { |
---|
552 | |
---|
553 | m_trainSelector = new weka.attributeSelection.AttributeSelection(); |
---|
554 | setEvaluator(new CfsSubsetEval()); |
---|
555 | setSearch(new BestFirst()); |
---|
556 | m_SelectedAttributes = null; |
---|
557 | m_FilterOptions = null; |
---|
558 | } |
---|
559 | |
---|
560 | /** |
---|
561 | * Returns the revision string. |
---|
562 | * |
---|
563 | * @return the revision |
---|
564 | */ |
---|
565 | public String getRevision() { |
---|
566 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
567 | } |
---|
568 | |
---|
569 | /** |
---|
570 | * Main method for testing this class. |
---|
571 | * |
---|
572 | * @param argv should contain arguments to the filter: use -h for help |
---|
573 | */ |
---|
574 | public static void main(String [] argv) { |
---|
575 | runFilter(new AttributeSelection(), argv); |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|