[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * RegressionSplitEvaluator.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.classifiers.Classifier; |
---|
| 27 | import weka.classifiers.AbstractClassifier; |
---|
| 28 | import weka.classifiers.Evaluation; |
---|
| 29 | import weka.classifiers.rules.ZeroR; |
---|
| 30 | import weka.core.AdditionalMeasureProducer; |
---|
| 31 | import weka.core.Attribute; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.RevisionHandler; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.Summarizable; |
---|
| 39 | import weka.core.Utils; |
---|
| 40 | |
---|
| 41 | import java.io.ByteArrayOutputStream; |
---|
| 42 | import java.io.ObjectOutputStream; |
---|
| 43 | import java.io.ObjectStreamClass; |
---|
| 44 | import java.io.Serializable; |
---|
| 45 | import java.lang.management.ManagementFactory; |
---|
| 46 | import java.lang.management.ThreadMXBean; |
---|
| 47 | import java.util.Enumeration; |
---|
| 48 | import java.util.Vector; |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | <!-- globalinfo-start --> |
---|
| 52 | * A SplitEvaluator that produces results for a classification scheme on a numeric class attribute. |
---|
| 53 | * <p/> |
---|
| 54 | <!-- globalinfo-end --> |
---|
| 55 | * |
---|
| 56 | <!-- options-start --> |
---|
| 57 | * Valid options are: <p/> |
---|
| 58 | * |
---|
| 59 | * <pre> -W <class name> |
---|
| 60 | * The full class name of the classifier. |
---|
| 61 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 62 | * |
---|
| 63 | * <pre> |
---|
| 64 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 65 | * </pre> |
---|
| 66 | * |
---|
| 67 | * <pre> -D |
---|
| 68 | * If set, classifier is run in debug mode and |
---|
| 69 | * may output additional info to the console</pre> |
---|
| 70 | * |
---|
| 71 | <!-- options-end --> |
---|
| 72 | * |
---|
| 73 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 74 | * @version $Revision: 5987 $ |
---|
| 75 | */ |
---|
| 76 | public class RegressionSplitEvaluator |
---|
| 77 | implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, |
---|
| 78 | RevisionHandler { |
---|
| 79 | |
---|
| 80 | /** for serialization */ |
---|
| 81 | static final long serialVersionUID = -328181640503349202L; |
---|
| 82 | |
---|
| 83 | /** The template classifier */ |
---|
| 84 | protected Classifier m_Template = new ZeroR(); |
---|
| 85 | |
---|
| 86 | /** The classifier used for evaluation */ |
---|
| 87 | protected Classifier m_Classifier; |
---|
| 88 | |
---|
| 89 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
| 90 | protected String [] m_AdditionalMeasures = null; |
---|
| 91 | |
---|
| 92 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
| 93 | indicating which of the AdditionalMeasures the current classifier |
---|
| 94 | can produce */ |
---|
| 95 | protected boolean [] m_doesProduce = null; |
---|
| 96 | |
---|
| 97 | /** Holds the statistics for the most recent application of the classifier */ |
---|
| 98 | protected String m_result = null; |
---|
| 99 | |
---|
| 100 | /** The classifier options (if any) */ |
---|
| 101 | protected String m_ClassifierOptions = ""; |
---|
| 102 | |
---|
| 103 | /** The classifier version */ |
---|
| 104 | protected String m_ClassifierVersion = ""; |
---|
| 105 | |
---|
| 106 | /** The length of a key */ |
---|
| 107 | private static final int KEY_SIZE = 3; |
---|
| 108 | |
---|
| 109 | /** The length of a result */ |
---|
| 110 | private static final int RESULT_SIZE = 23; |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * No args constructor. |
---|
| 114 | */ |
---|
| 115 | public RegressionSplitEvaluator() { |
---|
| 116 | |
---|
| 117 | updateOptions(); |
---|
| 118 | } |
---|
| 119 | |
---|
| 120 | /** |
---|
| 121 | * Returns a string describing this split evaluator |
---|
| 122 | * @return a description of the split evaluator suitable for |
---|
| 123 | * displaying in the explorer/experimenter gui |
---|
| 124 | */ |
---|
| 125 | public String globalInfo() { |
---|
| 126 | return "A SplitEvaluator that produces results for a classification " |
---|
| 127 | +"scheme on a numeric class attribute."; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | /** |
---|
| 131 | * Returns an enumeration describing the available options.. |
---|
| 132 | * |
---|
| 133 | * @return an enumeration of all the available options. |
---|
| 134 | */ |
---|
| 135 | public Enumeration listOptions() { |
---|
| 136 | |
---|
| 137 | Vector newVector = new Vector(1); |
---|
| 138 | |
---|
| 139 | newVector.addElement(new Option( |
---|
| 140 | "\tThe full class name of the classifier.\n" |
---|
| 141 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
| 142 | "W", 1, |
---|
| 143 | "-W <class name>")); |
---|
| 144 | |
---|
| 145 | if ((m_Template != null) && |
---|
| 146 | (m_Template instanceof OptionHandler)) { |
---|
| 147 | newVector.addElement(new Option( |
---|
| 148 | "", |
---|
| 149 | "", 0, "\nOptions specific to classifier " |
---|
| 150 | + m_Template.getClass().getName() + ":")); |
---|
| 151 | Enumeration enu = ((OptionHandler)m_Template).listOptions(); |
---|
| 152 | while (enu.hasMoreElements()) { |
---|
| 153 | newVector.addElement(enu.nextElement()); |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | return newVector.elements(); |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Parses a given list of options. <p/> |
---|
| 161 | * |
---|
| 162 | <!-- options-start --> |
---|
| 163 | * Valid options are: <p/> |
---|
| 164 | * |
---|
| 165 | * <pre> -W <class name> |
---|
| 166 | * The full class name of the classifier. |
---|
| 167 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 168 | * |
---|
| 169 | * <pre> |
---|
| 170 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 171 | * </pre> |
---|
| 172 | * |
---|
| 173 | * <pre> -D |
---|
| 174 | * If set, classifier is run in debug mode and |
---|
| 175 | * may output additional info to the console</pre> |
---|
| 176 | * |
---|
| 177 | <!-- options-end --> |
---|
| 178 | * |
---|
| 179 | * All option after -- will be passed to the classifier. |
---|
| 180 | * |
---|
| 181 | * @param options the list of options as an array of strings |
---|
| 182 | * @throws Exception if an option is not supported |
---|
| 183 | */ |
---|
| 184 | public void setOptions(String[] options) throws Exception { |
---|
| 185 | |
---|
| 186 | String cName = Utils.getOption('W', options); |
---|
| 187 | if (cName.length() == 0) { |
---|
| 188 | throw new Exception("A classifier must be specified with" |
---|
| 189 | + " the -W option."); |
---|
| 190 | } |
---|
| 191 | // Do it first without options, so if an exception is thrown during |
---|
| 192 | // the option setting, listOptions will contain options for the actual |
---|
| 193 | // Classifier. |
---|
| 194 | setClassifier(AbstractClassifier.forName(cName, null)); |
---|
| 195 | if (getClassifier() instanceof OptionHandler) { |
---|
| 196 | ((OptionHandler) getClassifier()) |
---|
| 197 | .setOptions(Utils.partitionOptions(options)); |
---|
| 198 | updateOptions(); |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** |
---|
| 203 | * Gets the current settings of the Classifier. |
---|
| 204 | * |
---|
| 205 | * @return an array of strings suitable for passing to setOptions |
---|
| 206 | */ |
---|
| 207 | public String [] getOptions() { |
---|
| 208 | |
---|
| 209 | String [] classifierOptions = new String [0]; |
---|
| 210 | if ((m_Template != null) && |
---|
| 211 | (m_Template instanceof OptionHandler)) { |
---|
| 212 | classifierOptions = ((OptionHandler)m_Template).getOptions(); |
---|
| 213 | } |
---|
| 214 | |
---|
| 215 | String [] options = new String [classifierOptions.length + 3]; |
---|
| 216 | int current = 0; |
---|
| 217 | |
---|
| 218 | if (getClassifier() != null) { |
---|
| 219 | options[current++] = "-W"; |
---|
| 220 | options[current++] = getClassifier().getClass().getName(); |
---|
| 221 | } |
---|
| 222 | options[current++] = "--"; |
---|
| 223 | |
---|
| 224 | System.arraycopy(classifierOptions, 0, options, current, |
---|
| 225 | classifierOptions.length); |
---|
| 226 | current += classifierOptions.length; |
---|
| 227 | while (current < options.length) { |
---|
| 228 | options[current++] = ""; |
---|
| 229 | } |
---|
| 230 | return options; |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | /** |
---|
| 234 | * Set a list of method names for additional measures to look for |
---|
| 235 | * in Classifiers. This could contain many measures (of which only a |
---|
| 236 | * subset may be produceable by the current Classifier) if an experiment |
---|
| 237 | * is the type that iterates over a set of properties. |
---|
| 238 | * @param additionalMeasures an array of method names. |
---|
| 239 | */ |
---|
| 240 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
| 241 | m_AdditionalMeasures = additionalMeasures; |
---|
| 242 | |
---|
| 243 | // determine which (if any) of the additional measures this classifier |
---|
| 244 | // can produce |
---|
| 245 | if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { |
---|
| 246 | m_doesProduce = new boolean [m_AdditionalMeasures.length]; |
---|
| 247 | |
---|
| 248 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 249 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
| 250 | enumerateMeasures(); |
---|
| 251 | while (en.hasMoreElements()) { |
---|
| 252 | String mname = (String)en.nextElement(); |
---|
| 253 | for (int j=0;j<m_AdditionalMeasures.length;j++) { |
---|
| 254 | if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { |
---|
| 255 | m_doesProduce[j] = true; |
---|
| 256 | } |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | } else { |
---|
| 261 | m_doesProduce = null; |
---|
| 262 | } |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Returns an enumeration of any additional measure names that might be |
---|
| 268 | * in the classifier |
---|
| 269 | * @return an enumeration of the measure names |
---|
| 270 | */ |
---|
| 271 | public Enumeration enumerateMeasures() { |
---|
| 272 | Vector newVector = new Vector(); |
---|
| 273 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 274 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
| 275 | enumerateMeasures(); |
---|
| 276 | while (en.hasMoreElements()) { |
---|
| 277 | String mname = (String)en.nextElement(); |
---|
| 278 | newVector.addElement(mname); |
---|
| 279 | } |
---|
| 280 | } |
---|
| 281 | return newVector.elements(); |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | /** |
---|
| 285 | * Returns the value of the named measure |
---|
| 286 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 287 | * @return the value of the named measure |
---|
| 288 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 289 | */ |
---|
| 290 | public double getMeasure(String additionalMeasureName) { |
---|
| 291 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
| 292 | if (m_Classifier == null) { |
---|
| 293 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " + |
---|
| 294 | "Can't return result for measure, " + |
---|
| 295 | "classifier has not been built yet."); |
---|
| 296 | } |
---|
| 297 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
| 298 | getMeasure(additionalMeasureName); |
---|
| 299 | } else { |
---|
| 300 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " |
---|
| 301 | +"Can't return value for : "+additionalMeasureName |
---|
| 302 | +". "+m_Template.getClass().getName()+" " |
---|
| 303 | +"is not an AdditionalMeasureProducer"); |
---|
| 304 | } |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | /** |
---|
| 308 | * Gets the data types of each of the key columns produced for a single run. |
---|
| 309 | * The number of key fields must be constant |
---|
| 310 | * for a given SplitEvaluator. |
---|
| 311 | * |
---|
| 312 | * @return an array containing objects of the type of each key column. The |
---|
| 313 | * objects should be Strings, or Doubles. |
---|
| 314 | */ |
---|
| 315 | public Object [] getKeyTypes() { |
---|
| 316 | |
---|
| 317 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
| 318 | keyTypes[0] = ""; |
---|
| 319 | keyTypes[1] = ""; |
---|
| 320 | keyTypes[2] = ""; |
---|
| 321 | return keyTypes; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | /** |
---|
| 325 | * Gets the names of each of the key columns produced for a single run. |
---|
| 326 | * The number of key fields must be constant |
---|
| 327 | * for a given SplitEvaluator. |
---|
| 328 | * |
---|
| 329 | * @return an array containing the name of each key column |
---|
| 330 | */ |
---|
| 331 | public String [] getKeyNames() { |
---|
| 332 | |
---|
| 333 | String [] keyNames = new String[KEY_SIZE]; |
---|
| 334 | keyNames[0] = "Scheme"; |
---|
| 335 | keyNames[1] = "Scheme_options"; |
---|
| 336 | keyNames[2] = "Scheme_version_ID"; |
---|
| 337 | return keyNames; |
---|
| 338 | } |
---|
| 339 | |
---|
| 340 | /** |
---|
| 341 | * Gets the key describing the current SplitEvaluator. For example |
---|
| 342 | * This may contain the name of the classifier used for classifier |
---|
| 343 | * predictive evaluation. The number of key fields must be constant |
---|
| 344 | * for a given SplitEvaluator. |
---|
| 345 | * |
---|
| 346 | * @return an array of objects containing the key. |
---|
| 347 | */ |
---|
| 348 | public Object [] getKey(){ |
---|
| 349 | |
---|
| 350 | Object [] key = new Object[KEY_SIZE]; |
---|
| 351 | key[0] = m_Template.getClass().getName(); |
---|
| 352 | key[1] = m_ClassifierOptions; |
---|
| 353 | key[2] = m_ClassifierVersion; |
---|
| 354 | return key; |
---|
| 355 | } |
---|
| 356 | |
---|
| 357 | /** |
---|
| 358 | * Gets the data types of each of the result columns produced for a |
---|
| 359 | * single run. The number of result fields must be constant |
---|
| 360 | * for a given SplitEvaluator. |
---|
| 361 | * |
---|
| 362 | * @return an array containing objects of the type of each result column. |
---|
| 363 | * The objects should be Strings, or Doubles. |
---|
| 364 | */ |
---|
| 365 | public Object [] getResultTypes() { |
---|
| 366 | int addm = (m_AdditionalMeasures != null) |
---|
| 367 | ? m_AdditionalMeasures.length |
---|
| 368 | : 0; |
---|
| 369 | Object [] resultTypes = new Object[RESULT_SIZE+addm]; |
---|
| 370 | Double doub = new Double(0); |
---|
| 371 | int current = 0; |
---|
| 372 | resultTypes[current++] = doub; |
---|
| 373 | resultTypes[current++] = doub; |
---|
| 374 | |
---|
| 375 | resultTypes[current++] = doub; |
---|
| 376 | resultTypes[current++] = doub; |
---|
| 377 | resultTypes[current++] = doub; |
---|
| 378 | resultTypes[current++] = doub; |
---|
| 379 | resultTypes[current++] = doub; |
---|
| 380 | |
---|
| 381 | resultTypes[current++] = doub; |
---|
| 382 | resultTypes[current++] = doub; |
---|
| 383 | resultTypes[current++] = doub; |
---|
| 384 | resultTypes[current++] = doub; |
---|
| 385 | resultTypes[current++] = doub; |
---|
| 386 | resultTypes[current++] = doub; |
---|
| 387 | |
---|
| 388 | // Timing stats |
---|
| 389 | resultTypes[current++] = doub; |
---|
| 390 | resultTypes[current++] = doub; |
---|
| 391 | resultTypes[current++] = doub; |
---|
| 392 | resultTypes[current++] = doub; |
---|
| 393 | |
---|
| 394 | // sizes |
---|
| 395 | resultTypes[current++] = doub; |
---|
| 396 | resultTypes[current++] = doub; |
---|
| 397 | resultTypes[current++] = doub; |
---|
| 398 | |
---|
| 399 | // Prediction interval statistics |
---|
| 400 | resultTypes[current++] = doub; |
---|
| 401 | resultTypes[current++] = doub; |
---|
| 402 | |
---|
| 403 | resultTypes[current++] = ""; |
---|
| 404 | |
---|
| 405 | // add any additional measures |
---|
| 406 | for (int i=0;i<addm;i++) { |
---|
| 407 | resultTypes[current++] = doub; |
---|
| 408 | } |
---|
| 409 | if (current != RESULT_SIZE+addm) { |
---|
| 410 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
| 411 | } |
---|
| 412 | return resultTypes; |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | /** |
---|
| 416 | * Gets the names of each of the result columns produced for a single run. |
---|
| 417 | * The number of result fields must be constant |
---|
| 418 | * for a given SplitEvaluator. |
---|
| 419 | * |
---|
| 420 | * @return an array containing the name of each result column |
---|
| 421 | */ |
---|
| 422 | public String [] getResultNames() { |
---|
| 423 | int addm = (m_AdditionalMeasures != null) |
---|
| 424 | ? m_AdditionalMeasures.length |
---|
| 425 | : 0; |
---|
| 426 | String [] resultNames = new String[RESULT_SIZE+addm]; |
---|
| 427 | int current = 0; |
---|
| 428 | resultNames[current++] = "Number_of_training_instances"; |
---|
| 429 | resultNames[current++] = "Number_of_testing_instances"; |
---|
| 430 | |
---|
| 431 | // Sensitive stats - certainty of predictions |
---|
| 432 | resultNames[current++] = "Mean_absolute_error"; |
---|
| 433 | resultNames[current++] = "Root_mean_squared_error"; |
---|
| 434 | resultNames[current++] = "Relative_absolute_error"; |
---|
| 435 | resultNames[current++] = "Root_relative_squared_error"; |
---|
| 436 | resultNames[current++] = "Correlation_coefficient"; |
---|
| 437 | |
---|
| 438 | // SF stats |
---|
| 439 | resultNames[current++] = "SF_prior_entropy"; |
---|
| 440 | resultNames[current++] = "SF_scheme_entropy"; |
---|
| 441 | resultNames[current++] = "SF_entropy_gain"; |
---|
| 442 | resultNames[current++] = "SF_mean_prior_entropy"; |
---|
| 443 | resultNames[current++] = "SF_mean_scheme_entropy"; |
---|
| 444 | resultNames[current++] = "SF_mean_entropy_gain"; |
---|
| 445 | |
---|
| 446 | // Timing stats |
---|
| 447 | resultNames[current++] = "Elapsed_Time_training"; |
---|
| 448 | resultNames[current++] = "Elapsed_Time_testing"; |
---|
| 449 | resultNames[current++] = "UserCPU_Time_training"; |
---|
| 450 | resultNames[current++] = "UserCPU_Time_testing"; |
---|
| 451 | |
---|
| 452 | // sizes |
---|
| 453 | resultNames[current++] = "Serialized_Model_Size"; |
---|
| 454 | resultNames[current++] = "Serialized_Train_Set_Size"; |
---|
| 455 | resultNames[current++] = "Serialized_Test_Set_Size"; |
---|
| 456 | |
---|
| 457 | // Prediction interval statistics |
---|
| 458 | resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; |
---|
| 459 | resultNames[current++] = "Size_of_Predicted_Regions"; |
---|
| 460 | |
---|
| 461 | // Classifier defined extras |
---|
| 462 | resultNames[current++] = "Summary"; |
---|
| 463 | // add any additional measures |
---|
| 464 | for (int i=0;i<addm;i++) { |
---|
| 465 | resultNames[current++] = m_AdditionalMeasures[i]; |
---|
| 466 | } |
---|
| 467 | if (current != RESULT_SIZE+addm) { |
---|
| 468 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
| 469 | } |
---|
| 470 | return resultNames; |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /** |
---|
| 474 | * Gets the results for the supplied train and test datasets. Now performs |
---|
| 475 | * a deep copy of the classifier before it is built and evaluated (just in case |
---|
| 476 | * the classifier is not initialized properly in buildClassifier()). |
---|
| 477 | * |
---|
| 478 | * @param train the training Instances. |
---|
| 479 | * @param test the testing Instances. |
---|
| 480 | * @return the results stored in an array. The objects stored in |
---|
| 481 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
| 482 | * @throws Exception if a problem occurs while getting the results |
---|
| 483 | */ |
---|
| 484 | public Object [] getResult(Instances train, Instances test) |
---|
| 485 | throws Exception { |
---|
| 486 | |
---|
| 487 | if (train.classAttribute().type() != Attribute.NUMERIC) { |
---|
| 488 | throw new Exception("Class attribute is not numeric!"); |
---|
| 489 | } |
---|
| 490 | if (m_Template == null) { |
---|
| 491 | throw new Exception("No classifier has been specified"); |
---|
| 492 | } |
---|
| 493 | ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); |
---|
| 494 | boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); |
---|
| 495 | if(!thMonitor.isThreadCpuTimeEnabled()) |
---|
| 496 | thMonitor.setThreadCpuTimeEnabled(true); |
---|
| 497 | |
---|
| 498 | int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; |
---|
| 499 | Object [] result = new Object[RESULT_SIZE+addm]; |
---|
| 500 | long thID = Thread.currentThread().getId(); |
---|
| 501 | long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, |
---|
| 502 | trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; |
---|
| 503 | Evaluation eval = new Evaluation(train); |
---|
| 504 | m_Classifier = AbstractClassifier.makeCopy(m_Template); |
---|
| 505 | |
---|
| 506 | trainTimeStart = System.currentTimeMillis(); |
---|
| 507 | if(canMeasureCPUTime) |
---|
| 508 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
| 509 | m_Classifier.buildClassifier(train); |
---|
| 510 | if(canMeasureCPUTime) |
---|
| 511 | trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
| 512 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
| 513 | testTimeStart = System.currentTimeMillis(); |
---|
| 514 | if(canMeasureCPUTime) |
---|
| 515 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
| 516 | eval.evaluateModel(m_Classifier, test); |
---|
| 517 | if(canMeasureCPUTime) |
---|
| 518 | testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
| 519 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
| 520 | thMonitor = null; |
---|
| 521 | |
---|
| 522 | m_result = eval.toSummaryString(); |
---|
| 523 | // The results stored are all per instance -- can be multiplied by the |
---|
| 524 | // number of instances to get absolute numbers |
---|
| 525 | int current = 0; |
---|
| 526 | result[current++] = new Double(train.numInstances()); |
---|
| 527 | result[current++] = new Double(eval.numInstances()); |
---|
| 528 | |
---|
| 529 | result[current++] = new Double(eval.meanAbsoluteError()); |
---|
| 530 | result[current++] = new Double(eval.rootMeanSquaredError()); |
---|
| 531 | result[current++] = new Double(eval.relativeAbsoluteError()); |
---|
| 532 | result[current++] = new Double(eval.rootRelativeSquaredError()); |
---|
| 533 | result[current++] = new Double(eval.correlationCoefficient()); |
---|
| 534 | |
---|
| 535 | result[current++] = new Double(eval.SFPriorEntropy()); |
---|
| 536 | result[current++] = new Double(eval.SFSchemeEntropy()); |
---|
| 537 | result[current++] = new Double(eval.SFEntropyGain()); |
---|
| 538 | result[current++] = new Double(eval.SFMeanPriorEntropy()); |
---|
| 539 | result[current++] = new Double(eval.SFMeanSchemeEntropy()); |
---|
| 540 | result[current++] = new Double(eval.SFMeanEntropyGain()); |
---|
| 541 | |
---|
| 542 | // Timing stats |
---|
| 543 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
| 544 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
| 545 | if(canMeasureCPUTime) { |
---|
| 546 | result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0); |
---|
| 547 | result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0); |
---|
| 548 | } |
---|
| 549 | else { |
---|
| 550 | result[current++] = new Double(Utils.missingValue()); |
---|
| 551 | result[current++] = new Double(Utils.missingValue()); |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | // sizes |
---|
| 555 | ByteArrayOutputStream bastream = new ByteArrayOutputStream(); |
---|
| 556 | ObjectOutputStream oostream = new ObjectOutputStream(bastream); |
---|
| 557 | oostream.writeObject(m_Classifier); |
---|
| 558 | result[current++] = new Double(bastream.size()); |
---|
| 559 | bastream = new ByteArrayOutputStream(); |
---|
| 560 | oostream = new ObjectOutputStream(bastream); |
---|
| 561 | oostream.writeObject(train); |
---|
| 562 | result[current++] = new Double(bastream.size()); |
---|
| 563 | bastream = new ByteArrayOutputStream(); |
---|
| 564 | oostream = new ObjectOutputStream(bastream); |
---|
| 565 | oostream.writeObject(test); |
---|
| 566 | result[current++] = new Double(bastream.size()); |
---|
| 567 | |
---|
| 568 | // Prediction interval statistics |
---|
| 569 | result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); |
---|
| 570 | result[current++] = new Double(eval.sizeOfPredictedRegions()); |
---|
| 571 | |
---|
| 572 | if (m_Classifier instanceof Summarizable) { |
---|
| 573 | result[current++] = ((Summarizable)m_Classifier).toSummaryString(); |
---|
| 574 | } else { |
---|
| 575 | result[current++] = null; |
---|
| 576 | } |
---|
| 577 | |
---|
| 578 | for (int i=0;i<addm;i++) { |
---|
| 579 | if (m_doesProduce[i]) { |
---|
| 580 | try { |
---|
| 581 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
| 582 | getMeasure(m_AdditionalMeasures[i]); |
---|
| 583 | if (!Utils.isMissingValue(dv)) { |
---|
| 584 | Double value = new Double(dv); |
---|
| 585 | result[current++] = value; |
---|
| 586 | } else { |
---|
| 587 | result[current++] = null; |
---|
| 588 | } |
---|
| 589 | } catch (Exception ex) { |
---|
| 590 | System.err.println(ex); |
---|
| 591 | } |
---|
| 592 | } else { |
---|
| 593 | result[current++] = null; |
---|
| 594 | } |
---|
| 595 | } |
---|
| 596 | |
---|
| 597 | if (current != RESULT_SIZE+addm) { |
---|
| 598 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
| 599 | } |
---|
| 600 | return result; |
---|
| 601 | } |
---|
| 602 | |
---|
| 603 | /** |
---|
| 604 | * Returns the tip text for this property |
---|
| 605 | * @return tip text for this property suitable for |
---|
| 606 | * displaying in the explorer/experimenter gui |
---|
| 607 | */ |
---|
| 608 | public String classifierTipText() { |
---|
| 609 | return "The classifier to use."; |
---|
| 610 | } |
---|
| 611 | |
---|
| 612 | /** |
---|
| 613 | * Get the value of Classifier. |
---|
| 614 | * |
---|
| 615 | * @return Value of Classifier. |
---|
| 616 | */ |
---|
| 617 | public Classifier getClassifier() { |
---|
| 618 | |
---|
| 619 | return m_Template; |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | /** |
---|
| 623 | * Sets the classifier. |
---|
| 624 | * |
---|
| 625 | * @param newClassifier the new classifier to use. |
---|
| 626 | */ |
---|
| 627 | public void setClassifier(Classifier newClassifier) { |
---|
| 628 | |
---|
| 629 | m_Template = newClassifier; |
---|
| 630 | updateOptions(); |
---|
| 631 | |
---|
| 632 | System.err.println("RegressionSplitEvaluator: In set classifier"); |
---|
| 633 | } |
---|
| 634 | |
---|
| 635 | /** |
---|
| 636 | * Updates the options that the current classifier is using. |
---|
| 637 | */ |
---|
| 638 | protected void updateOptions() { |
---|
| 639 | |
---|
| 640 | if (m_Template instanceof OptionHandler) { |
---|
| 641 | m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Template) |
---|
| 642 | .getOptions()); |
---|
| 643 | } else { |
---|
| 644 | m_ClassifierOptions = ""; |
---|
| 645 | } |
---|
| 646 | if (m_Template instanceof Serializable) { |
---|
| 647 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template |
---|
| 648 | .getClass()); |
---|
| 649 | m_ClassifierVersion = "" + obs.getSerialVersionUID(); |
---|
| 650 | } else { |
---|
| 651 | m_ClassifierVersion = ""; |
---|
| 652 | } |
---|
| 653 | } |
---|
| 654 | |
---|
| 655 | /** |
---|
| 656 | * Set the Classifier to use, given it's class name. A new classifier will be |
---|
| 657 | * instantiated. |
---|
| 658 | * |
---|
| 659 | * @param newClassifierName the Classifier class name. |
---|
| 660 | * @throws Exception if the class name is invalid. |
---|
| 661 | */ |
---|
| 662 | public void setClassifierName(String newClassifierName) throws Exception { |
---|
| 663 | |
---|
| 664 | try { |
---|
| 665 | setClassifier((Classifier)Class.forName(newClassifierName) |
---|
| 666 | .newInstance()); |
---|
| 667 | } catch (Exception ex) { |
---|
| 668 | throw new Exception("Can't find Classifier with class name: " |
---|
| 669 | + newClassifierName); |
---|
| 670 | } |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Gets the raw output from the classifier |
---|
| 675 | * @return the raw output from the classifier |
---|
| 676 | */ |
---|
| 677 | public String getRawResultOutput() { |
---|
| 678 | StringBuffer result = new StringBuffer(); |
---|
| 679 | |
---|
| 680 | if (m_Classifier == null) { |
---|
| 681 | return "<null> classifier"; |
---|
| 682 | } |
---|
| 683 | result.append(toString()); |
---|
| 684 | result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); |
---|
| 685 | |
---|
| 686 | // append the performance statistics |
---|
| 687 | if (m_result != null) { |
---|
| 688 | result.append(m_result); |
---|
| 689 | |
---|
| 690 | if (m_doesProduce != null) { |
---|
| 691 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
| 692 | if (m_doesProduce[i]) { |
---|
| 693 | try { |
---|
| 694 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
| 695 | getMeasure(m_AdditionalMeasures[i]); |
---|
| 696 | if (!Utils.isMissingValue(dv)) { |
---|
| 697 | Double value = new Double(dv); |
---|
| 698 | result.append(m_AdditionalMeasures[i]+" : "+value+'\n'); |
---|
| 699 | } else { |
---|
| 700 | result.append(m_AdditionalMeasures[i]+" : "+'?'+'\n'); |
---|
| 701 | } |
---|
| 702 | } catch (Exception ex) { |
---|
| 703 | System.err.println(ex); |
---|
| 704 | } |
---|
| 705 | } |
---|
| 706 | } |
---|
| 707 | } |
---|
| 708 | } |
---|
| 709 | return result.toString(); |
---|
| 710 | } |
---|
| 711 | |
---|
| 712 | /** |
---|
| 713 | * Returns a text description of the split evaluator. |
---|
| 714 | * |
---|
| 715 | * @return a text description of the split evaluator. |
---|
| 716 | */ |
---|
| 717 | public String toString() { |
---|
| 718 | |
---|
| 719 | String result = "RegressionSplitEvaluator: "; |
---|
| 720 | if (m_Template == null) { |
---|
| 721 | return result + "<null> classifier"; |
---|
| 722 | } |
---|
| 723 | return result + m_Template.getClass().getName() + " " |
---|
| 724 | + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; |
---|
| 725 | } |
---|
| 726 | |
---|
| 727 | /** |
---|
| 728 | * Returns the revision string. |
---|
| 729 | * |
---|
| 730 | * @return the revision |
---|
| 731 | */ |
---|
| 732 | public String getRevision() { |
---|
| 733 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 734 | } |
---|
| 735 | } // RegressionSplitEvaluator |
---|