[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * RandomSplitResultProducer.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.core.AdditionalMeasureProducer; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.Option; |
---|
| 30 | import weka.core.OptionHandler; |
---|
| 31 | import weka.core.RevisionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | |
---|
| 35 | import java.io.File; |
---|
| 36 | import java.util.Calendar; |
---|
| 37 | import java.util.Enumeration; |
---|
| 38 | import java.util.Random; |
---|
| 39 | import java.util.TimeZone; |
---|
| 40 | import java.util.Vector; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * Generates a single train/test split and calls the appropriate SplitEvaluator to generate some results. |
---|
| 45 | * <p/> |
---|
| 46 | <!-- globalinfo-end --> |
---|
| 47 | * |
---|
| 48 | <!-- options-start --> |
---|
| 49 | * Valid options are: <p/> |
---|
| 50 | * |
---|
| 51 | * <pre> -P <percent> |
---|
| 52 | * The percentage of instances to use for training. |
---|
| 53 | * (default 66)</pre> |
---|
| 54 | * |
---|
| 55 | * <pre> -D |
---|
| 56 | * Save raw split evaluator output.</pre> |
---|
| 57 | * |
---|
| 58 | * <pre> -O <file/directory name/path> |
---|
| 59 | * The filename where raw output will be stored. |
---|
| 60 | * If a directory name is specified then then individual |
---|
| 61 | * outputs will be gzipped, otherwise all output will be |
---|
| 62 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -W <class name> |
---|
| 65 | * The full class name of a SplitEvaluator. |
---|
| 66 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
| 67 | * |
---|
| 68 | * <pre> -R |
---|
| 69 | * Set when data is not to be randomized and the data sets' size. |
---|
| 70 | * Is not to be determined via probabilistic rounding.</pre> |
---|
| 71 | * |
---|
| 72 | * <pre> |
---|
| 73 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
| 74 | * </pre> |
---|
| 75 | * |
---|
| 76 | * <pre> -W <class name> |
---|
| 77 | * The full class name of the classifier. |
---|
| 78 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -C <index> |
---|
| 81 | * The index of the class for which IR statistics |
---|
| 82 | * are to be output. (default 1)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -I <index> |
---|
| 85 | * The index of an attribute to output in the |
---|
| 86 | * results. This attribute should identify an |
---|
| 87 | * instance in order to know which instances are |
---|
| 88 | * in the test set of a cross validation. if 0 |
---|
| 89 | * no output (default 0).</pre> |
---|
| 90 | * |
---|
| 91 | * <pre> -P |
---|
| 92 | * Add target and prediction columns to the result |
---|
| 93 | * for each fold.</pre> |
---|
| 94 | * |
---|
| 95 | * <pre> |
---|
| 96 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 97 | * </pre> |
---|
| 98 | * |
---|
| 99 | * <pre> -D |
---|
| 100 | * If set, classifier is run in debug mode and |
---|
| 101 | * may output additional info to the console</pre> |
---|
| 102 | * |
---|
| 103 | <!-- options-end --> |
---|
| 104 | * |
---|
| 105 | * All options after -- will be passed to the split evaluator. |
---|
| 106 | * |
---|
| 107 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
| 108 | * @version $Revision: 1.20 $ |
---|
| 109 | */ |
---|
| 110 | public class RandomSplitResultProducer |
---|
| 111 | implements ResultProducer, OptionHandler, AdditionalMeasureProducer, |
---|
| 112 | RevisionHandler { |
---|
| 113 | |
---|
| 114 | /** for serialization */ |
---|
| 115 | static final long serialVersionUID = 1403798165056795073L; |
---|
| 116 | |
---|
| 117 | /** The dataset of interest */ |
---|
| 118 | protected Instances m_Instances; |
---|
| 119 | |
---|
| 120 | /** The ResultListener to send results to */ |
---|
| 121 | protected ResultListener m_ResultListener = new CSVResultListener(); |
---|
| 122 | |
---|
| 123 | /** The percentage of instances to use for training */ |
---|
| 124 | protected double m_TrainPercent = 66; |
---|
| 125 | |
---|
| 126 | /** Whether dataset is to be randomized */ |
---|
| 127 | protected boolean m_randomize = true; |
---|
| 128 | |
---|
| 129 | /** The SplitEvaluator used to generate results */ |
---|
| 130 | protected SplitEvaluator m_SplitEvaluator = new ClassifierSplitEvaluator(); |
---|
| 131 | |
---|
| 132 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
| 133 | protected String [] m_AdditionalMeasures = null; |
---|
| 134 | |
---|
| 135 | /** Save raw output of split evaluators --- for debugging purposes */ |
---|
| 136 | protected boolean m_debugOutput = false; |
---|
| 137 | |
---|
| 138 | /** The output zipper to use for saving raw splitEvaluator output */ |
---|
| 139 | protected OutputZipper m_ZipDest = null; |
---|
| 140 | |
---|
| 141 | /** The destination output file/directory for raw output */ |
---|
| 142 | protected File m_OutputFile = new File( |
---|
| 143 | new File(System.getProperty("user.dir")), |
---|
| 144 | "splitEvalutorOut.zip"); |
---|
| 145 | |
---|
| 146 | /** The name of the key field containing the dataset name */ |
---|
| 147 | public static String DATASET_FIELD_NAME = "Dataset"; |
---|
| 148 | |
---|
| 149 | /** The name of the key field containing the run number */ |
---|
| 150 | public static String RUN_FIELD_NAME = "Run"; |
---|
| 151 | |
---|
| 152 | /** The name of the result field containing the timestamp */ |
---|
| 153 | public static String TIMESTAMP_FIELD_NAME = "Date_time"; |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Returns a string describing this result producer |
---|
| 157 | * @return a description of the result producer suitable for |
---|
| 158 | * displaying in the explorer/experimenter gui |
---|
| 159 | */ |
---|
| 160 | public String globalInfo() { |
---|
| 161 | return |
---|
| 162 | "Generates a single train/test split and calls the appropriate " |
---|
| 163 | + "SplitEvaluator to generate some results."; |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | /** |
---|
| 167 | * Sets the dataset that results will be obtained for. |
---|
| 168 | * |
---|
| 169 | * @param instances a value of type 'Instances'. |
---|
| 170 | */ |
---|
| 171 | public void setInstances(Instances instances) { |
---|
| 172 | |
---|
| 173 | m_Instances = instances; |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * Set a list of method names for additional measures to look for |
---|
| 178 | * in SplitEvaluators. This could contain many measures (of which only a |
---|
| 179 | * subset may be produceable by the current SplitEvaluator) if an experiment |
---|
| 180 | * is the type that iterates over a set of properties. |
---|
| 181 | * @param additionalMeasures an array of measure names, null if none |
---|
| 182 | */ |
---|
| 183 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
| 184 | m_AdditionalMeasures = additionalMeasures; |
---|
| 185 | |
---|
| 186 | if (m_SplitEvaluator != null) { |
---|
| 187 | System.err.println("RandomSplitResultProducer: setting additional " |
---|
| 188 | +"measures for " |
---|
| 189 | +"split evaluator"); |
---|
| 190 | m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); |
---|
| 191 | } |
---|
| 192 | } |
---|
| 193 | |
---|
| 194 | /** |
---|
| 195 | * Returns an enumeration of any additional measure names that might be |
---|
| 196 | * in the SplitEvaluator |
---|
| 197 | * @return an enumeration of the measure names |
---|
| 198 | */ |
---|
| 199 | public Enumeration enumerateMeasures() { |
---|
| 200 | Vector newVector = new Vector(); |
---|
| 201 | if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { |
---|
| 202 | Enumeration en = ((AdditionalMeasureProducer)m_SplitEvaluator). |
---|
| 203 | enumerateMeasures(); |
---|
| 204 | while (en.hasMoreElements()) { |
---|
| 205 | String mname = (String)en.nextElement(); |
---|
| 206 | newVector.addElement(mname); |
---|
| 207 | } |
---|
| 208 | } |
---|
| 209 | return newVector.elements(); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | /** |
---|
| 213 | * Returns the value of the named measure |
---|
| 214 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 215 | * @return the value of the named measure |
---|
| 216 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 217 | */ |
---|
| 218 | public double getMeasure(String additionalMeasureName) { |
---|
| 219 | if (m_SplitEvaluator instanceof AdditionalMeasureProducer) { |
---|
| 220 | return ((AdditionalMeasureProducer)m_SplitEvaluator). |
---|
| 221 | getMeasure(additionalMeasureName); |
---|
| 222 | } else { |
---|
| 223 | throw new IllegalArgumentException("RandomSplitResultProducer: " |
---|
| 224 | +"Can't return value for : "+additionalMeasureName |
---|
| 225 | +". "+m_SplitEvaluator.getClass().getName()+" " |
---|
| 226 | +"is not an AdditionalMeasureProducer"); |
---|
| 227 | } |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | /** |
---|
| 231 | * Sets the object to send results of each run to. |
---|
| 232 | * |
---|
| 233 | * @param listener a value of type 'ResultListener' |
---|
| 234 | */ |
---|
| 235 | public void setResultListener(ResultListener listener) { |
---|
| 236 | |
---|
| 237 | m_ResultListener = listener; |
---|
| 238 | } |
---|
| 239 | |
---|
| 240 | /** |
---|
| 241 | * Gets a Double representing the current date and time. |
---|
| 242 | * eg: 1:46pm on 20/5/1999 -> 19990520.1346 |
---|
| 243 | * |
---|
| 244 | * @return a value of type Double |
---|
| 245 | */ |
---|
| 246 | public static Double getTimestamp() { |
---|
| 247 | |
---|
| 248 | Calendar now = Calendar.getInstance(TimeZone.getTimeZone("UTC")); |
---|
| 249 | double timestamp = now.get(Calendar.YEAR) * 10000 |
---|
| 250 | + (now.get(Calendar.MONTH) + 1) * 100 |
---|
| 251 | + now.get(Calendar.DAY_OF_MONTH) |
---|
| 252 | + now.get(Calendar.HOUR_OF_DAY) / 100.0 |
---|
| 253 | + now.get(Calendar.MINUTE) / 10000.0; |
---|
| 254 | return new Double(timestamp); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /** |
---|
| 258 | * Prepare to generate results. |
---|
| 259 | * |
---|
| 260 | * @throws Exception if an error occurs during preprocessing. |
---|
| 261 | */ |
---|
| 262 | public void preProcess() throws Exception { |
---|
| 263 | |
---|
| 264 | if (m_SplitEvaluator == null) { |
---|
| 265 | throw new Exception("No SplitEvalutor set"); |
---|
| 266 | } |
---|
| 267 | if (m_ResultListener == null) { |
---|
| 268 | throw new Exception("No ResultListener set"); |
---|
| 269 | } |
---|
| 270 | m_ResultListener.preProcess(this); |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | /** |
---|
| 274 | * Perform any postprocessing. When this method is called, it indicates |
---|
| 275 | * that no more requests to generate results for the current experiment |
---|
| 276 | * will be sent. |
---|
| 277 | * |
---|
| 278 | * @throws Exception if an error occurs |
---|
| 279 | */ |
---|
| 280 | public void postProcess() throws Exception { |
---|
| 281 | |
---|
| 282 | m_ResultListener.postProcess(this); |
---|
| 283 | if (m_debugOutput) { |
---|
| 284 | if (m_ZipDest != null) { |
---|
| 285 | m_ZipDest.finished(); |
---|
| 286 | m_ZipDest = null; |
---|
| 287 | } |
---|
| 288 | } |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * Gets the keys for a specified run number. Different run |
---|
| 293 | * numbers correspond to different randomizations of the data. Keys |
---|
| 294 | * produced should be sent to the current ResultListener |
---|
| 295 | * |
---|
| 296 | * @param run the run number to get keys for. |
---|
| 297 | * @throws Exception if a problem occurs while getting the keys |
---|
| 298 | */ |
---|
| 299 | public void doRunKeys(int run) throws Exception { |
---|
| 300 | if (m_Instances == null) { |
---|
| 301 | throw new Exception("No Instances set"); |
---|
| 302 | } |
---|
| 303 | // Add in some fields to the key like run number, dataset name |
---|
| 304 | Object [] seKey = m_SplitEvaluator.getKey(); |
---|
| 305 | Object [] key = new Object [seKey.length + 2]; |
---|
| 306 | key[0] = Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 307 | key[1] = "" + run; |
---|
| 308 | System.arraycopy(seKey, 0, key, 2, seKey.length); |
---|
| 309 | if (m_ResultListener.isResultRequired(this, key)) { |
---|
| 310 | try { |
---|
| 311 | m_ResultListener.acceptResult(this, key, null); |
---|
| 312 | } catch (Exception ex) { |
---|
| 313 | // Save the train and test datasets for debugging purposes? |
---|
| 314 | throw ex; |
---|
| 315 | } |
---|
| 316 | } |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | /** |
---|
| 320 | * Gets the results for a specified run number. Different run |
---|
| 321 | * numbers correspond to different randomizations of the data. Results |
---|
| 322 | * produced should be sent to the current ResultListener |
---|
| 323 | * |
---|
| 324 | * @param run the run number to get results for. |
---|
| 325 | * @throws Exception if a problem occurs while getting the results |
---|
| 326 | */ |
---|
| 327 | public void doRun(int run) throws Exception { |
---|
| 328 | |
---|
| 329 | if (getRawOutput()) { |
---|
| 330 | if (m_ZipDest == null) { |
---|
| 331 | m_ZipDest = new OutputZipper(m_OutputFile); |
---|
| 332 | } |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | if (m_Instances == null) { |
---|
| 336 | throw new Exception("No Instances set"); |
---|
| 337 | } |
---|
| 338 | // Add in some fields to the key like run number, dataset name |
---|
| 339 | Object [] seKey = m_SplitEvaluator.getKey(); |
---|
| 340 | Object [] key = new Object [seKey.length + 2]; |
---|
| 341 | key[0] = Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 342 | key[1] = "" + run; |
---|
| 343 | System.arraycopy(seKey, 0, key, 2, seKey.length); |
---|
| 344 | if (m_ResultListener.isResultRequired(this, key)) { |
---|
| 345 | |
---|
| 346 | // Randomize on a copy of the original dataset |
---|
| 347 | Instances runInstances = new Instances(m_Instances); |
---|
| 348 | |
---|
| 349 | Instances train; |
---|
| 350 | Instances test; |
---|
| 351 | |
---|
| 352 | if (!m_randomize) { |
---|
| 353 | |
---|
| 354 | // Don't do any randomization |
---|
| 355 | int trainSize = Utils.round(runInstances.numInstances() * m_TrainPercent / 100); |
---|
| 356 | int testSize = runInstances.numInstances() - trainSize; |
---|
| 357 | train = new Instances(runInstances, 0, trainSize); |
---|
| 358 | test = new Instances(runInstances, trainSize, testSize); |
---|
| 359 | } else { |
---|
| 360 | Random rand = new Random(run); |
---|
| 361 | runInstances.randomize(rand); |
---|
| 362 | |
---|
| 363 | // Nominal class |
---|
| 364 | if (runInstances.classAttribute().isNominal()) { |
---|
| 365 | |
---|
| 366 | // create the subset for each classs |
---|
| 367 | int numClasses = runInstances.numClasses(); |
---|
| 368 | Instances[] subsets = new Instances[numClasses + 1]; |
---|
| 369 | for (int i=0; i < numClasses + 1; i++) { |
---|
| 370 | subsets[i] = new Instances(runInstances, 10); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | // divide instances into subsets |
---|
| 374 | Enumeration e = runInstances.enumerateInstances(); |
---|
| 375 | while(e.hasMoreElements()) { |
---|
| 376 | Instance inst = (Instance) e.nextElement(); |
---|
| 377 | if (inst.classIsMissing()) { |
---|
| 378 | subsets[numClasses].add(inst); |
---|
| 379 | } else { |
---|
| 380 | subsets[(int) inst.classValue()].add(inst); |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | // Compactify them |
---|
| 385 | for (int i=0; i < numClasses + 1; i++) { |
---|
| 386 | subsets[i].compactify(); |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | // merge into train and test sets |
---|
| 390 | train = new Instances(runInstances, runInstances.numInstances()); |
---|
| 391 | test = new Instances(runInstances, runInstances.numInstances()); |
---|
| 392 | for (int i = 0; i < numClasses + 1; i++) { |
---|
| 393 | int trainSize = |
---|
| 394 | Utils.probRound(subsets[i].numInstances() * m_TrainPercent / 100, rand); |
---|
| 395 | for (int j = 0; j < trainSize; j++) { |
---|
| 396 | train.add(subsets[i].instance(j)); |
---|
| 397 | } |
---|
| 398 | for (int j = trainSize; j < subsets[i].numInstances(); j++) { |
---|
| 399 | test.add(subsets[i].instance(j)); |
---|
| 400 | } |
---|
| 401 | // free memory |
---|
| 402 | subsets[i] = null; |
---|
| 403 | } |
---|
| 404 | train.compactify(); |
---|
| 405 | test.compactify(); |
---|
| 406 | |
---|
| 407 | // randomize the final sets |
---|
| 408 | train.randomize(rand); |
---|
| 409 | test.randomize(rand); |
---|
| 410 | } else { |
---|
| 411 | |
---|
| 412 | // Numeric target |
---|
| 413 | int trainSize = |
---|
| 414 | Utils.probRound(runInstances.numInstances() * m_TrainPercent / 100, rand); |
---|
| 415 | int testSize = runInstances.numInstances() - trainSize; |
---|
| 416 | train = new Instances(runInstances, 0, trainSize); |
---|
| 417 | test = new Instances(runInstances, trainSize, testSize); |
---|
| 418 | } |
---|
| 419 | } |
---|
| 420 | try { |
---|
| 421 | Object [] seResults = m_SplitEvaluator.getResult(train, test); |
---|
| 422 | Object [] results = new Object [seResults.length + 1]; |
---|
| 423 | results[0] = getTimestamp(); |
---|
| 424 | System.arraycopy(seResults, 0, results, 1, |
---|
| 425 | seResults.length); |
---|
| 426 | if (m_debugOutput) { |
---|
| 427 | String resultName = |
---|
| 428 | (""+run+"."+ |
---|
| 429 | Utils.backQuoteChars(runInstances.relationName()) |
---|
| 430 | +"." |
---|
| 431 | +m_SplitEvaluator.toString()).replace(' ','_'); |
---|
| 432 | resultName = Utils.removeSubstring(resultName, |
---|
| 433 | "weka.classifiers."); |
---|
| 434 | resultName = Utils.removeSubstring(resultName, |
---|
| 435 | "weka.filters."); |
---|
| 436 | resultName = Utils.removeSubstring(resultName, |
---|
| 437 | "weka.attributeSelection."); |
---|
| 438 | m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); |
---|
| 439 | } |
---|
| 440 | m_ResultListener.acceptResult(this, key, results); |
---|
| 441 | } catch (Exception ex) { |
---|
| 442 | // Save the train and test datasets for debugging purposes? |
---|
| 443 | throw ex; |
---|
| 444 | } |
---|
| 445 | } |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Gets the names of each of the columns produced for a single run. |
---|
| 450 | * This method should really be static. |
---|
| 451 | * |
---|
| 452 | * @return an array containing the name of each column |
---|
| 453 | */ |
---|
| 454 | public String [] getKeyNames() { |
---|
| 455 | |
---|
| 456 | String [] keyNames = m_SplitEvaluator.getKeyNames(); |
---|
| 457 | // Add in the names of our extra key fields |
---|
| 458 | String [] newKeyNames = new String [keyNames.length + 2]; |
---|
| 459 | newKeyNames[0] = DATASET_FIELD_NAME; |
---|
| 460 | newKeyNames[1] = RUN_FIELD_NAME; |
---|
| 461 | System.arraycopy(keyNames, 0, newKeyNames, 2, keyNames.length); |
---|
| 462 | return newKeyNames; |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | /** |
---|
| 466 | * Gets the data types of each of the columns produced for a single run. |
---|
| 467 | * This method should really be static. |
---|
| 468 | * |
---|
| 469 | * @return an array containing objects of the type of each column. The |
---|
| 470 | * objects should be Strings, or Doubles. |
---|
| 471 | */ |
---|
| 472 | public Object [] getKeyTypes() { |
---|
| 473 | |
---|
| 474 | Object [] keyTypes = m_SplitEvaluator.getKeyTypes(); |
---|
| 475 | // Add in the types of our extra fields |
---|
| 476 | Object [] newKeyTypes = new String [keyTypes.length + 2]; |
---|
| 477 | newKeyTypes[0] = new String(); |
---|
| 478 | newKeyTypes[1] = new String(); |
---|
| 479 | System.arraycopy(keyTypes, 0, newKeyTypes, 2, keyTypes.length); |
---|
| 480 | return newKeyTypes; |
---|
| 481 | } |
---|
| 482 | |
---|
| 483 | /** |
---|
| 484 | * Gets the names of each of the columns produced for a single run. |
---|
| 485 | * This method should really be static. |
---|
| 486 | * |
---|
| 487 | * @return an array containing the name of each column |
---|
| 488 | */ |
---|
| 489 | public String [] getResultNames() { |
---|
| 490 | |
---|
| 491 | String [] resultNames = m_SplitEvaluator.getResultNames(); |
---|
| 492 | // Add in the names of our extra Result fields |
---|
| 493 | String [] newResultNames = new String [resultNames.length + 1]; |
---|
| 494 | newResultNames[0] = TIMESTAMP_FIELD_NAME; |
---|
| 495 | System.arraycopy(resultNames, 0, newResultNames, 1, resultNames.length); |
---|
| 496 | return newResultNames; |
---|
| 497 | } |
---|
| 498 | |
---|
| 499 | /** |
---|
| 500 | * Gets the data types of each of the columns produced for a single run. |
---|
| 501 | * This method should really be static. |
---|
| 502 | * |
---|
| 503 | * @return an array containing objects of the type of each column. The |
---|
| 504 | * objects should be Strings, or Doubles. |
---|
| 505 | */ |
---|
| 506 | public Object [] getResultTypes() { |
---|
| 507 | |
---|
| 508 | Object [] resultTypes = m_SplitEvaluator.getResultTypes(); |
---|
| 509 | // Add in the types of our extra Result fields |
---|
| 510 | Object [] newResultTypes = new Object [resultTypes.length + 1]; |
---|
| 511 | newResultTypes[0] = new Double(0); |
---|
| 512 | System.arraycopy(resultTypes, 0, newResultTypes, 1, resultTypes.length); |
---|
| 513 | return newResultTypes; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * Gets a description of the internal settings of the result |
---|
| 518 | * producer, sufficient for distinguishing a ResultProducer |
---|
| 519 | * instance from another with different settings (ignoring |
---|
| 520 | * those settings set through this interface). For example, |
---|
| 521 | * a cross-validation ResultProducer may have a setting for the |
---|
| 522 | * number of folds. For a given state, the results produced should |
---|
| 523 | * be compatible. Typically if a ResultProducer is an OptionHandler, |
---|
| 524 | * this string will represent the command line arguments required |
---|
| 525 | * to set the ResultProducer to that state. |
---|
| 526 | * |
---|
| 527 | * @return the description of the ResultProducer state, or null |
---|
| 528 | * if no state is defined |
---|
| 529 | */ |
---|
| 530 | public String getCompatibilityState() { |
---|
| 531 | |
---|
| 532 | String result = "-P " + m_TrainPercent; |
---|
| 533 | if (!getRandomizeData()) { |
---|
| 534 | result += " -R"; |
---|
| 535 | } |
---|
| 536 | if (m_SplitEvaluator == null) { |
---|
| 537 | result += " <null SplitEvaluator>"; |
---|
| 538 | } else { |
---|
| 539 | result += " -W " + m_SplitEvaluator.getClass().getName(); |
---|
| 540 | } |
---|
| 541 | return result + " --"; |
---|
| 542 | } |
---|
| 543 | |
---|
| 544 | /** |
---|
| 545 | * Returns the tip text for this property |
---|
| 546 | * @return tip text for this property suitable for |
---|
| 547 | * displaying in the explorer/experimenter gui |
---|
| 548 | */ |
---|
| 549 | public String outputFileTipText() { |
---|
| 550 | return "Set the destination for saving raw output. If the rawOutput " |
---|
| 551 | +"option is selected, then output from the splitEvaluator for " |
---|
| 552 | +"individual train-test splits is saved. If the destination is a " |
---|
| 553 | +"directory, " |
---|
| 554 | +"then each output is saved to an individual gzip file; if the " |
---|
| 555 | +"destination is a file, then each output is saved as an entry " |
---|
| 556 | +"in a zip file."; |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** |
---|
| 560 | * Get the value of OutputFile. |
---|
| 561 | * |
---|
| 562 | * @return Value of OutputFile. |
---|
| 563 | */ |
---|
| 564 | public File getOutputFile() { |
---|
| 565 | |
---|
| 566 | return m_OutputFile; |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | /** |
---|
| 570 | * Set the value of OutputFile. |
---|
| 571 | * |
---|
| 572 | * @param newOutputFile Value to assign to OutputFile. |
---|
| 573 | */ |
---|
| 574 | public void setOutputFile(File newOutputFile) { |
---|
| 575 | |
---|
| 576 | m_OutputFile = newOutputFile; |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | /** |
---|
| 580 | * Returns the tip text for this property |
---|
| 581 | * @return tip text for this property suitable for |
---|
| 582 | * displaying in the explorer/experimenter gui |
---|
| 583 | */ |
---|
| 584 | public String randomizeDataTipText() { |
---|
| 585 | return "Do not randomize dataset and do not perform probabilistic rounding " + |
---|
| 586 | "if true"; |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | /** |
---|
| 590 | * Get if dataset is to be randomized |
---|
| 591 | * @return true if dataset is to be randomized |
---|
| 592 | */ |
---|
| 593 | public boolean getRandomizeData() { |
---|
| 594 | return m_randomize; |
---|
| 595 | } |
---|
| 596 | |
---|
| 597 | /** |
---|
| 598 | * Set to true if dataset is to be randomized |
---|
| 599 | * @param d true if dataset is to be randomized |
---|
| 600 | */ |
---|
| 601 | public void setRandomizeData(boolean d) { |
---|
| 602 | m_randomize = d; |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | /** |
---|
| 606 | * Returns the tip text for this property |
---|
| 607 | * @return tip text for this property suitable for |
---|
| 608 | * displaying in the explorer/experimenter gui |
---|
| 609 | */ |
---|
| 610 | public String rawOutputTipText() { |
---|
| 611 | return "Save raw output (useful for debugging). If set, then output is " |
---|
| 612 | +"sent to the destination specified by outputFile"; |
---|
| 613 | } |
---|
| 614 | |
---|
| 615 | /** |
---|
| 616 | * Get if raw split evaluator output is to be saved |
---|
| 617 | * @return true if raw split evalutor output is to be saved |
---|
| 618 | */ |
---|
| 619 | public boolean getRawOutput() { |
---|
| 620 | return m_debugOutput; |
---|
| 621 | } |
---|
| 622 | |
---|
| 623 | /** |
---|
| 624 | * Set to true if raw split evaluator output is to be saved |
---|
| 625 | * @param d true if output is to be saved |
---|
| 626 | */ |
---|
| 627 | public void setRawOutput(boolean d) { |
---|
| 628 | m_debugOutput = d; |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /** |
---|
| 632 | * Returns the tip text for this property |
---|
| 633 | * @return tip text for this property suitable for |
---|
| 634 | * displaying in the explorer/experimenter gui |
---|
| 635 | */ |
---|
| 636 | public String trainPercentTipText() { |
---|
| 637 | return "Set the percentage of data to use for training."; |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | /** |
---|
| 641 | * Get the value of TrainPercent. |
---|
| 642 | * |
---|
| 643 | * @return Value of TrainPercent. |
---|
| 644 | */ |
---|
| 645 | public double getTrainPercent() { |
---|
| 646 | |
---|
| 647 | return m_TrainPercent; |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | /** |
---|
| 651 | * Set the value of TrainPercent. |
---|
| 652 | * |
---|
| 653 | * @param newTrainPercent Value to assign to TrainPercent. |
---|
| 654 | */ |
---|
| 655 | public void setTrainPercent(double newTrainPercent) { |
---|
| 656 | |
---|
| 657 | m_TrainPercent = newTrainPercent; |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | /** |
---|
| 661 | * Returns the tip text for this property |
---|
| 662 | * @return tip text for this property suitable for |
---|
| 663 | * displaying in the explorer/experimenter gui |
---|
| 664 | */ |
---|
| 665 | public String splitEvaluatorTipText() { |
---|
| 666 | return "The evaluator to apply to the test data. " |
---|
| 667 | +"This may be a classifier, regression scheme etc."; |
---|
| 668 | } |
---|
| 669 | |
---|
| 670 | /** |
---|
| 671 | * Get the SplitEvaluator. |
---|
| 672 | * |
---|
| 673 | * @return the SplitEvaluator. |
---|
| 674 | */ |
---|
| 675 | public SplitEvaluator getSplitEvaluator() { |
---|
| 676 | |
---|
| 677 | return m_SplitEvaluator; |
---|
| 678 | } |
---|
| 679 | |
---|
| 680 | /** |
---|
| 681 | * Set the SplitEvaluator. |
---|
| 682 | * |
---|
| 683 | * @param newSplitEvaluator new SplitEvaluator to use. |
---|
| 684 | */ |
---|
| 685 | public void setSplitEvaluator(SplitEvaluator newSplitEvaluator) { |
---|
| 686 | |
---|
| 687 | m_SplitEvaluator = newSplitEvaluator; |
---|
| 688 | m_SplitEvaluator.setAdditionalMeasures(m_AdditionalMeasures); |
---|
| 689 | } |
---|
| 690 | |
---|
| 691 | /** |
---|
| 692 | * Returns an enumeration describing the available options.. |
---|
| 693 | * |
---|
| 694 | * @return an enumeration of all the available options. |
---|
| 695 | */ |
---|
| 696 | public Enumeration listOptions() { |
---|
| 697 | |
---|
| 698 | Vector newVector = new Vector(5); |
---|
| 699 | |
---|
| 700 | newVector.addElement(new Option( |
---|
| 701 | "\tThe percentage of instances to use for training.\n" |
---|
| 702 | +"\t(default 66)", |
---|
| 703 | "P", 1, |
---|
| 704 | "-P <percent>")); |
---|
| 705 | |
---|
| 706 | newVector.addElement(new Option( |
---|
| 707 | "Save raw split evaluator output.", |
---|
| 708 | "D",0,"-D")); |
---|
| 709 | |
---|
| 710 | newVector.addElement(new Option( |
---|
| 711 | "\tThe filename where raw output will be stored.\n" |
---|
| 712 | +"\tIf a directory name is specified then then individual\n" |
---|
| 713 | +"\toutputs will be gzipped, otherwise all output will be\n" |
---|
| 714 | +"\tzipped to the named file. Use in conjuction with -D." |
---|
| 715 | +"\t(default splitEvalutorOut.zip)", |
---|
| 716 | "O", 1, |
---|
| 717 | "-O <file/directory name/path>")); |
---|
| 718 | |
---|
| 719 | newVector.addElement(new Option( |
---|
| 720 | "\tThe full class name of a SplitEvaluator.\n" |
---|
| 721 | +"\teg: weka.experiment.ClassifierSplitEvaluator", |
---|
| 722 | "W", 1, |
---|
| 723 | "-W <class name>")); |
---|
| 724 | |
---|
| 725 | newVector.addElement(new Option( |
---|
| 726 | "\tSet when data is not to be randomized and the data sets' size.\n" |
---|
| 727 | + "\tIs not to be determined via probabilistic rounding.", |
---|
| 728 | "R",0,"-R")); |
---|
| 729 | |
---|
| 730 | |
---|
| 731 | if ((m_SplitEvaluator != null) && |
---|
| 732 | (m_SplitEvaluator instanceof OptionHandler)) { |
---|
| 733 | newVector.addElement(new Option( |
---|
| 734 | "", |
---|
| 735 | "", 0, "\nOptions specific to split evaluator " |
---|
| 736 | + m_SplitEvaluator.getClass().getName() + ":")); |
---|
| 737 | Enumeration enu = ((OptionHandler)m_SplitEvaluator).listOptions(); |
---|
| 738 | while (enu.hasMoreElements()) { |
---|
| 739 | newVector.addElement(enu.nextElement()); |
---|
| 740 | } |
---|
| 741 | } |
---|
| 742 | return newVector.elements(); |
---|
| 743 | } |
---|
| 744 | |
---|
| 745 | /** |
---|
| 746 | * Parses a given list of options. <p/> |
---|
| 747 | * |
---|
| 748 | <!-- options-start --> |
---|
| 749 | * Valid options are: <p/> |
---|
| 750 | * |
---|
| 751 | * <pre> -P <percent> |
---|
| 752 | * The percentage of instances to use for training. |
---|
| 753 | * (default 66)</pre> |
---|
| 754 | * |
---|
| 755 | * <pre> -D |
---|
| 756 | * Save raw split evaluator output.</pre> |
---|
| 757 | * |
---|
| 758 | * <pre> -O <file/directory name/path> |
---|
| 759 | * The filename where raw output will be stored. |
---|
| 760 | * If a directory name is specified then then individual |
---|
| 761 | * outputs will be gzipped, otherwise all output will be |
---|
| 762 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
| 763 | * |
---|
| 764 | * <pre> -W <class name> |
---|
| 765 | * The full class name of a SplitEvaluator. |
---|
| 766 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
| 767 | * |
---|
| 768 | * <pre> -R |
---|
| 769 | * Set when data is not to be randomized and the data sets' size. |
---|
| 770 | * Is not to be determined via probabilistic rounding.</pre> |
---|
| 771 | * |
---|
| 772 | * <pre> |
---|
| 773 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
| 774 | * </pre> |
---|
| 775 | * |
---|
| 776 | * <pre> -W <class name> |
---|
| 777 | * The full class name of the classifier. |
---|
| 778 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 779 | * |
---|
| 780 | * <pre> -C <index> |
---|
| 781 | * The index of the class for which IR statistics |
---|
| 782 | * are to be output. (default 1)</pre> |
---|
| 783 | * |
---|
| 784 | * <pre> -I <index> |
---|
| 785 | * The index of an attribute to output in the |
---|
| 786 | * results. This attribute should identify an |
---|
| 787 | * instance in order to know which instances are |
---|
| 788 | * in the test set of a cross validation. if 0 |
---|
| 789 | * no output (default 0).</pre> |
---|
| 790 | * |
---|
| 791 | * <pre> -P |
---|
| 792 | * Add target and prediction columns to the result |
---|
| 793 | * for each fold.</pre> |
---|
| 794 | * |
---|
| 795 | * <pre> |
---|
| 796 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 797 | * </pre> |
---|
| 798 | * |
---|
| 799 | * <pre> -D |
---|
| 800 | * If set, classifier is run in debug mode and |
---|
| 801 | * may output additional info to the console</pre> |
---|
| 802 | * |
---|
| 803 | <!-- options-end --> |
---|
| 804 | * |
---|
| 805 | * All options after -- will be passed to the split evaluator. |
---|
| 806 | * |
---|
| 807 | * @param options the list of options as an array of strings |
---|
| 808 | * @throws Exception if an option is not supported |
---|
| 809 | */ |
---|
| 810 | public void setOptions(String[] options) throws Exception { |
---|
| 811 | |
---|
| 812 | setRawOutput(Utils.getFlag('D', options)); |
---|
| 813 | setRandomizeData(!Utils.getFlag('R', options)); |
---|
| 814 | |
---|
| 815 | String fName = Utils.getOption('O', options); |
---|
| 816 | if (fName.length() != 0) { |
---|
| 817 | setOutputFile(new File(fName)); |
---|
| 818 | } |
---|
| 819 | |
---|
| 820 | String trainPct = Utils.getOption('P', options); |
---|
| 821 | if (trainPct.length() != 0) { |
---|
| 822 | setTrainPercent((new Double(trainPct)).doubleValue()); |
---|
| 823 | } else { |
---|
| 824 | setTrainPercent(66); |
---|
| 825 | } |
---|
| 826 | |
---|
| 827 | String seName = Utils.getOption('W', options); |
---|
| 828 | if (seName.length() == 0) { |
---|
| 829 | throw new Exception("A SplitEvaluator must be specified with" |
---|
| 830 | + " the -W option."); |
---|
| 831 | } |
---|
| 832 | // Do it first without options, so if an exception is thrown during |
---|
| 833 | // the option setting, listOptions will contain options for the actual |
---|
| 834 | // SE. |
---|
| 835 | setSplitEvaluator((SplitEvaluator)Utils.forName( |
---|
| 836 | SplitEvaluator.class, |
---|
| 837 | seName, |
---|
| 838 | null)); |
---|
| 839 | if (getSplitEvaluator() instanceof OptionHandler) { |
---|
| 840 | ((OptionHandler) getSplitEvaluator()) |
---|
| 841 | .setOptions(Utils.partitionOptions(options)); |
---|
| 842 | } |
---|
| 843 | } |
---|
| 844 | |
---|
| 845 | /** |
---|
| 846 | * Gets the current settings of the result producer. |
---|
| 847 | * |
---|
| 848 | * @return an array of strings suitable for passing to setOptions |
---|
| 849 | */ |
---|
| 850 | public String [] getOptions() { |
---|
| 851 | |
---|
| 852 | String [] seOptions = new String [0]; |
---|
| 853 | if ((m_SplitEvaluator != null) && |
---|
| 854 | (m_SplitEvaluator instanceof OptionHandler)) { |
---|
| 855 | seOptions = ((OptionHandler)m_SplitEvaluator).getOptions(); |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | String [] options = new String [seOptions.length + 9]; |
---|
| 859 | int current = 0; |
---|
| 860 | |
---|
| 861 | options[current++] = "-P"; options[current++] = "" + getTrainPercent(); |
---|
| 862 | |
---|
| 863 | if (getRawOutput()) { |
---|
| 864 | options[current++] = "-D"; |
---|
| 865 | } |
---|
| 866 | |
---|
| 867 | if (!getRandomizeData()) { |
---|
| 868 | options[current++] = "-R"; |
---|
| 869 | } |
---|
| 870 | |
---|
| 871 | options[current++] = "-O"; |
---|
| 872 | options[current++] = getOutputFile().getName(); |
---|
| 873 | |
---|
| 874 | if (getSplitEvaluator() != null) { |
---|
| 875 | options[current++] = "-W"; |
---|
| 876 | options[current++] = getSplitEvaluator().getClass().getName(); |
---|
| 877 | } |
---|
| 878 | options[current++] = "--"; |
---|
| 879 | |
---|
| 880 | System.arraycopy(seOptions, 0, options, current, |
---|
| 881 | seOptions.length); |
---|
| 882 | current += seOptions.length; |
---|
| 883 | while (current < options.length) { |
---|
| 884 | options[current++] = ""; |
---|
| 885 | } |
---|
| 886 | return options; |
---|
| 887 | } |
---|
| 888 | |
---|
| 889 | /** |
---|
| 890 | * Gets a text descrption of the result producer. |
---|
| 891 | * |
---|
| 892 | * @return a text description of the result producer. |
---|
| 893 | */ |
---|
| 894 | public String toString() { |
---|
| 895 | |
---|
| 896 | String result = "RandomSplitResultProducer: "; |
---|
| 897 | result += getCompatibilityState(); |
---|
| 898 | if (m_Instances == null) { |
---|
| 899 | result += ": <null Instances>"; |
---|
| 900 | } else { |
---|
| 901 | result += ": " + Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 902 | } |
---|
| 903 | return result; |
---|
| 904 | } |
---|
| 905 | |
---|
| 906 | /** |
---|
| 907 | * Returns the revision string. |
---|
| 908 | * |
---|
| 909 | * @return the revision |
---|
| 910 | */ |
---|
| 911 | public String getRevision() { |
---|
| 912 | return RevisionUtils.extract("$Revision: 1.20 $"); |
---|
| 913 | } |
---|
| 914 | } // RandomSplitResultProducer |
---|