1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CostSensitiveClassifierSplitEvaluator.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.CostMatrix; |
---|
29 | import weka.classifiers.Evaluation; |
---|
30 | import weka.core.AdditionalMeasureProducer; |
---|
31 | import weka.core.Attribute; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.Summarizable; |
---|
37 | import weka.core.Utils; |
---|
38 | |
---|
39 | import java.io.BufferedReader; |
---|
40 | import java.io.ByteArrayOutputStream; |
---|
41 | import java.io.File; |
---|
42 | import java.io.FileReader; |
---|
43 | import java.io.ObjectOutputStream; |
---|
44 | import java.lang.management.ManagementFactory; |
---|
45 | import java.lang.management.ThreadMXBean; |
---|
46 | import java.util.Enumeration; |
---|
47 | import java.util.Vector; |
---|
48 | |
---|
49 | /** |
---|
50 | <!-- globalinfo-start --> |
---|
51 | * SplitEvaluator that produces results for a classification scheme on a nominal class attribute, including weighted misclassification costs. |
---|
52 | * <p/> |
---|
53 | <!-- globalinfo-end --> |
---|
54 | * |
---|
55 | <!-- options-start --> |
---|
56 | * Valid options are: <p/> |
---|
57 | * |
---|
58 | * <pre> -W <class name> |
---|
59 | * The full class name of the classifier. |
---|
60 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
61 | * |
---|
62 | * <pre> -C <index> |
---|
63 | * The index of the class for which IR statistics |
---|
64 | * are to be output. (default 1)</pre> |
---|
65 | * |
---|
66 | * <pre> -I <index> |
---|
67 | * The index of an attribute to output in the |
---|
68 | * results. This attribute should identify an |
---|
69 | * instance in order to know which instances are |
---|
70 | * in the test set of a cross validation. if 0 |
---|
71 | * no output (default 0).</pre> |
---|
72 | * |
---|
73 | * <pre> -P |
---|
74 | * Add target and prediction columns to the result |
---|
75 | * for each fold.</pre> |
---|
76 | * |
---|
77 | * <pre> |
---|
78 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
79 | * </pre> |
---|
80 | * |
---|
81 | * <pre> -D |
---|
82 | * If set, classifier is run in debug mode and |
---|
83 | * may output additional info to the console</pre> |
---|
84 | * |
---|
85 | * <pre> -D <directory> |
---|
86 | * Name of a directory to search for cost files when loading |
---|
87 | * costs on demand (default current directory).</pre> |
---|
88 | * |
---|
89 | <!-- options-end --> |
---|
90 | * |
---|
91 | * All options after -- will be passed to the classifier. |
---|
92 | * |
---|
93 | * @author Len Trigg (len@reeltwo.com) |
---|
94 | * @version $Revision: 5987 $ |
---|
95 | */ |
---|
96 | public class CostSensitiveClassifierSplitEvaluator |
---|
97 | extends ClassifierSplitEvaluator { |
---|
98 | |
---|
99 | /** for serialization */ |
---|
100 | static final long serialVersionUID = -8069566663019501276L; |
---|
101 | |
---|
102 | /** |
---|
103 | * The directory used when loading cost files on demand, null indicates |
---|
104 | * current directory |
---|
105 | */ |
---|
106 | protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); |
---|
107 | |
---|
108 | /** The length of a result */ |
---|
109 | private static final int RESULT_SIZE = 31; |
---|
110 | |
---|
111 | /** |
---|
112 | * Returns a string describing this split evaluator |
---|
113 | * @return a description of the split evaluator suitable for |
---|
114 | * displaying in the explorer/experimenter gui |
---|
115 | */ |
---|
116 | public String globalInfo() { |
---|
117 | return " SplitEvaluator that produces results for a classification scheme " |
---|
118 | +"on a nominal class attribute, including weighted misclassification " |
---|
119 | +"costs."; |
---|
120 | } |
---|
121 | |
---|
122 | /** |
---|
123 | * Returns an enumeration describing the available options.. |
---|
124 | * |
---|
125 | * @return an enumeration of all the available options. |
---|
126 | */ |
---|
127 | public Enumeration listOptions() { |
---|
128 | |
---|
129 | Vector newVector = new Vector(1); |
---|
130 | Enumeration enu = super.listOptions(); |
---|
131 | while (enu.hasMoreElements()) { |
---|
132 | newVector.addElement(enu.nextElement()); |
---|
133 | } |
---|
134 | |
---|
135 | newVector.addElement(new Option( |
---|
136 | "\tName of a directory to search for cost files when loading\n" |
---|
137 | +"\tcosts on demand (default current directory).", |
---|
138 | "D", 1, "-D <directory>")); |
---|
139 | |
---|
140 | return newVector.elements(); |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * Parses a given list of options. <p/> |
---|
145 | * |
---|
146 | <!-- options-start --> |
---|
147 | * Valid options are: <p/> |
---|
148 | * |
---|
149 | * <pre> -W <class name> |
---|
150 | * The full class name of the classifier. |
---|
151 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
152 | * |
---|
153 | * <pre> -C <index> |
---|
154 | * The index of the class for which IR statistics |
---|
155 | * are to be output. (default 1)</pre> |
---|
156 | * |
---|
157 | * <pre> -I <index> |
---|
158 | * The index of an attribute to output in the |
---|
159 | * results. This attribute should identify an |
---|
160 | * instance in order to know which instances are |
---|
161 | * in the test set of a cross validation. if 0 |
---|
162 | * no output (default 0).</pre> |
---|
163 | * |
---|
164 | * <pre> -P |
---|
165 | * Add target and prediction columns to the result |
---|
166 | * for each fold.</pre> |
---|
167 | * |
---|
168 | * <pre> |
---|
169 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
170 | * </pre> |
---|
171 | * |
---|
172 | * <pre> -D |
---|
173 | * If set, classifier is run in debug mode and |
---|
174 | * may output additional info to the console</pre> |
---|
175 | * |
---|
176 | * <pre> -D <directory> |
---|
177 | * Name of a directory to search for cost files when loading |
---|
178 | * costs on demand (default current directory).</pre> |
---|
179 | * |
---|
180 | <!-- options-end --> |
---|
181 | * |
---|
182 | * All options after -- will be passed to the classifier. |
---|
183 | * |
---|
184 | * @param options the list of options as an array of strings |
---|
185 | * @throws Exception if an option is not supported |
---|
186 | */ |
---|
187 | public void setOptions(String[] options) throws Exception { |
---|
188 | |
---|
189 | String demandDir = Utils.getOption('D', options); |
---|
190 | if (demandDir.length() != 0) { |
---|
191 | setOnDemandDirectory(new File(demandDir)); |
---|
192 | } |
---|
193 | |
---|
194 | super.setOptions(options); |
---|
195 | } |
---|
196 | |
---|
197 | /** |
---|
198 | * Gets the current settings of the Classifier. |
---|
199 | * |
---|
200 | * @return an array of strings suitable for passing to setOptions |
---|
201 | */ |
---|
202 | public String [] getOptions() { |
---|
203 | |
---|
204 | String [] superOptions = super.getOptions(); |
---|
205 | String [] options = new String [superOptions.length + 3]; |
---|
206 | int current = 0; |
---|
207 | |
---|
208 | options[current++] = "-D"; |
---|
209 | options[current++] = "" + getOnDemandDirectory(); |
---|
210 | |
---|
211 | System.arraycopy(superOptions, 0, options, current, |
---|
212 | superOptions.length); |
---|
213 | current += superOptions.length; |
---|
214 | while (current < options.length) { |
---|
215 | options[current++] = ""; |
---|
216 | } |
---|
217 | return options; |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * Returns the tip text for this property |
---|
222 | * @return tip text for this property suitable for |
---|
223 | * displaying in the explorer/experimenter gui |
---|
224 | */ |
---|
225 | public String onDemandDirectoryTipText() { |
---|
226 | return "The directory to look in for cost files. This directory will be " |
---|
227 | +"searched for cost files when loading on demand."; |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Returns the directory that will be searched for cost files when |
---|
232 | * loading on demand. |
---|
233 | * |
---|
234 | * @return The cost file search directory. |
---|
235 | */ |
---|
236 | public File getOnDemandDirectory() { |
---|
237 | |
---|
238 | return m_OnDemandDirectory; |
---|
239 | } |
---|
240 | |
---|
241 | /** |
---|
242 | * Sets the directory that will be searched for cost files when |
---|
243 | * loading on demand. |
---|
244 | * |
---|
245 | * @param newDir The cost file search directory. |
---|
246 | */ |
---|
247 | public void setOnDemandDirectory(File newDir) { |
---|
248 | |
---|
249 | if (newDir.isDirectory()) { |
---|
250 | m_OnDemandDirectory = newDir; |
---|
251 | } else { |
---|
252 | m_OnDemandDirectory = new File(newDir.getParent()); |
---|
253 | } |
---|
254 | } |
---|
255 | |
---|
256 | /** |
---|
257 | * Gets the data types of each of the result columns produced for a |
---|
258 | * single run. The number of result fields must be constant |
---|
259 | * for a given SplitEvaluator. |
---|
260 | * |
---|
261 | * @return an array containing objects of the type of each result column. |
---|
262 | * The objects should be Strings, or Doubles. |
---|
263 | */ |
---|
264 | public Object [] getResultTypes() { |
---|
265 | int addm = (m_AdditionalMeasures != null) |
---|
266 | ? m_AdditionalMeasures.length |
---|
267 | : 0; |
---|
268 | Object [] resultTypes = new Object[RESULT_SIZE+addm]; |
---|
269 | Double doub = new Double(0); |
---|
270 | int current = 0; |
---|
271 | resultTypes[current++] = doub; |
---|
272 | resultTypes[current++] = doub; |
---|
273 | |
---|
274 | resultTypes[current++] = doub; |
---|
275 | resultTypes[current++] = doub; |
---|
276 | resultTypes[current++] = doub; |
---|
277 | resultTypes[current++] = doub; |
---|
278 | resultTypes[current++] = doub; |
---|
279 | resultTypes[current++] = doub; |
---|
280 | resultTypes[current++] = doub; |
---|
281 | resultTypes[current++] = doub; |
---|
282 | |
---|
283 | resultTypes[current++] = doub; |
---|
284 | resultTypes[current++] = doub; |
---|
285 | resultTypes[current++] = doub; |
---|
286 | resultTypes[current++] = doub; |
---|
287 | |
---|
288 | resultTypes[current++] = doub; |
---|
289 | resultTypes[current++] = doub; |
---|
290 | resultTypes[current++] = doub; |
---|
291 | resultTypes[current++] = doub; |
---|
292 | resultTypes[current++] = doub; |
---|
293 | resultTypes[current++] = doub; |
---|
294 | |
---|
295 | resultTypes[current++] = doub; |
---|
296 | resultTypes[current++] = doub; |
---|
297 | resultTypes[current++] = doub; |
---|
298 | |
---|
299 | // Timing stats |
---|
300 | resultTypes[current++] = doub; |
---|
301 | resultTypes[current++] = doub; |
---|
302 | resultTypes[current++] = doub; |
---|
303 | resultTypes[current++] = doub; |
---|
304 | |
---|
305 | // sizes |
---|
306 | resultTypes[current++] = doub; |
---|
307 | resultTypes[current++] = doub; |
---|
308 | resultTypes[current++] = doub; |
---|
309 | |
---|
310 | resultTypes[current++] = ""; |
---|
311 | |
---|
312 | // add any additional measures |
---|
313 | for (int i=0;i<addm;i++) { |
---|
314 | resultTypes[current++] = doub; |
---|
315 | } |
---|
316 | if (current != RESULT_SIZE+addm) { |
---|
317 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
318 | } |
---|
319 | return resultTypes; |
---|
320 | } |
---|
321 | |
---|
322 | /** |
---|
323 | * Gets the names of each of the result columns produced for a single run. |
---|
324 | * The number of result fields must be constant |
---|
325 | * for a given SplitEvaluator. |
---|
326 | * |
---|
327 | * @return an array containing the name of each result column |
---|
328 | */ |
---|
329 | public String [] getResultNames() { |
---|
330 | int addm = (m_AdditionalMeasures != null) |
---|
331 | ? m_AdditionalMeasures.length |
---|
332 | : 0; |
---|
333 | String [] resultNames = new String[RESULT_SIZE+addm]; |
---|
334 | int current = 0; |
---|
335 | resultNames[current++] = "Number_of_training_instances"; |
---|
336 | resultNames[current++] = "Number_of_testing_instances"; |
---|
337 | |
---|
338 | // Basic performance stats - right vs wrong |
---|
339 | resultNames[current++] = "Number_correct"; |
---|
340 | resultNames[current++] = "Number_incorrect"; |
---|
341 | resultNames[current++] = "Number_unclassified"; |
---|
342 | resultNames[current++] = "Percent_correct"; |
---|
343 | resultNames[current++] = "Percent_incorrect"; |
---|
344 | resultNames[current++] = "Percent_unclassified"; |
---|
345 | resultNames[current++] = "Total_cost"; |
---|
346 | resultNames[current++] = "Average_cost"; |
---|
347 | |
---|
348 | // Sensitive stats - certainty of predictions |
---|
349 | resultNames[current++] = "Mean_absolute_error"; |
---|
350 | resultNames[current++] = "Root_mean_squared_error"; |
---|
351 | resultNames[current++] = "Relative_absolute_error"; |
---|
352 | resultNames[current++] = "Root_relative_squared_error"; |
---|
353 | |
---|
354 | // SF stats |
---|
355 | resultNames[current++] = "SF_prior_entropy"; |
---|
356 | resultNames[current++] = "SF_scheme_entropy"; |
---|
357 | resultNames[current++] = "SF_entropy_gain"; |
---|
358 | resultNames[current++] = "SF_mean_prior_entropy"; |
---|
359 | resultNames[current++] = "SF_mean_scheme_entropy"; |
---|
360 | resultNames[current++] = "SF_mean_entropy_gain"; |
---|
361 | |
---|
362 | // K&B stats |
---|
363 | resultNames[current++] = "KB_information"; |
---|
364 | resultNames[current++] = "KB_mean_information"; |
---|
365 | resultNames[current++] = "KB_relative_information"; |
---|
366 | |
---|
367 | // Timing stats |
---|
368 | resultNames[current++] = "Elapsed_Time_training"; |
---|
369 | resultNames[current++] = "Elapsed_Time_testing"; |
---|
370 | resultNames[current++] = "UserCPU_Time_training"; |
---|
371 | resultNames[current++] = "UserCPU_Time_testing"; |
---|
372 | |
---|
373 | // sizes |
---|
374 | resultNames[current++] = "Serialized_Model_Size"; |
---|
375 | resultNames[current++] = "Serialized_Train_Set_Size"; |
---|
376 | resultNames[current++] = "Serialized_Test_Set_Size"; |
---|
377 | |
---|
378 | // Classifier defined extras |
---|
379 | resultNames[current++] = "Summary"; |
---|
380 | // add any additional measures |
---|
381 | for (int i=0;i<addm;i++) { |
---|
382 | resultNames[current++] = m_AdditionalMeasures[i]; |
---|
383 | } |
---|
384 | if (current != RESULT_SIZE+addm) { |
---|
385 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
386 | } |
---|
387 | return resultNames; |
---|
388 | } |
---|
389 | |
---|
390 | /** |
---|
391 | * Gets the results for the supplied train and test datasets. Now performs |
---|
392 | * a deep copy of the classifier before it is built and evaluated (just in case |
---|
393 | * the classifier is not initialized properly in buildClassifier()). |
---|
394 | * |
---|
395 | * @param train the training Instances. |
---|
396 | * @param test the testing Instances. |
---|
397 | * @return the results stored in an array. The objects stored in |
---|
398 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
399 | * @throws Exception if a problem occurs while getting the results |
---|
400 | */ |
---|
401 | public Object [] getResult(Instances train, Instances test) |
---|
402 | throws Exception { |
---|
403 | |
---|
404 | if (train.classAttribute().type() != Attribute.NOMINAL) { |
---|
405 | throw new Exception("Class attribute is not nominal!"); |
---|
406 | } |
---|
407 | if (m_Template == null) { |
---|
408 | throw new Exception("No classifier has been specified"); |
---|
409 | } |
---|
410 | ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); |
---|
411 | boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); |
---|
412 | if(!thMonitor.isThreadCpuTimeEnabled()) |
---|
413 | thMonitor.setThreadCpuTimeEnabled(true); |
---|
414 | |
---|
415 | int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; |
---|
416 | Object [] result = new Object[RESULT_SIZE+addm]; |
---|
417 | long thID = Thread.currentThread().getId(); |
---|
418 | long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, |
---|
419 | trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; |
---|
420 | |
---|
421 | String costName = train.relationName() + CostMatrix.FILE_EXTENSION; |
---|
422 | File costFile = new File(getOnDemandDirectory(), costName); |
---|
423 | if (!costFile.exists()) { |
---|
424 | throw new Exception("On-demand cost file doesn't exist: " + costFile); |
---|
425 | } |
---|
426 | CostMatrix costMatrix = new CostMatrix(new BufferedReader( |
---|
427 | new FileReader(costFile))); |
---|
428 | |
---|
429 | Evaluation eval = new Evaluation(train, costMatrix); |
---|
430 | m_Classifier = AbstractClassifier.makeCopy(m_Template); |
---|
431 | |
---|
432 | trainTimeStart = System.currentTimeMillis(); |
---|
433 | if(canMeasureCPUTime) |
---|
434 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
435 | m_Classifier.buildClassifier(train); |
---|
436 | if(canMeasureCPUTime) |
---|
437 | trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
438 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
439 | testTimeStart = System.currentTimeMillis(); |
---|
440 | if(canMeasureCPUTime) |
---|
441 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
442 | eval.evaluateModel(m_Classifier, test); |
---|
443 | if(canMeasureCPUTime) |
---|
444 | testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
445 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
446 | thMonitor = null; |
---|
447 | |
---|
448 | m_result = eval.toSummaryString(); |
---|
449 | // The results stored are all per instance -- can be multiplied by the |
---|
450 | // number of instances to get absolute numbers |
---|
451 | int current = 0; |
---|
452 | result[current++] = new Double(train.numInstances()); |
---|
453 | result[current++] = new Double(eval.numInstances()); |
---|
454 | |
---|
455 | result[current++] = new Double(eval.correct()); |
---|
456 | result[current++] = new Double(eval.incorrect()); |
---|
457 | result[current++] = new Double(eval.unclassified()); |
---|
458 | result[current++] = new Double(eval.pctCorrect()); |
---|
459 | result[current++] = new Double(eval.pctIncorrect()); |
---|
460 | result[current++] = new Double(eval.pctUnclassified()); |
---|
461 | result[current++] = new Double(eval.totalCost()); |
---|
462 | result[current++] = new Double(eval.avgCost()); |
---|
463 | |
---|
464 | result[current++] = new Double(eval.meanAbsoluteError()); |
---|
465 | result[current++] = new Double(eval.rootMeanSquaredError()); |
---|
466 | result[current++] = new Double(eval.relativeAbsoluteError()); |
---|
467 | result[current++] = new Double(eval.rootRelativeSquaredError()); |
---|
468 | |
---|
469 | result[current++] = new Double(eval.SFPriorEntropy()); |
---|
470 | result[current++] = new Double(eval.SFSchemeEntropy()); |
---|
471 | result[current++] = new Double(eval.SFEntropyGain()); |
---|
472 | result[current++] = new Double(eval.SFMeanPriorEntropy()); |
---|
473 | result[current++] = new Double(eval.SFMeanSchemeEntropy()); |
---|
474 | result[current++] = new Double(eval.SFMeanEntropyGain()); |
---|
475 | |
---|
476 | // K&B stats |
---|
477 | result[current++] = new Double(eval.KBInformation()); |
---|
478 | result[current++] = new Double(eval.KBMeanInformation()); |
---|
479 | result[current++] = new Double(eval.KBRelativeInformation()); |
---|
480 | |
---|
481 | // Timing stats |
---|
482 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
483 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
484 | if(canMeasureCPUTime) { |
---|
485 | result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0); |
---|
486 | result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0); |
---|
487 | } |
---|
488 | else { |
---|
489 | result[current++] = new Double(Utils.missingValue()); |
---|
490 | result[current++] = new Double(Utils.missingValue()); |
---|
491 | } |
---|
492 | |
---|
493 | // sizes |
---|
494 | ByteArrayOutputStream bastream = new ByteArrayOutputStream(); |
---|
495 | ObjectOutputStream oostream = new ObjectOutputStream(bastream); |
---|
496 | oostream.writeObject(m_Classifier); |
---|
497 | result[current++] = new Double(bastream.size()); |
---|
498 | bastream = new ByteArrayOutputStream(); |
---|
499 | oostream = new ObjectOutputStream(bastream); |
---|
500 | oostream.writeObject(train); |
---|
501 | result[current++] = new Double(bastream.size()); |
---|
502 | bastream = new ByteArrayOutputStream(); |
---|
503 | oostream = new ObjectOutputStream(bastream); |
---|
504 | oostream.writeObject(test); |
---|
505 | result[current++] = new Double(bastream.size()); |
---|
506 | |
---|
507 | if (m_Classifier instanceof Summarizable) { |
---|
508 | result[current++] = ((Summarizable)m_Classifier).toSummaryString(); |
---|
509 | } else { |
---|
510 | result[current++] = null; |
---|
511 | } |
---|
512 | |
---|
513 | for (int i=0;i<addm;i++) { |
---|
514 | if (m_doesProduce[i]) { |
---|
515 | try { |
---|
516 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
517 | getMeasure(m_AdditionalMeasures[i]); |
---|
518 | if (!Utils.isMissingValue(dv)) { |
---|
519 | Double value = new Double(dv); |
---|
520 | result[current++] = value; |
---|
521 | } else { |
---|
522 | result[current++] = null; |
---|
523 | } |
---|
524 | } catch (Exception ex) { |
---|
525 | System.err.println(ex); |
---|
526 | } |
---|
527 | } else { |
---|
528 | result[current++] = null; |
---|
529 | } |
---|
530 | } |
---|
531 | |
---|
532 | if (current != RESULT_SIZE+addm) { |
---|
533 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
534 | } |
---|
535 | return result; |
---|
536 | } |
---|
537 | |
---|
538 | /** |
---|
539 | * Returns a text description of the split evaluator. |
---|
540 | * |
---|
541 | * @return a text description of the split evaluator. |
---|
542 | */ |
---|
543 | public String toString() { |
---|
544 | |
---|
545 | String result = "CostSensitiveClassifierSplitEvaluator: "; |
---|
546 | if (m_Template == null) { |
---|
547 | return result + "<null> classifier"; |
---|
548 | } |
---|
549 | return result + m_Template.getClass().getName() + " " |
---|
550 | + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; |
---|
551 | } |
---|
552 | |
---|
553 | /** |
---|
554 | * Returns the revision string. |
---|
555 | * |
---|
556 | * @return the revision |
---|
557 | */ |
---|
558 | public String getRevision() { |
---|
559 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
560 | } |
---|
561 | } // CostSensitiveClassifierSplitEvaluator |
---|