1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassifierSplitEvaluator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.Evaluation; |
---|
29 | import weka.classifiers.rules.ZeroR; |
---|
30 | import weka.core.AdditionalMeasureProducer; |
---|
31 | import weka.core.Attribute; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.Summarizable; |
---|
39 | import weka.core.Utils; |
---|
40 | |
---|
41 | import java.io.ByteArrayOutputStream; |
---|
42 | import java.io.ObjectOutputStream; |
---|
43 | import java.io.ObjectStreamClass; |
---|
44 | import java.io.Serializable; |
---|
45 | import java.lang.management.ManagementFactory; |
---|
46 | import java.lang.management.ThreadMXBean; |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Vector; |
---|
49 | |
---|
50 | |
---|
51 | /** |
---|
52 | <!-- globalinfo-start --> |
---|
53 | * A SplitEvaluator that produces results for a classification scheme on a nominal class attribute. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- options-start --> |
---|
58 | * Valid options are: <p/> |
---|
59 | * |
---|
60 | * <pre> -W <class name> |
---|
61 | * The full class name of the classifier. |
---|
62 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
63 | * |
---|
64 | * <pre> -C <index> |
---|
65 | * The index of the class for which IR statistics |
---|
66 | * are to be output. (default 1)</pre> |
---|
67 | * |
---|
68 | * <pre> -I <index> |
---|
69 | * The index of an attribute to output in the |
---|
70 | * results. This attribute should identify an |
---|
71 | * instance in order to know which instances are |
---|
72 | * in the test set of a cross validation. if 0 |
---|
73 | * no output (default 0).</pre> |
---|
74 | * |
---|
75 | * <pre> -P |
---|
76 | * Add target and prediction columns to the result |
---|
77 | * for each fold.</pre> |
---|
78 | * |
---|
79 | * <pre> |
---|
80 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
81 | * </pre> |
---|
82 | * |
---|
83 | * <pre> -D |
---|
84 | * If set, classifier is run in debug mode and |
---|
85 | * may output additional info to the console</pre> |
---|
86 | * |
---|
87 | <!-- options-end --> |
---|
88 | * |
---|
89 | * All options after -- will be passed to the classifier. |
---|
90 | * |
---|
91 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
92 | * @version $Revision: 5987 $ |
---|
93 | */ |
---|
94 | public class ClassifierSplitEvaluator |
---|
95 | implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, |
---|
96 | RevisionHandler { |
---|
97 | |
---|
98 | /** for serialization */ |
---|
99 | static final long serialVersionUID = -8511241602760467265L; |
---|
100 | |
---|
101 | /** The template classifier */ |
---|
102 | protected Classifier m_Template = new ZeroR(); |
---|
103 | |
---|
104 | /** The classifier used for evaluation */ |
---|
105 | protected Classifier m_Classifier; |
---|
106 | |
---|
107 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
108 | protected String [] m_AdditionalMeasures = null; |
---|
109 | |
---|
110 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
111 | indicating which of the AdditionalMeasures the current classifier |
---|
112 | can produce */ |
---|
113 | protected boolean [] m_doesProduce = null; |
---|
114 | |
---|
115 | /** The number of additional measures that need to be filled in |
---|
116 | after taking into account column constraints imposed by the final |
---|
117 | destination for results */ |
---|
118 | protected int m_numberAdditionalMeasures = 0; |
---|
119 | |
---|
120 | /** Holds the statistics for the most recent application of the classifier */ |
---|
121 | protected String m_result = null; |
---|
122 | |
---|
123 | /** The classifier options (if any) */ |
---|
124 | protected String m_ClassifierOptions = ""; |
---|
125 | |
---|
126 | /** The classifier version */ |
---|
127 | protected String m_ClassifierVersion = ""; |
---|
128 | |
---|
129 | /** The length of a key */ |
---|
130 | private static final int KEY_SIZE = 3; |
---|
131 | |
---|
132 | /** The length of a result */ |
---|
133 | private static final int RESULT_SIZE = 30; |
---|
134 | |
---|
135 | /** The number of IR statistics */ |
---|
136 | private static final int NUM_IR_STATISTICS = 14; |
---|
137 | |
---|
138 | /** The number of averaged IR statistics */ |
---|
139 | private static final int NUM_WEIGHTED_IR_STATISTICS = 8; |
---|
140 | |
---|
141 | /** The number of unweighted averaged IR statistics */ |
---|
142 | private static final int NUM_UNWEIGHTED_IR_STATISTICS = 2; |
---|
143 | |
---|
144 | /** Class index for information retrieval statistics (default 0) */ |
---|
145 | private int m_IRclass = 0; |
---|
146 | |
---|
147 | /** Flag for prediction and target columns output.*/ |
---|
148 | private boolean m_predTargetColumn = false; |
---|
149 | |
---|
150 | /** Attribute index of instance identifier (default -1) */ |
---|
151 | private int m_attID = -1; |
---|
152 | |
---|
153 | /** |
---|
154 | * No args constructor. |
---|
155 | */ |
---|
156 | public ClassifierSplitEvaluator() { |
---|
157 | |
---|
158 | updateOptions(); |
---|
159 | } |
---|
160 | |
---|
161 | /** |
---|
162 | * Returns a string describing this split evaluator |
---|
163 | * @return a description of the split evaluator suitable for |
---|
164 | * displaying in the explorer/experimenter gui |
---|
165 | */ |
---|
166 | public String globalInfo() { |
---|
167 | return " A SplitEvaluator that produces results for a classification " |
---|
168 | +"scheme on a nominal class attribute."; |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Returns an enumeration describing the available options.. |
---|
173 | * |
---|
174 | * @return an enumeration of all the available options. |
---|
175 | */ |
---|
176 | public Enumeration listOptions() { |
---|
177 | |
---|
178 | Vector newVector = new Vector(4); |
---|
179 | |
---|
180 | newVector.addElement(new Option( |
---|
181 | "\tThe full class name of the classifier.\n" |
---|
182 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
183 | "W", 1, |
---|
184 | "-W <class name>")); |
---|
185 | newVector.addElement(new Option( |
---|
186 | "\tThe index of the class for which IR statistics\n" + |
---|
187 | "\tare to be output. (default 1)", |
---|
188 | "C", 1, |
---|
189 | "-C <index>")); |
---|
190 | newVector.addElement(new Option( |
---|
191 | "\tThe index of an attribute to output in the\n" + |
---|
192 | "\tresults. This attribute should identify an\n" + |
---|
193 | "\tinstance in order to know which instances are\n" + |
---|
194 | "\tin the test set of a cross validation. if 0\n" + |
---|
195 | "\tno output (default 0).", |
---|
196 | "I", 1, |
---|
197 | "-I <index>")); |
---|
198 | newVector.addElement(new Option( |
---|
199 | "\tAdd target and prediction columns to the result\n" + |
---|
200 | "\tfor each fold.", |
---|
201 | "P", 0, |
---|
202 | "-P")); |
---|
203 | |
---|
204 | if ((m_Template != null) && |
---|
205 | (m_Template instanceof OptionHandler)) { |
---|
206 | newVector.addElement(new Option( |
---|
207 | "", |
---|
208 | "", 0, "\nOptions specific to classifier " |
---|
209 | + m_Template.getClass().getName() + ":")); |
---|
210 | Enumeration enu = ((OptionHandler)m_Template).listOptions(); |
---|
211 | while (enu.hasMoreElements()) { |
---|
212 | newVector.addElement(enu.nextElement()); |
---|
213 | } |
---|
214 | } |
---|
215 | return newVector.elements(); |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Parses a given list of options. <p/> |
---|
220 | * |
---|
221 | <!-- options-start --> |
---|
222 | * Valid options are: <p/> |
---|
223 | * |
---|
224 | * <pre> -W <class name> |
---|
225 | * The full class name of the classifier. |
---|
226 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
227 | * |
---|
228 | * <pre> -C <index> |
---|
229 | * The index of the class for which IR statistics |
---|
230 | * are to be output. (default 1)</pre> |
---|
231 | * |
---|
232 | * <pre> -I <index> |
---|
233 | * The index of an attribute to output in the |
---|
234 | * results. This attribute should identify an |
---|
235 | * instance in order to know which instances are |
---|
236 | * in the test set of a cross validation. if 0 |
---|
237 | * no output (default 0).</pre> |
---|
238 | * |
---|
239 | * <pre> -P |
---|
240 | * Add target and prediction columns to the result |
---|
241 | * for each fold.</pre> |
---|
242 | * |
---|
243 | * <pre> |
---|
244 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
245 | * </pre> |
---|
246 | * |
---|
247 | * <pre> -D |
---|
248 | * If set, classifier is run in debug mode and |
---|
249 | * may output additional info to the console</pre> |
---|
250 | * |
---|
251 | <!-- options-end --> |
---|
252 | * |
---|
253 | * All options after -- will be passed to the classifier. |
---|
254 | * |
---|
255 | * @param options the list of options as an array of strings |
---|
256 | * @throws Exception if an option is not supported |
---|
257 | */ |
---|
258 | public void setOptions(String[] options) throws Exception { |
---|
259 | |
---|
260 | String cName = Utils.getOption('W', options); |
---|
261 | if (cName.length() == 0) { |
---|
262 | throw new Exception("A classifier must be specified with" |
---|
263 | + " the -W option."); |
---|
264 | } |
---|
265 | // Do it first without options, so if an exception is thrown during |
---|
266 | // the option setting, listOptions will contain options for the actual |
---|
267 | // Classifier. |
---|
268 | setClassifier(AbstractClassifier.forName(cName, null)); |
---|
269 | if (getClassifier() instanceof OptionHandler) { |
---|
270 | ((OptionHandler) getClassifier()) |
---|
271 | .setOptions(Utils.partitionOptions(options)); |
---|
272 | updateOptions(); |
---|
273 | } |
---|
274 | |
---|
275 | String indexName = Utils.getOption('C', options); |
---|
276 | if (indexName.length() != 0) { |
---|
277 | m_IRclass = (new Integer(indexName)).intValue() - 1; |
---|
278 | } else { |
---|
279 | m_IRclass = 0; |
---|
280 | } |
---|
281 | |
---|
282 | String attID = Utils.getOption('I', options); |
---|
283 | if (attID.length() != 0) { |
---|
284 | m_attID = (new Integer(attID)).intValue() - 1; |
---|
285 | } else { |
---|
286 | m_attID = -1; |
---|
287 | } |
---|
288 | |
---|
289 | m_predTargetColumn = Utils.getFlag('P', options); |
---|
290 | } |
---|
291 | |
---|
292 | /** |
---|
293 | * Gets the current settings of the Classifier. |
---|
294 | * |
---|
295 | * @return an array of strings suitable for passing to setOptions |
---|
296 | */ |
---|
297 | public String [] getOptions() { |
---|
298 | |
---|
299 | String [] classifierOptions = new String [0]; |
---|
300 | if ((m_Template != null) && |
---|
301 | (m_Template instanceof OptionHandler)) { |
---|
302 | classifierOptions = ((OptionHandler)m_Template).getOptions(); |
---|
303 | } |
---|
304 | |
---|
305 | String [] options = new String [classifierOptions.length + 8]; |
---|
306 | int current = 0; |
---|
307 | |
---|
308 | if (getClassifier() != null) { |
---|
309 | options[current++] = "-W"; |
---|
310 | options[current++] = getClassifier().getClass().getName(); |
---|
311 | } |
---|
312 | options[current++] = "-I"; |
---|
313 | options[current++] = "" + (m_attID + 1); |
---|
314 | |
---|
315 | if (getPredTargetColumn()) options[current++] = "-P"; |
---|
316 | |
---|
317 | options[current++] = "-C"; |
---|
318 | options[current++] = "" + (m_IRclass + 1); |
---|
319 | options[current++] = "--"; |
---|
320 | |
---|
321 | System.arraycopy(classifierOptions, 0, options, current, |
---|
322 | classifierOptions.length); |
---|
323 | current += classifierOptions.length; |
---|
324 | while (current < options.length) { |
---|
325 | options[current++] = ""; |
---|
326 | } |
---|
327 | return options; |
---|
328 | } |
---|
329 | |
---|
330 | /** |
---|
331 | * Set a list of method names for additional measures to look for |
---|
332 | * in Classifiers. This could contain many measures (of which only a |
---|
333 | * subset may be produceable by the current Classifier) if an experiment |
---|
334 | * is the type that iterates over a set of properties. |
---|
335 | * @param additionalMeasures a list of method names |
---|
336 | */ |
---|
337 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
338 | // System.err.println("ClassifierSplitEvaluator: setting additional measures"); |
---|
339 | m_AdditionalMeasures = additionalMeasures; |
---|
340 | |
---|
341 | // determine which (if any) of the additional measures this classifier |
---|
342 | // can produce |
---|
343 | if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { |
---|
344 | m_doesProduce = new boolean [m_AdditionalMeasures.length]; |
---|
345 | |
---|
346 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
347 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
348 | enumerateMeasures(); |
---|
349 | while (en.hasMoreElements()) { |
---|
350 | String mname = (String)en.nextElement(); |
---|
351 | for (int j=0;j<m_AdditionalMeasures.length;j++) { |
---|
352 | if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { |
---|
353 | m_doesProduce[j] = true; |
---|
354 | } |
---|
355 | } |
---|
356 | } |
---|
357 | } |
---|
358 | } else { |
---|
359 | m_doesProduce = null; |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * Returns an enumeration of any additional measure names that might be |
---|
365 | * in the classifier |
---|
366 | * @return an enumeration of the measure names |
---|
367 | */ |
---|
368 | public Enumeration enumerateMeasures() { |
---|
369 | Vector newVector = new Vector(); |
---|
370 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
371 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
372 | enumerateMeasures(); |
---|
373 | while (en.hasMoreElements()) { |
---|
374 | String mname = (String)en.nextElement(); |
---|
375 | newVector.addElement(mname); |
---|
376 | } |
---|
377 | } |
---|
378 | return newVector.elements(); |
---|
379 | } |
---|
380 | |
---|
381 | /** |
---|
382 | * Returns the value of the named measure |
---|
383 | * @param additionalMeasureName the name of the measure to query for its value |
---|
384 | * @return the value of the named measure |
---|
385 | * @throws IllegalArgumentException if the named measure is not supported |
---|
386 | */ |
---|
387 | public double getMeasure(String additionalMeasureName) { |
---|
388 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
389 | if (m_Classifier == null) { |
---|
390 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " + |
---|
391 | "Can't return result for measure, " + |
---|
392 | "classifier has not been built yet."); |
---|
393 | } |
---|
394 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
395 | getMeasure(additionalMeasureName); |
---|
396 | } else { |
---|
397 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " |
---|
398 | +"Can't return value for : "+additionalMeasureName |
---|
399 | +". "+m_Template.getClass().getName()+" " |
---|
400 | +"is not an AdditionalMeasureProducer"); |
---|
401 | } |
---|
402 | } |
---|
403 | |
---|
404 | /** |
---|
405 | * Gets the data types of each of the key columns produced for a single run. |
---|
406 | * The number of key fields must be constant |
---|
407 | * for a given SplitEvaluator. |
---|
408 | * |
---|
409 | * @return an array containing objects of the type of each key column. The |
---|
410 | * objects should be Strings, or Doubles. |
---|
411 | */ |
---|
412 | public Object [] getKeyTypes() { |
---|
413 | |
---|
414 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
415 | keyTypes[0] = ""; |
---|
416 | keyTypes[1] = ""; |
---|
417 | keyTypes[2] = ""; |
---|
418 | return keyTypes; |
---|
419 | } |
---|
420 | |
---|
421 | /** |
---|
422 | * Gets the names of each of the key columns produced for a single run. |
---|
423 | * The number of key fields must be constant |
---|
424 | * for a given SplitEvaluator. |
---|
425 | * |
---|
426 | * @return an array containing the name of each key column |
---|
427 | */ |
---|
428 | public String [] getKeyNames() { |
---|
429 | |
---|
430 | String [] keyNames = new String[KEY_SIZE]; |
---|
431 | keyNames[0] = "Scheme"; |
---|
432 | keyNames[1] = "Scheme_options"; |
---|
433 | keyNames[2] = "Scheme_version_ID"; |
---|
434 | return keyNames; |
---|
435 | } |
---|
436 | |
---|
437 | /** |
---|
438 | * Gets the key describing the current SplitEvaluator. For example |
---|
439 | * This may contain the name of the classifier used for classifier |
---|
440 | * predictive evaluation. The number of key fields must be constant |
---|
441 | * for a given SplitEvaluator. |
---|
442 | * |
---|
443 | * @return an array of objects containing the key. |
---|
444 | */ |
---|
445 | public Object [] getKey(){ |
---|
446 | |
---|
447 | Object [] key = new Object[KEY_SIZE]; |
---|
448 | key[0] = m_Template.getClass().getName(); |
---|
449 | key[1] = m_ClassifierOptions; |
---|
450 | key[2] = m_ClassifierVersion; |
---|
451 | return key; |
---|
452 | } |
---|
453 | |
---|
454 | /** |
---|
455 | * Gets the data types of each of the result columns produced for a |
---|
456 | * single run. The number of result fields must be constant |
---|
457 | * for a given SplitEvaluator. |
---|
458 | * |
---|
459 | * @return an array containing objects of the type of each result column. |
---|
460 | * The objects should be Strings, or Doubles. |
---|
461 | */ |
---|
462 | public Object [] getResultTypes() { |
---|
463 | int addm = (m_AdditionalMeasures != null) |
---|
464 | ? m_AdditionalMeasures.length |
---|
465 | : 0; |
---|
466 | int overall_length = RESULT_SIZE+addm; |
---|
467 | overall_length += NUM_IR_STATISTICS; |
---|
468 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
469 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
470 | if (getAttributeID() >= 0) overall_length += 1; |
---|
471 | if (getPredTargetColumn()) overall_length += 2; |
---|
472 | Object [] resultTypes = new Object[overall_length]; |
---|
473 | Double doub = new Double(0); |
---|
474 | int current = 0; |
---|
475 | resultTypes[current++] = doub; |
---|
476 | resultTypes[current++] = doub; |
---|
477 | |
---|
478 | resultTypes[current++] = doub; |
---|
479 | resultTypes[current++] = doub; |
---|
480 | resultTypes[current++] = doub; |
---|
481 | resultTypes[current++] = doub; |
---|
482 | resultTypes[current++] = doub; |
---|
483 | resultTypes[current++] = doub; |
---|
484 | |
---|
485 | resultTypes[current++] = doub; |
---|
486 | resultTypes[current++] = doub; |
---|
487 | resultTypes[current++] = doub; |
---|
488 | resultTypes[current++] = doub; |
---|
489 | |
---|
490 | resultTypes[current++] = doub; |
---|
491 | resultTypes[current++] = doub; |
---|
492 | resultTypes[current++] = doub; |
---|
493 | resultTypes[current++] = doub; |
---|
494 | resultTypes[current++] = doub; |
---|
495 | resultTypes[current++] = doub; |
---|
496 | |
---|
497 | resultTypes[current++] = doub; |
---|
498 | resultTypes[current++] = doub; |
---|
499 | resultTypes[current++] = doub; |
---|
500 | resultTypes[current++] = doub; |
---|
501 | |
---|
502 | // IR stats |
---|
503 | resultTypes[current++] = doub; |
---|
504 | resultTypes[current++] = doub; |
---|
505 | resultTypes[current++] = doub; |
---|
506 | resultTypes[current++] = doub; |
---|
507 | resultTypes[current++] = doub; |
---|
508 | resultTypes[current++] = doub; |
---|
509 | resultTypes[current++] = doub; |
---|
510 | resultTypes[current++] = doub; |
---|
511 | resultTypes[current++] = doub; |
---|
512 | resultTypes[current++] = doub; |
---|
513 | resultTypes[current++] = doub; |
---|
514 | resultTypes[current++] = doub; |
---|
515 | |
---|
516 | // Unweighted IR stats |
---|
517 | resultTypes[current++] = doub; |
---|
518 | resultTypes[current++] = doub; |
---|
519 | |
---|
520 | // Weighted IR stats |
---|
521 | resultTypes[current++] = doub; |
---|
522 | resultTypes[current++] = doub; |
---|
523 | resultTypes[current++] = doub; |
---|
524 | resultTypes[current++] = doub; |
---|
525 | resultTypes[current++] = doub; |
---|
526 | resultTypes[current++] = doub; |
---|
527 | resultTypes[current++] = doub; |
---|
528 | resultTypes[current++] = doub; |
---|
529 | |
---|
530 | // Timing stats |
---|
531 | resultTypes[current++] = doub; |
---|
532 | resultTypes[current++] = doub; |
---|
533 | resultTypes[current++] = doub; |
---|
534 | resultTypes[current++] = doub; |
---|
535 | |
---|
536 | // sizes |
---|
537 | resultTypes[current++] = doub; |
---|
538 | resultTypes[current++] = doub; |
---|
539 | resultTypes[current++] = doub; |
---|
540 | |
---|
541 | // Prediction interval statistics |
---|
542 | resultTypes[current++] = doub; |
---|
543 | resultTypes[current++] = doub; |
---|
544 | |
---|
545 | // ID/Targets/Predictions |
---|
546 | if (getAttributeID() >= 0) resultTypes[current++] = ""; |
---|
547 | if (getPredTargetColumn()){ |
---|
548 | resultTypes[current++] = ""; |
---|
549 | resultTypes[current++] = ""; |
---|
550 | } |
---|
551 | |
---|
552 | // Classifier defined extras |
---|
553 | resultTypes[current++] = ""; |
---|
554 | |
---|
555 | // add any additional measures |
---|
556 | for (int i=0;i<addm;i++) { |
---|
557 | resultTypes[current++] = doub; |
---|
558 | } |
---|
559 | if (current != overall_length) { |
---|
560 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
561 | } |
---|
562 | return resultTypes; |
---|
563 | } |
---|
564 | |
---|
565 | /** |
---|
566 | * Gets the names of each of the result columns produced for a single run. |
---|
567 | * The number of result fields must be constant |
---|
568 | * for a given SplitEvaluator. |
---|
569 | * |
---|
570 | * @return an array containing the name of each result column |
---|
571 | */ |
---|
572 | public String [] getResultNames() { |
---|
573 | int addm = (m_AdditionalMeasures != null) |
---|
574 | ? m_AdditionalMeasures.length |
---|
575 | : 0; |
---|
576 | int overall_length = RESULT_SIZE+addm; |
---|
577 | overall_length += NUM_IR_STATISTICS; |
---|
578 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
579 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
580 | if (getAttributeID() >= 0) overall_length += 1; |
---|
581 | if (getPredTargetColumn()) overall_length += 2; |
---|
582 | |
---|
583 | String [] resultNames = new String[overall_length]; |
---|
584 | int current = 0; |
---|
585 | resultNames[current++] = "Number_of_training_instances"; |
---|
586 | resultNames[current++] = "Number_of_testing_instances"; |
---|
587 | |
---|
588 | // Basic performance stats - right vs wrong |
---|
589 | resultNames[current++] = "Number_correct"; |
---|
590 | resultNames[current++] = "Number_incorrect"; |
---|
591 | resultNames[current++] = "Number_unclassified"; |
---|
592 | resultNames[current++] = "Percent_correct"; |
---|
593 | resultNames[current++] = "Percent_incorrect"; |
---|
594 | resultNames[current++] = "Percent_unclassified"; |
---|
595 | resultNames[current++] = "Kappa_statistic"; |
---|
596 | |
---|
597 | // Sensitive stats - certainty of predictions |
---|
598 | resultNames[current++] = "Mean_absolute_error"; |
---|
599 | resultNames[current++] = "Root_mean_squared_error"; |
---|
600 | resultNames[current++] = "Relative_absolute_error"; |
---|
601 | resultNames[current++] = "Root_relative_squared_error"; |
---|
602 | |
---|
603 | // SF stats |
---|
604 | resultNames[current++] = "SF_prior_entropy"; |
---|
605 | resultNames[current++] = "SF_scheme_entropy"; |
---|
606 | resultNames[current++] = "SF_entropy_gain"; |
---|
607 | resultNames[current++] = "SF_mean_prior_entropy"; |
---|
608 | resultNames[current++] = "SF_mean_scheme_entropy"; |
---|
609 | resultNames[current++] = "SF_mean_entropy_gain"; |
---|
610 | |
---|
611 | // K&B stats |
---|
612 | resultNames[current++] = "KB_information"; |
---|
613 | resultNames[current++] = "KB_mean_information"; |
---|
614 | resultNames[current++] = "KB_relative_information"; |
---|
615 | |
---|
616 | // IR stats |
---|
617 | resultNames[current++] = "True_positive_rate"; |
---|
618 | resultNames[current++] = "Num_true_positives"; |
---|
619 | resultNames[current++] = "False_positive_rate"; |
---|
620 | resultNames[current++] = "Num_false_positives"; |
---|
621 | resultNames[current++] = "True_negative_rate"; |
---|
622 | resultNames[current++] = "Num_true_negatives"; |
---|
623 | resultNames[current++] = "False_negative_rate"; |
---|
624 | resultNames[current++] = "Num_false_negatives"; |
---|
625 | resultNames[current++] = "IR_precision"; |
---|
626 | resultNames[current++] = "IR_recall"; |
---|
627 | resultNames[current++] = "F_measure"; |
---|
628 | resultNames[current++] = "Area_under_ROC"; |
---|
629 | |
---|
630 | // Weighted IR stats |
---|
631 | resultNames[current++] = "Weighted_avg_true_positive_rate"; |
---|
632 | resultNames[current++] = "Weighted_avg_false_positive_rate"; |
---|
633 | resultNames[current++] = "Weighted_avg_true_negative_rate"; |
---|
634 | resultNames[current++] = "Weighted_avg_false_negative_rate"; |
---|
635 | resultNames[current++] = "Weighted_avg_IR_precision"; |
---|
636 | resultNames[current++] = "Weighted_avg_IR_recall"; |
---|
637 | resultNames[current++] = "Weighted_avg_F_measure"; |
---|
638 | resultNames[current++] = "Weighted_avg_area_under_ROC"; |
---|
639 | |
---|
640 | // Unweighted IR stats |
---|
641 | resultNames[current++] = "Unweighted_macro_avg_F_measure"; |
---|
642 | resultNames[current++] = "Unweighted_micro_avg_F_measure"; |
---|
643 | |
---|
644 | // Timing stats |
---|
645 | resultNames[current++] = "Elapsed_Time_training"; |
---|
646 | resultNames[current++] = "Elapsed_Time_testing"; |
---|
647 | resultNames[current++] = "UserCPU_Time_training"; |
---|
648 | resultNames[current++] = "UserCPU_Time_testing"; |
---|
649 | |
---|
650 | // sizes |
---|
651 | resultNames[current++] = "Serialized_Model_Size"; |
---|
652 | resultNames[current++] = "Serialized_Train_Set_Size"; |
---|
653 | resultNames[current++] = "Serialized_Test_Set_Size"; |
---|
654 | |
---|
655 | // Prediction interval statistics |
---|
656 | resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; |
---|
657 | resultNames[current++] = "Size_of_Predicted_Regions"; |
---|
658 | |
---|
659 | // ID/Targets/Predictions |
---|
660 | if (getAttributeID() >= 0) resultNames[current++] = "Instance_ID"; |
---|
661 | if (getPredTargetColumn()){ |
---|
662 | resultNames[current++] = "Targets"; |
---|
663 | resultNames[current++] = "Predictions"; |
---|
664 | } |
---|
665 | |
---|
666 | // Classifier defined extras |
---|
667 | resultNames[current++] = "Summary"; |
---|
668 | // add any additional measures |
---|
669 | for (int i=0;i<addm;i++) { |
---|
670 | resultNames[current++] = m_AdditionalMeasures[i]; |
---|
671 | } |
---|
672 | if (current != overall_length) { |
---|
673 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
674 | } |
---|
675 | return resultNames; |
---|
676 | } |
---|
677 | |
---|
678 | /** |
---|
679 | * Gets the results for the supplied train and test datasets. Now performs |
---|
680 | * a deep copy of the classifier before it is built and evaluated (just in case |
---|
681 | * the classifier is not initialized properly in buildClassifier()). |
---|
682 | * |
---|
683 | * @param train the training Instances. |
---|
684 | * @param test the testing Instances. |
---|
685 | * @return the results stored in an array. The objects stored in |
---|
686 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
687 | * @throws Exception if a problem occurs while getting the results |
---|
688 | */ |
---|
689 | public Object [] getResult(Instances train, Instances test) |
---|
690 | throws Exception { |
---|
691 | |
---|
692 | if (train.classAttribute().type() != Attribute.NOMINAL) { |
---|
693 | throw new Exception("Class attribute is not nominal!"); |
---|
694 | } |
---|
695 | if (m_Template == null) { |
---|
696 | throw new Exception("No classifier has been specified"); |
---|
697 | } |
---|
698 | int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; |
---|
699 | int overall_length = RESULT_SIZE+addm; |
---|
700 | overall_length += NUM_IR_STATISTICS; |
---|
701 | overall_length += NUM_WEIGHTED_IR_STATISTICS; |
---|
702 | overall_length += NUM_UNWEIGHTED_IR_STATISTICS; |
---|
703 | if (getAttributeID() >= 0) overall_length += 1; |
---|
704 | if (getPredTargetColumn()) overall_length += 2; |
---|
705 | |
---|
706 | ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); |
---|
707 | boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); |
---|
708 | if(!thMonitor.isThreadCpuTimeEnabled()) |
---|
709 | thMonitor.setThreadCpuTimeEnabled(true); |
---|
710 | |
---|
711 | Object [] result = new Object[overall_length]; |
---|
712 | Evaluation eval = new Evaluation(train); |
---|
713 | m_Classifier = AbstractClassifier.makeCopy(m_Template); |
---|
714 | double [] predictions; |
---|
715 | long thID = Thread.currentThread().getId(); |
---|
716 | long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, |
---|
717 | trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; |
---|
718 | |
---|
719 | //training classifier |
---|
720 | trainTimeStart = System.currentTimeMillis(); |
---|
721 | if(canMeasureCPUTime) |
---|
722 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
723 | m_Classifier.buildClassifier(train); |
---|
724 | if(canMeasureCPUTime) |
---|
725 | trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
726 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
727 | |
---|
728 | //testing classifier |
---|
729 | testTimeStart = System.currentTimeMillis(); |
---|
730 | if(canMeasureCPUTime) |
---|
731 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
732 | predictions = eval.evaluateModel(m_Classifier, test); |
---|
733 | if(canMeasureCPUTime) |
---|
734 | testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
735 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
736 | thMonitor = null; |
---|
737 | |
---|
738 | m_result = eval.toSummaryString(); |
---|
739 | // The results stored are all per instance -- can be multiplied by the |
---|
740 | // number of instances to get absolute numbers |
---|
741 | int current = 0; |
---|
742 | result[current++] = new Double(train.numInstances()); |
---|
743 | result[current++] = new Double(eval.numInstances()); |
---|
744 | result[current++] = new Double(eval.correct()); |
---|
745 | result[current++] = new Double(eval.incorrect()); |
---|
746 | result[current++] = new Double(eval.unclassified()); |
---|
747 | result[current++] = new Double(eval.pctCorrect()); |
---|
748 | result[current++] = new Double(eval.pctIncorrect()); |
---|
749 | result[current++] = new Double(eval.pctUnclassified()); |
---|
750 | result[current++] = new Double(eval.kappa()); |
---|
751 | |
---|
752 | result[current++] = new Double(eval.meanAbsoluteError()); |
---|
753 | result[current++] = new Double(eval.rootMeanSquaredError()); |
---|
754 | result[current++] = new Double(eval.relativeAbsoluteError()); |
---|
755 | result[current++] = new Double(eval.rootRelativeSquaredError()); |
---|
756 | |
---|
757 | result[current++] = new Double(eval.SFPriorEntropy()); |
---|
758 | result[current++] = new Double(eval.SFSchemeEntropy()); |
---|
759 | result[current++] = new Double(eval.SFEntropyGain()); |
---|
760 | result[current++] = new Double(eval.SFMeanPriorEntropy()); |
---|
761 | result[current++] = new Double(eval.SFMeanSchemeEntropy()); |
---|
762 | result[current++] = new Double(eval.SFMeanEntropyGain()); |
---|
763 | |
---|
764 | // K&B stats |
---|
765 | result[current++] = new Double(eval.KBInformation()); |
---|
766 | result[current++] = new Double(eval.KBMeanInformation()); |
---|
767 | result[current++] = new Double(eval.KBRelativeInformation()); |
---|
768 | |
---|
769 | // IR stats |
---|
770 | result[current++] = new Double(eval.truePositiveRate(m_IRclass)); |
---|
771 | result[current++] = new Double(eval.numTruePositives(m_IRclass)); |
---|
772 | result[current++] = new Double(eval.falsePositiveRate(m_IRclass)); |
---|
773 | result[current++] = new Double(eval.numFalsePositives(m_IRclass)); |
---|
774 | result[current++] = new Double(eval.trueNegativeRate(m_IRclass)); |
---|
775 | result[current++] = new Double(eval.numTrueNegatives(m_IRclass)); |
---|
776 | result[current++] = new Double(eval.falseNegativeRate(m_IRclass)); |
---|
777 | result[current++] = new Double(eval.numFalseNegatives(m_IRclass)); |
---|
778 | result[current++] = new Double(eval.precision(m_IRclass)); |
---|
779 | result[current++] = new Double(eval.recall(m_IRclass)); |
---|
780 | result[current++] = new Double(eval.fMeasure(m_IRclass)); |
---|
781 | result[current++] = new Double(eval.areaUnderROC(m_IRclass)); |
---|
782 | |
---|
783 | // Weighted IR stats |
---|
784 | result[current++] = new Double(eval.weightedTruePositiveRate()); |
---|
785 | result[current++] = new Double(eval.weightedFalsePositiveRate()); |
---|
786 | result[current++] = new Double(eval.weightedTrueNegativeRate()); |
---|
787 | result[current++] = new Double(eval.weightedFalseNegativeRate()); |
---|
788 | result[current++] = new Double(eval.weightedPrecision()); |
---|
789 | result[current++] = new Double(eval.weightedRecall()); |
---|
790 | result[current++] = new Double(eval.weightedFMeasure()); |
---|
791 | result[current++] = new Double(eval.weightedAreaUnderROC()); |
---|
792 | |
---|
793 | // Unweighted IR stats |
---|
794 | result[current++] = new Double(eval.unweightedMacroFmeasure()); |
---|
795 | result[current++] = new Double(eval.unweightedMicroFmeasure()); |
---|
796 | |
---|
797 | // Timing stats |
---|
798 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
799 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
800 | if(canMeasureCPUTime) { |
---|
801 | result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0); |
---|
802 | result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0); |
---|
803 | } |
---|
804 | else { |
---|
805 | result[current++] = new Double(Utils.missingValue()); |
---|
806 | result[current++] = new Double(Utils.missingValue()); |
---|
807 | } |
---|
808 | |
---|
809 | // sizes |
---|
810 | ByteArrayOutputStream bastream = new ByteArrayOutputStream(); |
---|
811 | ObjectOutputStream oostream = new ObjectOutputStream(bastream); |
---|
812 | oostream.writeObject(m_Classifier); |
---|
813 | result[current++] = new Double(bastream.size()); |
---|
814 | bastream = new ByteArrayOutputStream(); |
---|
815 | oostream = new ObjectOutputStream(bastream); |
---|
816 | oostream.writeObject(train); |
---|
817 | result[current++] = new Double(bastream.size()); |
---|
818 | bastream = new ByteArrayOutputStream(); |
---|
819 | oostream = new ObjectOutputStream(bastream); |
---|
820 | oostream.writeObject(test); |
---|
821 | result[current++] = new Double(bastream.size()); |
---|
822 | |
---|
823 | // Prediction interval statistics |
---|
824 | result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); |
---|
825 | result[current++] = new Double(eval.sizeOfPredictedRegions()); |
---|
826 | |
---|
827 | // IDs |
---|
828 | if (getAttributeID() >= 0){ |
---|
829 | String idsString = ""; |
---|
830 | if (test.attribute(m_attID).isNumeric()){ |
---|
831 | if (test.numInstances() > 0) |
---|
832 | idsString += test.instance(0).value(m_attID); |
---|
833 | for(int i=1;i<test.numInstances();i++){ |
---|
834 | idsString += "|" + test.instance(i).value(m_attID); |
---|
835 | } |
---|
836 | } else { |
---|
837 | if (test.numInstances() > 0) |
---|
838 | idsString += test.instance(0).stringValue(m_attID); |
---|
839 | for(int i=1;i<test.numInstances();i++){ |
---|
840 | idsString += "|" + test.instance(i).stringValue(m_attID); |
---|
841 | } |
---|
842 | } |
---|
843 | result[current++] = idsString; |
---|
844 | } |
---|
845 | |
---|
846 | if (getPredTargetColumn()){ |
---|
847 | if (test.classAttribute().isNumeric()){ |
---|
848 | // Targets |
---|
849 | if (test.numInstances() > 0){ |
---|
850 | String targetsString = ""; |
---|
851 | targetsString += test.instance(0).value(test.classIndex()); |
---|
852 | for(int i=1;i<test.numInstances();i++){ |
---|
853 | targetsString += "|" + test.instance(i).value(test.classIndex()); |
---|
854 | } |
---|
855 | result[current++] = targetsString; |
---|
856 | } |
---|
857 | |
---|
858 | // Predictions |
---|
859 | if (predictions.length > 0){ |
---|
860 | String predictionsString = ""; |
---|
861 | predictionsString += predictions[0]; |
---|
862 | for(int i=1;i<predictions.length;i++){ |
---|
863 | predictionsString += "|" + predictions[i]; |
---|
864 | } |
---|
865 | result[current++] = predictionsString; |
---|
866 | } |
---|
867 | } else { |
---|
868 | // Targets |
---|
869 | if (test.numInstances() > 0){ |
---|
870 | String targetsString = ""; |
---|
871 | targetsString += test.instance(0).stringValue(test.classIndex()); |
---|
872 | for(int i=1;i<test.numInstances();i++){ |
---|
873 | targetsString += "|" + test.instance(i).stringValue(test.classIndex()); |
---|
874 | } |
---|
875 | result[current++] = targetsString; |
---|
876 | } |
---|
877 | |
---|
878 | // Predictions |
---|
879 | if (predictions.length > 0){ |
---|
880 | String predictionsString = ""; |
---|
881 | predictionsString += test.classAttribute().value((int) predictions[0]); |
---|
882 | for(int i=1;i<predictions.length;i++){ |
---|
883 | predictionsString += "|" + test.classAttribute().value((int) predictions[i]); |
---|
884 | } |
---|
885 | result[current++] = predictionsString; |
---|
886 | } |
---|
887 | } |
---|
888 | } |
---|
889 | |
---|
890 | if (m_Classifier instanceof Summarizable) { |
---|
891 | result[current++] = ((Summarizable)m_Classifier).toSummaryString(); |
---|
892 | } else { |
---|
893 | result[current++] = null; |
---|
894 | } |
---|
895 | |
---|
896 | for (int i=0;i<addm;i++) { |
---|
897 | if (m_doesProduce[i]) { |
---|
898 | try { |
---|
899 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
900 | getMeasure(m_AdditionalMeasures[i]); |
---|
901 | if (!Utils.isMissingValue(dv)) { |
---|
902 | Double value = new Double(dv); |
---|
903 | result[current++] = value; |
---|
904 | } else { |
---|
905 | result[current++] = null; |
---|
906 | } |
---|
907 | } catch (Exception ex) { |
---|
908 | System.err.println(ex); |
---|
909 | } |
---|
910 | } else { |
---|
911 | result[current++] = null; |
---|
912 | } |
---|
913 | } |
---|
914 | |
---|
915 | if (current != overall_length) { |
---|
916 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
917 | } |
---|
918 | return result; |
---|
919 | } |
---|
920 | |
---|
921 | /** |
---|
922 | * Returns the tip text for this property |
---|
923 | * @return tip text for this property suitable for |
---|
924 | * displaying in the explorer/experimenter gui |
---|
925 | */ |
---|
926 | public String classifierTipText() { |
---|
927 | return "The classifier to use."; |
---|
928 | } |
---|
929 | |
---|
930 | /** |
---|
931 | * Get the value of Classifier. |
---|
932 | * |
---|
933 | * @return Value of Classifier. |
---|
934 | */ |
---|
935 | public Classifier getClassifier() { |
---|
936 | |
---|
937 | return m_Template; |
---|
938 | } |
---|
939 | |
---|
940 | /** |
---|
941 | * Sets the classifier. |
---|
942 | * |
---|
943 | * @param newClassifier the new classifier to use. |
---|
944 | */ |
---|
945 | public void setClassifier(Classifier newClassifier) { |
---|
946 | |
---|
947 | m_Template = newClassifier; |
---|
948 | updateOptions(); |
---|
949 | } |
---|
950 | |
---|
951 | /** |
---|
952 | * Get the value of ClassForIRStatistics. |
---|
953 | * @return Value of ClassForIRStatistics. |
---|
954 | */ |
---|
955 | public int getClassForIRStatistics() { |
---|
956 | return m_IRclass; |
---|
957 | } |
---|
958 | |
---|
959 | /** |
---|
960 | * Set the value of ClassForIRStatistics. |
---|
961 | * @param v Value to assign to ClassForIRStatistics. |
---|
962 | */ |
---|
963 | public void setClassForIRStatistics(int v) { |
---|
964 | m_IRclass = v; |
---|
965 | } |
---|
966 | |
---|
967 | /** |
---|
968 | * Get the index of Attibute Identifying the instances |
---|
969 | * @return index of outputed Attribute. |
---|
970 | */ |
---|
971 | public int getAttributeID() { |
---|
972 | return m_attID; |
---|
973 | } |
---|
974 | |
---|
975 | /** |
---|
976 | * Set the index of Attibute Identifying the instances |
---|
977 | * @param v index the attribute to output |
---|
978 | */ |
---|
979 | public void setAttributeID(int v) { |
---|
980 | m_attID = v; |
---|
981 | } |
---|
982 | |
---|
983 | /** |
---|
984 | *@return true if the prediction and target columns must be outputed. |
---|
985 | */ |
---|
986 | public boolean getPredTargetColumn(){ |
---|
987 | return m_predTargetColumn; |
---|
988 | } |
---|
989 | |
---|
990 | /** |
---|
991 | * Set the flag for prediction and target output. |
---|
992 | *@param v true if the 2 columns have to be outputed. false otherwise. |
---|
993 | */ |
---|
994 | public void setPredTargetColumn(boolean v){ |
---|
995 | m_predTargetColumn = v; |
---|
996 | } |
---|
997 | |
---|
998 | /** |
---|
999 | * Updates the options that the current classifier is using. |
---|
1000 | */ |
---|
1001 | protected void updateOptions() { |
---|
1002 | |
---|
1003 | if (m_Template instanceof OptionHandler) { |
---|
1004 | m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Template) |
---|
1005 | .getOptions()); |
---|
1006 | } else { |
---|
1007 | m_ClassifierOptions = ""; |
---|
1008 | } |
---|
1009 | if (m_Template instanceof Serializable) { |
---|
1010 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template |
---|
1011 | .getClass()); |
---|
1012 | m_ClassifierVersion = "" + obs.getSerialVersionUID(); |
---|
1013 | } else { |
---|
1014 | m_ClassifierVersion = ""; |
---|
1015 | } |
---|
1016 | } |
---|
1017 | |
---|
1018 | /** |
---|
1019 | * Set the Classifier to use, given it's class name. A new classifier will be |
---|
1020 | * instantiated. |
---|
1021 | * |
---|
1022 | * @param newClassifierName the Classifier class name. |
---|
1023 | * @throws Exception if the class name is invalid. |
---|
1024 | */ |
---|
1025 | public void setClassifierName(String newClassifierName) throws Exception { |
---|
1026 | |
---|
1027 | try { |
---|
1028 | setClassifier((Classifier)Class.forName(newClassifierName) |
---|
1029 | .newInstance()); |
---|
1030 | } catch (Exception ex) { |
---|
1031 | throw new Exception("Can't find Classifier with class name: " |
---|
1032 | + newClassifierName); |
---|
1033 | } |
---|
1034 | } |
---|
1035 | |
---|
1036 | /** |
---|
1037 | * Gets the raw output from the classifier |
---|
1038 | * @return the raw output from th,0e classifier |
---|
1039 | */ |
---|
1040 | public String getRawResultOutput() { |
---|
1041 | StringBuffer result = new StringBuffer(); |
---|
1042 | |
---|
1043 | if (m_Classifier == null) { |
---|
1044 | return "<null> classifier"; |
---|
1045 | } |
---|
1046 | result.append(toString()); |
---|
1047 | result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); |
---|
1048 | |
---|
1049 | // append the performance statistics |
---|
1050 | if (m_result != null) { |
---|
1051 | result.append(m_result); |
---|
1052 | |
---|
1053 | if (m_doesProduce != null) { |
---|
1054 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
1055 | if (m_doesProduce[i]) { |
---|
1056 | try { |
---|
1057 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
1058 | getMeasure(m_AdditionalMeasures[i]); |
---|
1059 | if (!Utils.isMissingValue(dv)) { |
---|
1060 | Double value = new Double(dv); |
---|
1061 | result.append(m_AdditionalMeasures[i]+" : "+value+'\n'); |
---|
1062 | } else { |
---|
1063 | result.append(m_AdditionalMeasures[i]+" : "+'?'+'\n'); |
---|
1064 | } |
---|
1065 | } catch (Exception ex) { |
---|
1066 | System.err.println(ex); |
---|
1067 | } |
---|
1068 | } |
---|
1069 | } |
---|
1070 | } |
---|
1071 | } |
---|
1072 | return result.toString(); |
---|
1073 | } |
---|
1074 | |
---|
1075 | /** |
---|
1076 | * Returns a text description of the split evaluator. |
---|
1077 | * |
---|
1078 | * @return a text description of the split evaluator. |
---|
1079 | */ |
---|
1080 | public String toString() { |
---|
1081 | |
---|
1082 | String result = "ClassifierSplitEvaluator: "; |
---|
1083 | if (m_Template == null) { |
---|
1084 | return result + "<null> classifier"; |
---|
1085 | } |
---|
1086 | return result + m_Template.getClass().getName() + " " |
---|
1087 | + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; |
---|
1088 | } |
---|
1089 | |
---|
1090 | /** |
---|
1091 | * Returns the revision string. |
---|
1092 | * |
---|
1093 | * @return the revision |
---|
1094 | */ |
---|
1095 | public String getRevision() { |
---|
1096 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
1097 | } |
---|
1098 | } // ClassifierSplitEvaluator |
---|