1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * UnivariateNormalEstimator.java |
---|
19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.estimators; |
---|
24 | |
---|
25 | import java.util.Random; |
---|
26 | |
---|
27 | import weka.core.Statistics; |
---|
28 | |
---|
29 | /** |
---|
30 | * Simple weighted normal density estimator. |
---|
31 | * |
---|
32 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
33 | * @version $Revision: 5680 $ |
---|
34 | */ |
---|
35 | public class UnivariateNormalEstimator implements UnivariateDensityEstimator, |
---|
36 | UnivariateIntervalEstimator { |
---|
37 | |
---|
38 | /** The weighted sum of values */ |
---|
39 | protected double m_WeightedSum = 0; |
---|
40 | |
---|
41 | /** The weighted sum of squared values */ |
---|
42 | protected double m_WeightedSumSquared = 0; |
---|
43 | |
---|
44 | /** The weight of the values collected so far */ |
---|
45 | protected double m_SumOfWeights = 0; |
---|
46 | |
---|
47 | /** The mean value (only updated when needed) */ |
---|
48 | protected double m_Mean = 0; |
---|
49 | |
---|
50 | /** The variance (only updated when needed) */ |
---|
51 | protected double m_Variance = Double.MAX_VALUE; |
---|
52 | |
---|
53 | /** The minimum allowed value of the variance (default: 1.0E-6 * 1.0E-6) */ |
---|
54 | protected double m_MinVar = 1.0E-6 * 1.0E-6; |
---|
55 | |
---|
56 | /** Constant for Gaussian density */ |
---|
57 | public static final double CONST = Math.log(2 * Math.PI); |
---|
58 | |
---|
59 | /** |
---|
60 | * Adds a value to the density estimator. |
---|
61 | * |
---|
62 | * @param value the value to add |
---|
63 | * @param weight the weight of the value |
---|
64 | */ |
---|
65 | public void addValue(double value, double weight) { |
---|
66 | |
---|
67 | m_WeightedSum += value * weight; |
---|
68 | m_WeightedSumSquared += value * value * weight; |
---|
69 | m_SumOfWeights += weight; |
---|
70 | } |
---|
71 | |
---|
72 | /** |
---|
73 | * Updates mean and variance based on sufficient statistics. |
---|
74 | * Variance is set to m_MinVar if it becomes smaller than that |
---|
75 | * value. It is set to Double.MAX_VALUE if the sum of weights is |
---|
76 | * zero. |
---|
77 | */ |
---|
78 | protected void updateMeanAndVariance() { |
---|
79 | |
---|
80 | // Compute mean |
---|
81 | m_Mean = 0; |
---|
82 | if (m_SumOfWeights > 0) { |
---|
83 | m_Mean = m_WeightedSum / m_SumOfWeights; |
---|
84 | } |
---|
85 | |
---|
86 | // Compute variance |
---|
87 | m_Variance = Double.MAX_VALUE; |
---|
88 | if (m_SumOfWeights > 0) { |
---|
89 | m_Variance = m_WeightedSumSquared / m_SumOfWeights - m_Mean * m_Mean; |
---|
90 | } |
---|
91 | |
---|
92 | // Hack for case where variance is 0 |
---|
93 | if (m_Variance <= m_MinVar) { |
---|
94 | m_Variance = m_MinVar; |
---|
95 | } |
---|
96 | } |
---|
97 | |
---|
98 | /** |
---|
99 | * Returns the interval for the given confidence value. |
---|
100 | * |
---|
101 | * @param conf the confidence value in the interval [0, 1] |
---|
102 | * @return the interval |
---|
103 | */ |
---|
104 | public double[][] predictIntervals(double conf) { |
---|
105 | |
---|
106 | updateMeanAndVariance(); |
---|
107 | |
---|
108 | double val = Statistics.normalInverse(1.0 - (1.0 - conf) / 2.0); |
---|
109 | |
---|
110 | double[][] arr = new double[1][2]; |
---|
111 | arr[0][1] = m_Mean + val * Math.sqrt(m_Variance); |
---|
112 | arr[0][0] = m_Mean - val * Math.sqrt(m_Variance); |
---|
113 | |
---|
114 | return arr; |
---|
115 | } |
---|
116 | |
---|
117 | /** |
---|
118 | * Returns the natural logarithm of the density estimate at the given |
---|
119 | * point. |
---|
120 | * |
---|
121 | * @param value the value at which to evaluate |
---|
122 | * @return the natural logarithm of the density estimate at the given |
---|
123 | * value |
---|
124 | */ |
---|
125 | public double logDensity(double value) { |
---|
126 | |
---|
127 | updateMeanAndVariance(); |
---|
128 | |
---|
129 | // Return natural logarithm of density |
---|
130 | double val = -0.5 * (CONST + Math.log(m_Variance) + |
---|
131 | (value - m_Mean) * (value - m_Mean) / m_Variance); |
---|
132 | |
---|
133 | return val; |
---|
134 | } |
---|
135 | |
---|
136 | /** |
---|
137 | * Returns textual description of this estimator. |
---|
138 | */ |
---|
139 | public String toString() { |
---|
140 | |
---|
141 | updateMeanAndVariance(); |
---|
142 | |
---|
143 | return "Mean: " + m_Mean + "\t" + "Variance: " + m_Variance; |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Main method, used for testing this class. |
---|
148 | */ |
---|
149 | public static void main(String[] args) { |
---|
150 | |
---|
151 | // Get random number generator initialized by system |
---|
152 | Random r = new Random(); |
---|
153 | |
---|
154 | // Create density estimator |
---|
155 | UnivariateNormalEstimator e = new UnivariateNormalEstimator(); |
---|
156 | |
---|
157 | // Output the density estimator |
---|
158 | System.out.println(e); |
---|
159 | |
---|
160 | // Monte Carlo integration |
---|
161 | double sum = 0; |
---|
162 | for (int i = 0; i < 100000; i++) { |
---|
163 | sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); |
---|
164 | } |
---|
165 | System.out.println("Approximate integral: " + 10.0 * sum / 100000); |
---|
166 | |
---|
167 | // Add Gaussian values into it |
---|
168 | for (int i = 0; i < 100000; i++) { |
---|
169 | e.addValue(r.nextGaussian(), 1); |
---|
170 | e.addValue(r.nextGaussian() * 2.0, 3); |
---|
171 | } |
---|
172 | |
---|
173 | // Output the density estimator |
---|
174 | System.out.println(e); |
---|
175 | |
---|
176 | // Monte Carlo integration |
---|
177 | sum = 0; |
---|
178 | for (int i = 0; i < 100000; i++) { |
---|
179 | sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); |
---|
180 | } |
---|
181 | System.out.println("Approximate integral: " + 10.0 * sum / 100000); |
---|
182 | |
---|
183 | // Create density estimator |
---|
184 | e = new UnivariateNormalEstimator(); |
---|
185 | |
---|
186 | // Add Gaussian values into it |
---|
187 | for (int i = 0; i < 100000; i++) { |
---|
188 | e.addValue(r.nextGaussian(), 1); |
---|
189 | e.addValue(r.nextGaussian() * 2.0, 1); |
---|
190 | e.addValue(r.nextGaussian() * 2.0, 1); |
---|
191 | e.addValue(r.nextGaussian() * 2.0, 1); |
---|
192 | } |
---|
193 | |
---|
194 | // Output the density estimator |
---|
195 | System.out.println(e); |
---|
196 | |
---|
197 | // Monte Carlo integration |
---|
198 | sum = 0; |
---|
199 | for (int i = 0; i < 100000; i++) { |
---|
200 | sum += Math.exp(e.logDensity(r.nextDouble() * 10.0 - 5.0)); |
---|
201 | } |
---|
202 | System.out.println("Approximate integral: " + 10.0 * sum / 100000); |
---|
203 | |
---|
204 | // Create density estimator |
---|
205 | e = new UnivariateNormalEstimator(); |
---|
206 | |
---|
207 | // Add Gaussian values into it |
---|
208 | for (int i = 0; i < 100000; i++) { |
---|
209 | e.addValue(r.nextGaussian() * 5.0 + 3.0 , 1); |
---|
210 | } |
---|
211 | |
---|
212 | // Output the density estimator |
---|
213 | System.out.println(e); |
---|
214 | |
---|
215 | // Check interval estimates |
---|
216 | double[][] intervals = e.predictIntervals(0.95); |
---|
217 | System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); |
---|
218 | double covered = 0; |
---|
219 | for (int i = 0; i < 100000; i++) { |
---|
220 | double val = r.nextGaussian() * 5.0 + 3.0; |
---|
221 | if (val >= intervals[0][0] && val <= intervals[0][1]) { |
---|
222 | covered++; |
---|
223 | } |
---|
224 | } |
---|
225 | System.out.println("Coverage: " + covered / 100000); |
---|
226 | |
---|
227 | intervals = e.predictIntervals(0.8); |
---|
228 | System.out.println("Lower: " + intervals[0][0] + " Upper: " + intervals[0][1]); |
---|
229 | covered = 0; |
---|
230 | for (int i = 0; i < 100000; i++) { |
---|
231 | double val = r.nextGaussian() * 5.0 + 3.0; |
---|
232 | if (val >= intervals[0][0] && val <= intervals[0][1]) { |
---|
233 | covered++; |
---|
234 | } |
---|
235 | } |
---|
236 | System.out.println("Coverage: " + covered / 100000); |
---|
237 | } |
---|
238 | } |
---|