1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * KMeansInpiredMethod.java |
---|
19 | * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.core.neighboursearch.kdtrees; |
---|
23 | |
---|
24 | import weka.core.Instance; |
---|
25 | import weka.core.Instances; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | import weka.core.TechnicalInformation; |
---|
28 | import weka.core.TechnicalInformationHandler; |
---|
29 | import weka.core.TechnicalInformation.Field; |
---|
30 | import weka.core.TechnicalInformation.Type; |
---|
31 | |
---|
32 | /** |
---|
33 | <!-- globalinfo-start --> |
---|
34 | * The class that splits a node into two such that the overall sum of squared distances of points to their centres on both sides of the (axis-parallel) splitting plane is minimum.<br/> |
---|
35 | * <br/> |
---|
36 | * For more information see also:<br/> |
---|
37 | * <br/> |
---|
38 | * Ashraf Masood Kibriya (2007). Fast Algorithms for Nearest Neighbour Search. Hamilton, New Zealand. |
---|
39 | * <p/> |
---|
40 | <!-- globalinfo-end --> |
---|
41 | * |
---|
42 | <!-- technical-bibtex-start --> |
---|
43 | * BibTeX: |
---|
44 | * <pre> |
---|
45 | * @mastersthesis{Kibriya2007, |
---|
46 | * address = {Hamilton, New Zealand}, |
---|
47 | * author = {Ashraf Masood Kibriya}, |
---|
48 | * school = {Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato}, |
---|
49 | * title = {Fast Algorithms for Nearest Neighbour Search}, |
---|
50 | * year = {2007} |
---|
51 | * } |
---|
52 | * </pre> |
---|
53 | * <p/> |
---|
54 | <!-- technical-bibtex-end --> |
---|
55 | * |
---|
56 | <!-- options-start --> |
---|
57 | <!-- options-end --> |
---|
58 | * |
---|
59 | * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) |
---|
60 | * @version $Revision: 5953 $ |
---|
61 | */ |
---|
62 | public class KMeansInpiredMethod |
---|
63 | extends KDTreeNodeSplitter |
---|
64 | implements TechnicalInformationHandler { |
---|
65 | |
---|
66 | /** for serialization. */ |
---|
67 | private static final long serialVersionUID = -866783749124714304L; |
---|
68 | |
---|
69 | /** |
---|
70 | * Returns a string describing this nearest neighbour search algorithm. |
---|
71 | * |
---|
72 | * @return a description of the algorithm for displaying in the |
---|
73 | * explorer/experimenter gui |
---|
74 | */ |
---|
75 | public String globalInfo() { |
---|
76 | return |
---|
77 | "The class that splits a node into two such that the overall sum " |
---|
78 | + "of squared distances of points to their centres on both sides " |
---|
79 | + "of the (axis-parallel) splitting plane is minimum.\n\n" |
---|
80 | + "For more information see also:\n\n" |
---|
81 | + getTechnicalInformation().toString(); |
---|
82 | } |
---|
83 | |
---|
84 | /** |
---|
85 | * Returns an instance of a TechnicalInformation object, containing detailed |
---|
86 | * information about the technical background of this class, e.g., paper |
---|
87 | * reference or book this class is based on. |
---|
88 | * |
---|
89 | * @return the technical information about this class |
---|
90 | */ |
---|
91 | public TechnicalInformation getTechnicalInformation() { |
---|
92 | TechnicalInformation result; |
---|
93 | |
---|
94 | result = new TechnicalInformation(Type.MASTERSTHESIS); |
---|
95 | result.setValue(Field.AUTHOR, "Ashraf Masood Kibriya"); |
---|
96 | result.setValue(Field.TITLE, "Fast Algorithms for Nearest Neighbour Search"); |
---|
97 | result.setValue(Field.YEAR, "2007"); |
---|
98 | result.setValue(Field.SCHOOL, "Department of Computer Science, School of Computing and Mathematical Sciences, University of Waikato"); |
---|
99 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
---|
100 | |
---|
101 | return result; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | * Splits a node into two such that the overall sum of squared distances |
---|
106 | * of points to their centres on both sides of the (axis-parallel) |
---|
107 | * splitting plane is minimum. The two nodes created after the whole |
---|
108 | * splitting are correctly initialised. And, node.left and node.right |
---|
109 | * are set appropriately. |
---|
110 | * @param node The node to split. |
---|
111 | * @param numNodesCreated The number of nodes that so far have been |
---|
112 | * created for the tree, so that the newly created nodes are |
---|
113 | * assigned correct/meaningful node numbers/ids. |
---|
114 | * @param nodeRanges The attributes' range for the points inside |
---|
115 | * the node that is to be split. |
---|
116 | * @param universe The attributes' range for the whole |
---|
117 | * point-space. |
---|
118 | * @throws Exception If there is some problem in splitting the |
---|
119 | * given node. |
---|
120 | */ |
---|
121 | public void splitNode(KDTreeNode node, int numNodesCreated, |
---|
122 | double[][] nodeRanges, double[][] universe) throws Exception { |
---|
123 | |
---|
124 | correctlyInitialized(); |
---|
125 | |
---|
126 | int splitDim = -1; |
---|
127 | double splitVal = Double.NEGATIVE_INFINITY; |
---|
128 | |
---|
129 | double leftAttSum[] = new double[m_Instances.numAttributes()], |
---|
130 | rightAttSum[] = new double[m_Instances.numAttributes()], |
---|
131 | leftAttSqSum[] = new double[m_Instances.numAttributes()], |
---|
132 | rightAttSqSum[] = new double[m_Instances.numAttributes()], |
---|
133 | rightSqMean, leftSqMean, leftSqSum, rightSqSum, |
---|
134 | minSum = Double.POSITIVE_INFINITY, val; |
---|
135 | |
---|
136 | for (int dim = 0; dim < m_Instances.numAttributes(); dim++) { |
---|
137 | // m_MaxRelativeWidth in KDTree ensure there'll be atleast one dim with |
---|
138 | // width > 0.0 |
---|
139 | if (node.m_NodeRanges[dim][WIDTH] == 0.0 |
---|
140 | || dim == m_Instances.classIndex()) |
---|
141 | continue; |
---|
142 | |
---|
143 | quickSort(m_Instances, m_InstList, dim, node.m_Start, node.m_End); |
---|
144 | |
---|
145 | for (int i = node.m_Start; i <= node.m_End; i++) { |
---|
146 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
147 | if (j == m_Instances.classIndex()) |
---|
148 | continue; |
---|
149 | val = m_Instances.instance(m_InstList[i]).value(j); |
---|
150 | if (m_NormalizeNodeWidth) { |
---|
151 | if (Double.isNaN(universe[j][MIN]) |
---|
152 | || universe[j][MIN] == universe[j][MAX]) |
---|
153 | val = 0.0; |
---|
154 | else |
---|
155 | val = ((val - universe[j][MIN]) / universe[j][WIDTH]); // normalizing |
---|
156 | // value |
---|
157 | } |
---|
158 | if (i == node.m_Start) { |
---|
159 | leftAttSum[j] = rightAttSum[j] = leftAttSqSum[j] = rightAttSqSum[j] = 0.0; |
---|
160 | } |
---|
161 | rightAttSum[j] += val; |
---|
162 | rightAttSqSum[j] += val * val; |
---|
163 | } |
---|
164 | } |
---|
165 | |
---|
166 | for (int i = node.m_Start; i <= node.m_End - 1; i++) { |
---|
167 | Instance inst = m_Instances.instance(m_InstList[i]); |
---|
168 | leftSqSum = rightSqSum = 0.0; |
---|
169 | for (int j = 0; j < m_Instances.numAttributes(); j++) { |
---|
170 | if (j == m_Instances.classIndex()) |
---|
171 | continue; |
---|
172 | val = inst.value(j); |
---|
173 | |
---|
174 | if (m_NormalizeNodeWidth) { |
---|
175 | if (Double.isNaN(universe[j][MIN]) |
---|
176 | || universe[j][MIN] == universe[j][MAX]) |
---|
177 | val = 0.0; |
---|
178 | else |
---|
179 | val = ((val - universe[j][MIN]) / universe[j][WIDTH]); // normalizing |
---|
180 | // value |
---|
181 | } |
---|
182 | |
---|
183 | leftAttSum[j] += val; |
---|
184 | rightAttSum[j] -= val; |
---|
185 | leftAttSqSum[j] += val * val; |
---|
186 | rightAttSqSum[j] -= val * val; |
---|
187 | leftSqMean = leftAttSum[j] / (i - node.m_Start + 1); |
---|
188 | leftSqMean *= leftSqMean; |
---|
189 | rightSqMean = rightAttSum[j] / (node.m_End - i); |
---|
190 | rightSqMean *= rightSqMean; |
---|
191 | |
---|
192 | leftSqSum += leftAttSqSum[j] - (i - node.m_Start + 1) * leftSqMean; |
---|
193 | rightSqSum += rightAttSqSum[j] - (node.m_End - i) * rightSqMean; |
---|
194 | } |
---|
195 | |
---|
196 | if (minSum > (leftSqSum + rightSqSum)) { |
---|
197 | minSum = leftSqSum + rightSqSum; |
---|
198 | |
---|
199 | if (i < node.m_End) |
---|
200 | splitVal = (m_Instances.instance(m_InstList[i]).value(dim) + m_Instances |
---|
201 | .instance(m_InstList[i + 1]).value(dim)) / 2; |
---|
202 | else |
---|
203 | splitVal = m_Instances.instance(m_InstList[i]).value(dim); |
---|
204 | |
---|
205 | splitDim = dim; |
---|
206 | } |
---|
207 | }// end for instance i |
---|
208 | }// end for attribute dim |
---|
209 | |
---|
210 | int rightStart = rearrangePoints(m_InstList, node.m_Start, node.m_End, |
---|
211 | splitDim, splitVal); |
---|
212 | |
---|
213 | if (rightStart == node.m_Start || rightStart > node.m_End) { |
---|
214 | System.out.println("node.m_Start: " + node.m_Start + " node.m_End: " |
---|
215 | + node.m_End + " splitDim: " + splitDim + " splitVal: " + splitVal |
---|
216 | + " node.min: " + node.m_NodeRanges[splitDim][MIN] + " node.max: " |
---|
217 | + node.m_NodeRanges[splitDim][MAX] + " node.numInstances: " |
---|
218 | + node.numInstances()); |
---|
219 | |
---|
220 | if (rightStart == node.m_Start) |
---|
221 | throw new Exception("Left child is empty in node " + node.m_NodeNumber |
---|
222 | + ". Not possible with " |
---|
223 | + "KMeanInspiredMethod splitting method. Please " + "check code."); |
---|
224 | else |
---|
225 | throw new Exception("Right child is empty in node " + node.m_NodeNumber |
---|
226 | + ". Not possible with " |
---|
227 | + "KMeansInspiredMethod splitting method. Please " + "check code."); |
---|
228 | } |
---|
229 | |
---|
230 | node.m_SplitDim = splitDim; |
---|
231 | node.m_SplitValue = splitVal; |
---|
232 | node.m_Left = new KDTreeNode(numNodesCreated + 1, node.m_Start, |
---|
233 | rightStart - 1, m_EuclideanDistance.initializeRanges(m_InstList, |
---|
234 | node.m_Start, rightStart - 1)); |
---|
235 | node.m_Right = new KDTreeNode(numNodesCreated + 2, rightStart, node.m_End, |
---|
236 | m_EuclideanDistance |
---|
237 | .initializeRanges(m_InstList, rightStart, node.m_End)); |
---|
238 | } |
---|
239 | |
---|
240 | /** |
---|
241 | * Partitions the instances around a pivot. Used by quicksort and |
---|
242 | * kthSmallestValue. |
---|
243 | * |
---|
244 | * @param insts The instances on which the tree is (or is |
---|
245 | * to be) built. |
---|
246 | * @param index The master index array containing indices |
---|
247 | * of the instances. |
---|
248 | * @param attidx The attribution/dimension based on which |
---|
249 | * the instances should be partitioned. |
---|
250 | * @param l The begining index of the portion of master index |
---|
251 | * array that should be partitioned. |
---|
252 | * @param r The end index of the portion of master index array |
---|
253 | * that should be partitioned. |
---|
254 | * @return the index of the middle element |
---|
255 | */ |
---|
256 | protected static int partition(Instances insts, int[] index, int attidx, int l, int r) { |
---|
257 | |
---|
258 | double pivot = insts.instance(index[(l + r) / 2]).value(attidx); |
---|
259 | int help; |
---|
260 | |
---|
261 | while (l < r) { |
---|
262 | while ((insts.instance(index[l]).value(attidx) < pivot) && (l < r)) { |
---|
263 | l++; |
---|
264 | } |
---|
265 | while ((insts.instance(index[r]).value(attidx) > pivot) && (l < r)) { |
---|
266 | r--; |
---|
267 | } |
---|
268 | if (l < r) { |
---|
269 | help = index[l]; |
---|
270 | index[l] = index[r]; |
---|
271 | index[r] = help; |
---|
272 | l++; |
---|
273 | r--; |
---|
274 | } |
---|
275 | } |
---|
276 | if ((l == r) && (insts.instance(index[r]).value(attidx) > pivot)) { |
---|
277 | r--; |
---|
278 | } |
---|
279 | |
---|
280 | return r; |
---|
281 | } |
---|
282 | |
---|
283 | /** |
---|
284 | * Sorts the instances according to the given attribute/dimension. |
---|
285 | * The sorting is done on the master index array and not on the |
---|
286 | * actual instances object. |
---|
287 | * |
---|
288 | * @param insts The instances on which the tree is (or is |
---|
289 | * to be) built. |
---|
290 | * @param indices The master index array containing indices |
---|
291 | * of the instances. |
---|
292 | * @param attidx The dimension/attribute based on which |
---|
293 | * the instances should be sorted. |
---|
294 | * @param left The begining index of the portion of the master |
---|
295 | * index array that needs to be sorted. |
---|
296 | * @param right The end index of the portion of the master index |
---|
297 | * array that needs to be sorted. |
---|
298 | */ |
---|
299 | protected static void quickSort(Instances insts, int[] indices, int attidx, int left, int right) { |
---|
300 | |
---|
301 | if (left < right) { |
---|
302 | int middle = partition(insts, indices, attidx, left, right); |
---|
303 | quickSort(insts, indices, attidx, left, middle); |
---|
304 | quickSort(insts, indices, attidx, middle + 1, right); |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Method to validate the sorting done by quickSort(). |
---|
310 | * |
---|
311 | * @param insts The instances on which the tree is (or is |
---|
312 | * to be) built. |
---|
313 | * @param indices The master index array containing indices |
---|
314 | * of the instances. |
---|
315 | * @param attidx The dimension/attribute based on which |
---|
316 | * the instances should be sorted. |
---|
317 | * @param start The start of the portion in master index |
---|
318 | * array that needs to be sorted. |
---|
319 | * @param end The end of the portion in master index |
---|
320 | * array that needs to be sorted. |
---|
321 | * @throws Exception If the indices of the instances |
---|
322 | * are not in sorted order. |
---|
323 | */ |
---|
324 | private static void checkSort(Instances insts, int[] indices, int attidx, |
---|
325 | int start, int end) throws Exception { |
---|
326 | for(int i=start+1; i<=end; i++) { |
---|
327 | if( insts.instance(indices[i-1]).value(attidx) > |
---|
328 | insts.instance(indices[i]).value(attidx) ) { |
---|
329 | System.out.println("value[i-1]: "+insts.instance(indices[i-1]).value(attidx)); |
---|
330 | System.out.println("value[i]: "+insts.instance(indices[i]).value(attidx)); |
---|
331 | System.out.println("indices[i-1]: "+indices[i-1]); |
---|
332 | System.out.println("indices[i]: "+indices[i]); |
---|
333 | System.out.println("i: "+i); |
---|
334 | if(insts.instance(indices[i-1]).value(attidx) > insts.instance(indices[i]).value(attidx)) |
---|
335 | System.out.println("value[i-1] > value[i]"); |
---|
336 | |
---|
337 | throw new Exception("Indices not sorted correctly."); |
---|
338 | }//end if |
---|
339 | } |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * Re-arranges the indices array so that in the portion of the array |
---|
344 | * belonging to the node to be split, the points <= to the splitVal |
---|
345 | * are on the left of the portion and those > the splitVal are on the right. |
---|
346 | * |
---|
347 | * @param indices The master index array. |
---|
348 | * @param startidx The begining index of portion of indices that needs |
---|
349 | * re-arranging. |
---|
350 | * @param endidx The end index of portion of indices that needs |
---|
351 | * re-arranging. |
---|
352 | * @param splitDim The split dimension/attribute. |
---|
353 | * @param splitVal The split value. |
---|
354 | * @return The startIdx of the points > the splitVal (the points |
---|
355 | * belonging to the right child of the node). |
---|
356 | */ |
---|
357 | protected int rearrangePoints(int[] indices, final int startidx, final int endidx, |
---|
358 | final int splitDim, final double splitVal) { |
---|
359 | |
---|
360 | int tmp, left = startidx - 1; |
---|
361 | for (int i = startidx; i <= endidx; i++) { |
---|
362 | if (m_EuclideanDistance.valueIsSmallerEqual(m_Instances |
---|
363 | .instance(indices[i]), splitDim, splitVal)) { |
---|
364 | left++; |
---|
365 | tmp = indices[left]; |
---|
366 | indices[left] = indices[i]; |
---|
367 | indices[i] = tmp; |
---|
368 | }// end valueIsSmallerEqual |
---|
369 | }// endfor |
---|
370 | return left + 1; |
---|
371 | } |
---|
372 | |
---|
373 | /** |
---|
374 | * Returns the revision string. |
---|
375 | * |
---|
376 | * @return the revision |
---|
377 | */ |
---|
378 | public String getRevision() { |
---|
379 | return RevisionUtils.extract("$Revision: 5953 $"); |
---|
380 | } |
---|
381 | } |
---|