[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MakeDensityBasedClusterer.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.clusterers; |
---|
| 24 | |
---|
| 25 | import weka.core.Capabilities; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.Option; |
---|
| 29 | import weka.core.OptionHandler; |
---|
| 30 | import weka.core.RevisionUtils; |
---|
| 31 | import weka.core.Utils; |
---|
| 32 | import weka.core.WeightedInstancesHandler; |
---|
| 33 | import weka.core.Capabilities.Capability; |
---|
| 34 | import weka.estimators.DiscreteEstimator; |
---|
| 35 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 36 | |
---|
| 37 | import java.util.Enumeration; |
---|
| 38 | import java.util.Vector; |
---|
| 39 | |
---|
| 40 | /** |
---|
| 41 | <!-- globalinfo-start --> |
---|
| 42 | * Class for wrapping a Clusterer to make it return a distribution and density. Fits normal distributions and discrete distributions within each cluster produced by the wrapped clusterer. Supports the NumberOfClustersRequestable interface only if the wrapped Clusterer does. |
---|
| 43 | * <p/> |
---|
| 44 | <!-- globalinfo-end --> |
---|
| 45 | * |
---|
| 46 | <!-- options-start --> |
---|
| 47 | * Valid options are: <p/> |
---|
| 48 | * |
---|
| 49 | * <pre> -M <num> |
---|
| 50 | * minimum allowable standard deviation for normal density computation |
---|
| 51 | * (default 1e-6)</pre> |
---|
| 52 | * |
---|
| 53 | * <pre> -W <clusterer name> |
---|
| 54 | * Clusterer to wrap. |
---|
| 55 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
| 56 | * |
---|
| 57 | * <pre> |
---|
| 58 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
| 59 | * </pre> |
---|
| 60 | * |
---|
| 61 | * <pre> -N <num> |
---|
| 62 | * number of clusters. |
---|
| 63 | * (default 2).</pre> |
---|
| 64 | * |
---|
| 65 | * <pre> -V |
---|
| 66 | * Display std. deviations for centroids. |
---|
| 67 | * </pre> |
---|
| 68 | * |
---|
| 69 | * <pre> -M |
---|
| 70 | * Replace missing values with mean/mode. |
---|
| 71 | * </pre> |
---|
| 72 | * |
---|
| 73 | * <pre> -S <num> |
---|
| 74 | * Random number seed. |
---|
| 75 | * (default 10)</pre> |
---|
| 76 | * |
---|
| 77 | <!-- options-end --> |
---|
| 78 | * |
---|
| 79 | * Options after "--" are passed on to the base clusterer. |
---|
| 80 | * |
---|
| 81 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
| 82 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
| 83 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 84 | * @version $Revision: 5488 $ |
---|
| 85 | */ |
---|
| 86 | public class MakeDensityBasedClusterer |
---|
| 87 | extends AbstractDensityBasedClusterer |
---|
| 88 | implements NumberOfClustersRequestable, |
---|
| 89 | OptionHandler, |
---|
| 90 | WeightedInstancesHandler { |
---|
| 91 | |
---|
| 92 | /** for serialization */ |
---|
| 93 | static final long serialVersionUID = -5643302427972186631L; |
---|
| 94 | |
---|
| 95 | /** holds training instances header information */ |
---|
| 96 | private Instances m_theInstances; |
---|
| 97 | /** prior probabilities for the fitted clusters */ |
---|
| 98 | private double [] m_priors; |
---|
| 99 | /** normal distributions fitted to each numeric attribute in each cluster */ |
---|
| 100 | private double [][][] m_modelNormal; |
---|
| 101 | /** discrete distributions fitted to each discrete attribute in each cluster */ |
---|
| 102 | private DiscreteEstimator [][] m_model; |
---|
| 103 | /** default minimum standard deviation */ |
---|
| 104 | private double m_minStdDev = 1e-6; |
---|
| 105 | /** The clusterer being wrapped */ |
---|
| 106 | private Clusterer m_wrappedClusterer = new weka.clusterers.SimpleKMeans(); |
---|
| 107 | /** globally replace missing values */ |
---|
| 108 | private ReplaceMissingValues m_replaceMissing; |
---|
| 109 | |
---|
| 110 | /** |
---|
| 111 | * Default constructor. |
---|
| 112 | * |
---|
| 113 | */ |
---|
| 114 | public MakeDensityBasedClusterer() { |
---|
| 115 | super(); |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | /** |
---|
| 119 | * Contructs a MakeDensityBasedClusterer wrapping a given Clusterer. |
---|
| 120 | * |
---|
| 121 | * @param toWrap the clusterer to wrap around |
---|
| 122 | */ |
---|
| 123 | public MakeDensityBasedClusterer(Clusterer toWrap) { |
---|
| 124 | |
---|
| 125 | setClusterer(toWrap); |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | /** |
---|
| 129 | * Returns a string describing classifier |
---|
| 130 | * @return a description suitable for |
---|
| 131 | * displaying in the explorer/experimenter gui |
---|
| 132 | */ |
---|
| 133 | public String globalInfo() { |
---|
| 134 | return |
---|
| 135 | "Class for wrapping a Clusterer to make it return a distribution " |
---|
| 136 | + "and density. Fits normal distributions and discrete distributions " |
---|
| 137 | + "within each cluster produced by the wrapped clusterer. Supports the " |
---|
| 138 | + "NumberOfClustersRequestable interface only if the wrapped Clusterer " |
---|
| 139 | + "does."; |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | /** |
---|
| 143 | * String describing default clusterer. |
---|
| 144 | * |
---|
| 145 | * @return the default clusterer classname |
---|
| 146 | */ |
---|
| 147 | protected String defaultClustererString() { |
---|
| 148 | return SimpleKMeans.class.getName(); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Set the number of clusters to generate. |
---|
| 153 | * |
---|
| 154 | * @param n the number of clusters to generate |
---|
| 155 | * @throws Exception if the wrapped clusterer has not been set, or if |
---|
| 156 | * the wrapped clusterer does not implement this facility. |
---|
| 157 | */ |
---|
| 158 | public void setNumClusters(int n) throws Exception { |
---|
| 159 | if (m_wrappedClusterer == null) { |
---|
| 160 | throw new Exception("Can't set the number of clusters to generate - " |
---|
| 161 | +"no clusterer has been set yet."); |
---|
| 162 | } |
---|
| 163 | if (!(m_wrappedClusterer instanceof NumberOfClustersRequestable)) { |
---|
| 164 | throw new Exception("Can't set the number of clusters to generate - " |
---|
| 165 | +"wrapped clusterer does not support this facility."); |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | ((NumberOfClustersRequestable)m_wrappedClusterer).setNumClusters(n); |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * Returns default capabilities of the clusterer (i.e., of the wrapper |
---|
| 173 | * clusterer). |
---|
| 174 | * |
---|
| 175 | * @return the capabilities of this clusterer |
---|
| 176 | */ |
---|
| 177 | public Capabilities getCapabilities() { |
---|
| 178 | if (m_wrappedClusterer != null) { |
---|
| 179 | return m_wrappedClusterer.getCapabilities(); |
---|
| 180 | } |
---|
| 181 | Capabilities result = super.getCapabilities(); |
---|
| 182 | result.disableAll(); |
---|
| 183 | result.enable(Capability.NO_CLASS); |
---|
| 184 | |
---|
| 185 | return result; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Builds a clusterer for a set of instances. |
---|
| 190 | * |
---|
| 191 | * @param data the instances to train the clusterer with |
---|
| 192 | * @throws Exception if the clusterer hasn't been set or something goes wrong |
---|
| 193 | */ |
---|
| 194 | public void buildClusterer(Instances data) throws Exception { |
---|
| 195 | // can clusterer handle the data? |
---|
| 196 | getCapabilities().testWithFail(data); |
---|
| 197 | |
---|
| 198 | m_replaceMissing = new ReplaceMissingValues(); |
---|
| 199 | m_replaceMissing.setInputFormat(data); |
---|
| 200 | data = weka.filters.Filter.useFilter(data, m_replaceMissing); |
---|
| 201 | |
---|
| 202 | m_theInstances = new Instances(data, 0); |
---|
| 203 | if (m_wrappedClusterer == null) { |
---|
| 204 | throw new Exception("No clusterer has been set"); |
---|
| 205 | } |
---|
| 206 | m_wrappedClusterer.buildClusterer(data); |
---|
| 207 | m_model = |
---|
| 208 | new DiscreteEstimator[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; |
---|
| 209 | m_modelNormal = |
---|
| 210 | new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()][2]; |
---|
| 211 | double[][] weights = new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; |
---|
| 212 | m_priors = new double[m_wrappedClusterer.numberOfClusters()]; |
---|
| 213 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
| 214 | m_priors[i] = 1.0; // laplace correction |
---|
| 215 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 216 | if (data.attribute(j).isNominal()) { |
---|
| 217 | m_model[i][j] = new DiscreteEstimator(data.attribute(j).numValues(), |
---|
| 218 | true); |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | Instance inst = null; |
---|
| 224 | |
---|
| 225 | // Compute mean, etc. |
---|
| 226 | int[] clusterIndex = new int[data.numInstances()]; |
---|
| 227 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 228 | inst = data.instance(i); |
---|
| 229 | int cluster = m_wrappedClusterer.clusterInstance(inst); |
---|
| 230 | m_priors[cluster] += inst.weight(); |
---|
| 231 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 232 | if (!inst.isMissing(j)) { |
---|
| 233 | if (data.attribute(j).isNominal()) { |
---|
| 234 | m_model[cluster][j].addValue(inst.value(j),inst.weight()); |
---|
| 235 | } else { |
---|
| 236 | m_modelNormal[cluster][j][0] += inst.weight() * inst.value(j); |
---|
| 237 | weights[cluster][j] += inst.weight(); |
---|
| 238 | } |
---|
| 239 | } |
---|
| 240 | } |
---|
| 241 | clusterIndex[i] = cluster; |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 245 | if (data.attribute(j).isNumeric()) { |
---|
| 246 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
| 247 | if (weights[i][j] > 0) { |
---|
| 248 | m_modelNormal[i][j][0] /= weights[i][j]; |
---|
| 249 | } |
---|
| 250 | } |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | // Compute standard deviations |
---|
| 255 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 256 | inst = data.instance(i); |
---|
| 257 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 258 | if (!inst.isMissing(j)) { |
---|
| 259 | if (data.attribute(j).isNumeric()) { |
---|
| 260 | double diff = m_modelNormal[clusterIndex[i]][j][0] - inst.value(j); |
---|
| 261 | m_modelNormal[clusterIndex[i]][j][1] += inst.weight() * diff * diff; |
---|
| 262 | } |
---|
| 263 | } |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
| 268 | if (data.attribute(j).isNumeric()) { |
---|
| 269 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
| 270 | if (weights[i][j] > 0) { |
---|
| 271 | m_modelNormal[i][j][1] = |
---|
| 272 | Math.sqrt(m_modelNormal[i][j][1] / weights[i][j]); |
---|
| 273 | } else if (weights[i][j] <= 0) { |
---|
| 274 | m_modelNormal[i][j][1] = Double.MAX_VALUE; |
---|
| 275 | } |
---|
| 276 | if (m_modelNormal[i][j][1] <= m_minStdDev) { |
---|
| 277 | m_modelNormal[i][j][1] = data.attributeStats(j).numericStats.stdDev; |
---|
| 278 | if (m_modelNormal[i][j][1] <= m_minStdDev) { |
---|
| 279 | m_modelNormal[i][j][1] = m_minStdDev; |
---|
| 280 | } |
---|
| 281 | } |
---|
| 282 | } |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | Utils.normalize(m_priors); |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | /** |
---|
| 290 | * Returns the cluster priors. |
---|
| 291 | * |
---|
| 292 | * @return the cluster priors |
---|
| 293 | */ |
---|
| 294 | public double[] clusterPriors() { |
---|
| 295 | |
---|
| 296 | double[] n = new double[m_priors.length]; |
---|
| 297 | |
---|
| 298 | System.arraycopy(m_priors, 0, n, 0, n.length); |
---|
| 299 | return n; |
---|
| 300 | } |
---|
| 301 | |
---|
| 302 | /** |
---|
| 303 | * Computes the log of the conditional density (per cluster) for a given instance. |
---|
| 304 | * |
---|
| 305 | * @param inst the instance to compute the density for |
---|
| 306 | * @return an array containing the estimated densities |
---|
| 307 | * @throws Exception if the density could not be computed |
---|
| 308 | * successfully |
---|
| 309 | */ |
---|
| 310 | public double[] logDensityPerClusterForInstance(Instance inst) throws Exception { |
---|
| 311 | |
---|
| 312 | int i, j; |
---|
| 313 | double logprob; |
---|
| 314 | double[] wghts = new double[m_wrappedClusterer.numberOfClusters()]; |
---|
| 315 | |
---|
| 316 | m_replaceMissing.input(inst); |
---|
| 317 | inst = m_replaceMissing.output(); |
---|
| 318 | |
---|
| 319 | for (i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { |
---|
| 320 | logprob = 0; |
---|
| 321 | for (j = 0; j < inst.numAttributes(); j++) { |
---|
| 322 | if (!inst.isMissing(j)) { |
---|
| 323 | if (inst.attribute(j).isNominal()) { |
---|
| 324 | logprob += Math.log(m_model[i][j].getProbability(inst.value(j))); |
---|
| 325 | } else { // numeric attribute |
---|
| 326 | logprob += logNormalDens(inst.value(j), |
---|
| 327 | m_modelNormal[i][j][0], |
---|
| 328 | m_modelNormal[i][j][1]); |
---|
| 329 | } |
---|
| 330 | } |
---|
| 331 | } |
---|
| 332 | wghts[i] = logprob; |
---|
| 333 | } |
---|
| 334 | return wghts; |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** Constant for normal distribution. */ |
---|
| 338 | private static double m_normConst = 0.5 * Math.log(2 * Math.PI); |
---|
| 339 | |
---|
| 340 | /** |
---|
| 341 | * Density function of normal distribution. |
---|
| 342 | * @param x input value |
---|
| 343 | * @param mean mean of distribution |
---|
| 344 | * @param stdDev standard deviation of distribution |
---|
| 345 | * @return the density |
---|
| 346 | */ |
---|
| 347 | private double logNormalDens (double x, double mean, double stdDev) { |
---|
| 348 | |
---|
| 349 | double diff = x - mean; |
---|
| 350 | |
---|
| 351 | return - (diff * diff / (2 * stdDev * stdDev)) - m_normConst - Math.log(stdDev); |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | /** |
---|
| 355 | * Returns the number of clusters. |
---|
| 356 | * |
---|
| 357 | * @return the number of clusters generated for a training dataset. |
---|
| 358 | * @throws Exception if number of clusters could not be returned successfully |
---|
| 359 | */ |
---|
| 360 | public int numberOfClusters() throws Exception { |
---|
| 361 | |
---|
| 362 | return m_wrappedClusterer.numberOfClusters(); |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | /** |
---|
| 366 | * Returns a description of the clusterer. |
---|
| 367 | * |
---|
| 368 | * @return a string containing a description of the clusterer |
---|
| 369 | */ |
---|
| 370 | public String toString() { |
---|
| 371 | if (m_priors == null) { |
---|
| 372 | return "No clusterer built yet!"; |
---|
| 373 | } |
---|
| 374 | |
---|
| 375 | StringBuffer text = new StringBuffer(); |
---|
| 376 | text.append("MakeDensityBasedClusterer: \n\nWrapped clusterer: " |
---|
| 377 | + m_wrappedClusterer.toString()); |
---|
| 378 | |
---|
| 379 | text.append("\nFitted estimators (with ML estimates of variance):\n"); |
---|
| 380 | |
---|
| 381 | for (int j = 0; j < m_priors.length; j++) { |
---|
| 382 | text.append("\nCluster: " + j + " Prior probability: " |
---|
| 383 | + Utils.doubleToString(m_priors[j], 4) + "\n\n"); |
---|
| 384 | |
---|
| 385 | for (int i = 0; i < m_model[0].length; i++) { |
---|
| 386 | text.append("Attribute: " + m_theInstances.attribute(i).name() + "\n"); |
---|
| 387 | |
---|
| 388 | if (m_theInstances.attribute(i).isNominal()) { |
---|
| 389 | if (m_model[j][i] != null) { |
---|
| 390 | text.append(m_model[j][i].toString()); |
---|
| 391 | } |
---|
| 392 | } |
---|
| 393 | else { |
---|
| 394 | text.append("Normal Distribution. Mean = " |
---|
| 395 | + Utils.doubleToString(m_modelNormal[j][i][0], 4) |
---|
| 396 | + " StdDev = " |
---|
| 397 | + Utils.doubleToString(m_modelNormal[j][i][1], 4) |
---|
| 398 | + "\n"); |
---|
| 399 | } |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | return text.toString(); |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | /** |
---|
| 407 | * Returns the tip text for this property |
---|
| 408 | * @return tip text for this property suitable for |
---|
| 409 | * displaying in the explorer/experimenter gui |
---|
| 410 | */ |
---|
| 411 | public String clustererTipText() { |
---|
| 412 | return "the clusterer to wrap"; |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | /** |
---|
| 416 | * Sets the clusterer to wrap. |
---|
| 417 | * |
---|
| 418 | * @param toWrap the clusterer |
---|
| 419 | */ |
---|
| 420 | public void setClusterer(Clusterer toWrap) { |
---|
| 421 | |
---|
| 422 | m_wrappedClusterer = toWrap; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | /** |
---|
| 426 | * Gets the clusterer being wrapped. |
---|
| 427 | * |
---|
| 428 | * @return the clusterer |
---|
| 429 | */ |
---|
| 430 | public Clusterer getClusterer() { |
---|
| 431 | |
---|
| 432 | return m_wrappedClusterer; |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * Returns the tip text for this property |
---|
| 437 | * @return tip text for this property suitable for |
---|
| 438 | * displaying in the explorer/experimenter gui |
---|
| 439 | */ |
---|
| 440 | public String minStdDevTipText() { |
---|
| 441 | return "set minimum allowable standard deviation"; |
---|
| 442 | } |
---|
| 443 | |
---|
| 444 | /** |
---|
| 445 | * Set the minimum value for standard deviation when calculating |
---|
| 446 | * normal density. Reducing this value can help prevent arithmetic |
---|
| 447 | * overflow resulting from multiplying large densities (arising from small |
---|
| 448 | * standard deviations) when there are many singleton or near singleton |
---|
| 449 | * values. |
---|
| 450 | * @param m minimum value for standard deviation |
---|
| 451 | */ |
---|
| 452 | public void setMinStdDev(double m) { |
---|
| 453 | m_minStdDev = m; |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | /** |
---|
| 457 | * Get the minimum allowable standard deviation. |
---|
| 458 | * @return the minumum allowable standard deviation |
---|
| 459 | */ |
---|
| 460 | public double getMinStdDev() { |
---|
| 461 | return m_minStdDev; |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | /** |
---|
| 465 | * Returns an enumeration describing the available options.. |
---|
| 466 | * |
---|
| 467 | * @return an enumeration of all the available options. |
---|
| 468 | */ |
---|
| 469 | public Enumeration listOptions() { |
---|
| 470 | Vector result = new Vector(); |
---|
| 471 | |
---|
| 472 | result.addElement(new Option( |
---|
| 473 | "\tminimum allowable standard deviation for normal density computation " |
---|
| 474 | +"\n\t(default 1e-6)" |
---|
| 475 | ,"M",1,"-M <num>")); |
---|
| 476 | |
---|
| 477 | result.addElement(new Option( |
---|
| 478 | "\tClusterer to wrap.\n" |
---|
| 479 | + "\t(default " + defaultClustererString() + ")", |
---|
| 480 | "W", 1,"-W <clusterer name>")); |
---|
| 481 | |
---|
| 482 | if ((m_wrappedClusterer != null) && |
---|
| 483 | (m_wrappedClusterer instanceof OptionHandler)) { |
---|
| 484 | result.addElement(new Option( |
---|
| 485 | "", |
---|
| 486 | "", 0, "\nOptions specific to clusterer " |
---|
| 487 | + m_wrappedClusterer.getClass().getName() + ":")); |
---|
| 488 | Enumeration enu = ((OptionHandler)m_wrappedClusterer).listOptions(); |
---|
| 489 | while (enu.hasMoreElements()) { |
---|
| 490 | result.addElement(enu.nextElement()); |
---|
| 491 | } |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | return result.elements(); |
---|
| 495 | } |
---|
| 496 | |
---|
| 497 | /** |
---|
| 498 | * Parses a given list of options. <p/> |
---|
| 499 | * |
---|
| 500 | <!-- options-start --> |
---|
| 501 | * Valid options are: <p/> |
---|
| 502 | * |
---|
| 503 | * <pre> -M <num> |
---|
| 504 | * minimum allowable standard deviation for normal density computation |
---|
| 505 | * (default 1e-6)</pre> |
---|
| 506 | * |
---|
| 507 | * <pre> -W <clusterer name> |
---|
| 508 | * Clusterer to wrap. |
---|
| 509 | * (default weka.clusterers.SimpleKMeans)</pre> |
---|
| 510 | * |
---|
| 511 | * <pre> |
---|
| 512 | * Options specific to clusterer weka.clusterers.SimpleKMeans: |
---|
| 513 | * </pre> |
---|
| 514 | * |
---|
| 515 | * <pre> -N <num> |
---|
| 516 | * number of clusters. |
---|
| 517 | * (default 2).</pre> |
---|
| 518 | * |
---|
| 519 | * <pre> -V |
---|
| 520 | * Display std. deviations for centroids. |
---|
| 521 | * </pre> |
---|
| 522 | * |
---|
| 523 | * <pre> -M |
---|
| 524 | * Replace missing values with mean/mode. |
---|
| 525 | * </pre> |
---|
| 526 | * |
---|
| 527 | * <pre> -S <num> |
---|
| 528 | * Random number seed. |
---|
| 529 | * (default 10)</pre> |
---|
| 530 | * |
---|
| 531 | <!-- options-end --> |
---|
| 532 | * |
---|
| 533 | * @param options the list of options as an array of strings |
---|
| 534 | * @throws Exception if an option is not supported |
---|
| 535 | */ |
---|
| 536 | public void setOptions(String[] options) throws Exception { |
---|
| 537 | |
---|
| 538 | String optionString = Utils.getOption('M', options); |
---|
| 539 | if (optionString.length() != 0) |
---|
| 540 | setMinStdDev((new Double(optionString)).doubleValue()); |
---|
| 541 | else |
---|
| 542 | setMinStdDev(1e-6); |
---|
| 543 | |
---|
| 544 | String wString = Utils.getOption('W', options); |
---|
| 545 | if (wString.length() == 0) |
---|
| 546 | wString = defaultClustererString(); |
---|
| 547 | setClusterer(AbstractClusterer.forName(wString, Utils.partitionOptions(options))); |
---|
| 548 | } |
---|
| 549 | |
---|
| 550 | /** |
---|
| 551 | * Gets the current settings of the clusterer. |
---|
| 552 | * |
---|
| 553 | * @return an array of strings suitable for passing to setOptions() |
---|
| 554 | */ |
---|
| 555 | public String[] getOptions() { |
---|
| 556 | |
---|
| 557 | String [] clustererOptions = new String [0]; |
---|
| 558 | if ((m_wrappedClusterer != null) && |
---|
| 559 | (m_wrappedClusterer instanceof OptionHandler)) { |
---|
| 560 | clustererOptions = ((OptionHandler)m_wrappedClusterer).getOptions(); |
---|
| 561 | } |
---|
| 562 | String [] options = new String [clustererOptions.length + 5]; |
---|
| 563 | int current = 0; |
---|
| 564 | |
---|
| 565 | options[current++] = "-M"; |
---|
| 566 | options[current++] = ""+getMinStdDev(); |
---|
| 567 | |
---|
| 568 | if (getClusterer() != null) { |
---|
| 569 | options[current++] = "-W"; |
---|
| 570 | options[current++] = getClusterer().getClass().getName(); |
---|
| 571 | } |
---|
| 572 | options[current++] = "--"; |
---|
| 573 | |
---|
| 574 | System.arraycopy(clustererOptions, 0, options, current, |
---|
| 575 | clustererOptions.length); |
---|
| 576 | current += clustererOptions.length; |
---|
| 577 | while (current < options.length) { |
---|
| 578 | options[current++] = ""; |
---|
| 579 | } |
---|
| 580 | return options; |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | /** |
---|
| 584 | * Returns the revision string. |
---|
| 585 | * |
---|
| 586 | * @return the revision |
---|
| 587 | */ |
---|
| 588 | public String getRevision() { |
---|
| 589 | return RevisionUtils.extract("$Revision: 5488 $"); |
---|
| 590 | } |
---|
| 591 | |
---|
| 592 | /** |
---|
| 593 | * Main method for testing this class. |
---|
| 594 | * |
---|
| 595 | * @param argv the options |
---|
| 596 | */ |
---|
| 597 | public static void main(String [] argv) { |
---|
| 598 | runClusterer(new MakeDensityBasedClusterer(), argv); |
---|
| 599 | } |
---|
| 600 | } |
---|
| 601 | |
---|