| [29] | 1 | /* | 
|---|
|  | 2 | *    This program is free software; you can redistribute it and/or modify | 
|---|
|  | 3 | *    it under the terms of the GNU General Public License as published by | 
|---|
|  | 4 | *    the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 5 | *    (at your option) any later version. | 
|---|
|  | 6 | * | 
|---|
|  | 7 | *    This program is distributed in the hope that it will be useful, | 
|---|
|  | 8 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 9 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 10 | *    GNU General Public License for more details. | 
|---|
|  | 11 | * | 
|---|
|  | 12 | *    You should have received a copy of the GNU General Public License | 
|---|
|  | 13 | *    along with this program; if not, write to the Free Software | 
|---|
|  | 14 | *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 15 | */ | 
|---|
|  | 16 |  | 
|---|
|  | 17 | /* | 
|---|
|  | 18 | *    MakeDensityBasedClusterer.java | 
|---|
|  | 19 | *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand | 
|---|
|  | 20 | * | 
|---|
|  | 21 | */ | 
|---|
|  | 22 |  | 
|---|
|  | 23 | package weka.clusterers; | 
|---|
|  | 24 |  | 
|---|
|  | 25 | import weka.core.Capabilities; | 
|---|
|  | 26 | import weka.core.Instance; | 
|---|
|  | 27 | import weka.core.Instances; | 
|---|
|  | 28 | import weka.core.Option; | 
|---|
|  | 29 | import weka.core.OptionHandler; | 
|---|
|  | 30 | import weka.core.RevisionUtils; | 
|---|
|  | 31 | import weka.core.Utils; | 
|---|
|  | 32 | import weka.core.WeightedInstancesHandler; | 
|---|
|  | 33 | import weka.core.Capabilities.Capability; | 
|---|
|  | 34 | import weka.estimators.DiscreteEstimator; | 
|---|
|  | 35 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; | 
|---|
|  | 36 |  | 
|---|
|  | 37 | import java.util.Enumeration; | 
|---|
|  | 38 | import java.util.Vector; | 
|---|
|  | 39 |  | 
|---|
|  | 40 | /** | 
|---|
|  | 41 | <!-- globalinfo-start --> | 
|---|
|  | 42 | * Class for wrapping a Clusterer to make it return a distribution and density. Fits normal distributions and discrete distributions within each cluster produced by the wrapped clusterer. Supports the NumberOfClustersRequestable interface only if the wrapped Clusterer does. | 
|---|
|  | 43 | * <p/> | 
|---|
|  | 44 | <!-- globalinfo-end --> | 
|---|
|  | 45 | * | 
|---|
|  | 46 | <!-- options-start --> | 
|---|
|  | 47 | * Valid options are: <p/> | 
|---|
|  | 48 | * | 
|---|
|  | 49 | * <pre> -M <num> | 
|---|
|  | 50 | *  minimum allowable standard deviation for normal density computation | 
|---|
|  | 51 | *  (default 1e-6)</pre> | 
|---|
|  | 52 | * | 
|---|
|  | 53 | * <pre> -W <clusterer name> | 
|---|
|  | 54 | *  Clusterer to wrap. | 
|---|
|  | 55 | *  (default weka.clusterers.SimpleKMeans)</pre> | 
|---|
|  | 56 | * | 
|---|
|  | 57 | * <pre> | 
|---|
|  | 58 | * Options specific to clusterer weka.clusterers.SimpleKMeans: | 
|---|
|  | 59 | * </pre> | 
|---|
|  | 60 | * | 
|---|
|  | 61 | * <pre> -N <num> | 
|---|
|  | 62 | *  number of clusters. | 
|---|
|  | 63 | *  (default 2).</pre> | 
|---|
|  | 64 | * | 
|---|
|  | 65 | * <pre> -V | 
|---|
|  | 66 | *  Display std. deviations for centroids. | 
|---|
|  | 67 | * </pre> | 
|---|
|  | 68 | * | 
|---|
|  | 69 | * <pre> -M | 
|---|
|  | 70 | *  Replace missing values with mean/mode. | 
|---|
|  | 71 | * </pre> | 
|---|
|  | 72 | * | 
|---|
|  | 73 | * <pre> -S <num> | 
|---|
|  | 74 | *  Random number seed. | 
|---|
|  | 75 | *  (default 10)</pre> | 
|---|
|  | 76 | * | 
|---|
|  | 77 | <!-- options-end --> | 
|---|
|  | 78 | * | 
|---|
|  | 79 | * Options after "--" are passed on to the base clusterer. | 
|---|
|  | 80 | * | 
|---|
|  | 81 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) | 
|---|
|  | 82 | * @author Mark Hall (mhall@cs.waikato.ac.nz) | 
|---|
|  | 83 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) | 
|---|
|  | 84 | * @version $Revision: 5488 $ | 
|---|
|  | 85 | */ | 
|---|
|  | 86 | public class MakeDensityBasedClusterer | 
|---|
|  | 87 | extends AbstractDensityBasedClusterer | 
|---|
|  | 88 | implements NumberOfClustersRequestable, | 
|---|
|  | 89 | OptionHandler, | 
|---|
|  | 90 | WeightedInstancesHandler { | 
|---|
|  | 91 |  | 
|---|
|  | 92 | /** for serialization */ | 
|---|
|  | 93 | static final long serialVersionUID = -5643302427972186631L; | 
|---|
|  | 94 |  | 
|---|
|  | 95 | /** holds training instances header information */ | 
|---|
|  | 96 | private Instances m_theInstances; | 
|---|
|  | 97 | /** prior probabilities for the fitted clusters */ | 
|---|
|  | 98 | private double [] m_priors; | 
|---|
|  | 99 | /** normal distributions fitted to each numeric attribute in each cluster */ | 
|---|
|  | 100 | private double [][][] m_modelNormal; | 
|---|
|  | 101 | /** discrete distributions fitted to each discrete attribute in each cluster */ | 
|---|
|  | 102 | private DiscreteEstimator [][] m_model; | 
|---|
|  | 103 | /** default minimum standard deviation */ | 
|---|
|  | 104 | private double m_minStdDev = 1e-6; | 
|---|
|  | 105 | /** The clusterer being wrapped */ | 
|---|
|  | 106 | private Clusterer m_wrappedClusterer = new weka.clusterers.SimpleKMeans(); | 
|---|
|  | 107 | /** globally replace missing values */ | 
|---|
|  | 108 | private ReplaceMissingValues m_replaceMissing; | 
|---|
|  | 109 |  | 
|---|
|  | 110 | /** | 
|---|
|  | 111 | * Default constructor. | 
|---|
|  | 112 | * | 
|---|
|  | 113 | */ | 
|---|
|  | 114 | public MakeDensityBasedClusterer() { | 
|---|
|  | 115 | super(); | 
|---|
|  | 116 | } | 
|---|
|  | 117 |  | 
|---|
|  | 118 | /** | 
|---|
|  | 119 | * Contructs a MakeDensityBasedClusterer wrapping a given Clusterer. | 
|---|
|  | 120 | * | 
|---|
|  | 121 | * @param toWrap the clusterer to wrap around | 
|---|
|  | 122 | */ | 
|---|
|  | 123 | public MakeDensityBasedClusterer(Clusterer toWrap) { | 
|---|
|  | 124 |  | 
|---|
|  | 125 | setClusterer(toWrap); | 
|---|
|  | 126 | } | 
|---|
|  | 127 |  | 
|---|
|  | 128 | /** | 
|---|
|  | 129 | * Returns a string describing classifier | 
|---|
|  | 130 | * @return a description suitable for | 
|---|
|  | 131 | * displaying in the explorer/experimenter gui | 
|---|
|  | 132 | */ | 
|---|
|  | 133 | public String globalInfo() { | 
|---|
|  | 134 | return | 
|---|
|  | 135 | "Class for wrapping a Clusterer to make it return a distribution " | 
|---|
|  | 136 | + "and density. Fits normal distributions and discrete distributions " | 
|---|
|  | 137 | + "within each cluster produced by the wrapped clusterer. Supports the " | 
|---|
|  | 138 | + "NumberOfClustersRequestable interface only if the wrapped Clusterer " | 
|---|
|  | 139 | + "does."; | 
|---|
|  | 140 | } | 
|---|
|  | 141 |  | 
|---|
|  | 142 | /** | 
|---|
|  | 143 | * String describing default clusterer. | 
|---|
|  | 144 | * | 
|---|
|  | 145 | * @return            the default clusterer classname | 
|---|
|  | 146 | */ | 
|---|
|  | 147 | protected String defaultClustererString() { | 
|---|
|  | 148 | return SimpleKMeans.class.getName(); | 
|---|
|  | 149 | } | 
|---|
|  | 150 |  | 
|---|
|  | 151 | /** | 
|---|
|  | 152 | * Set the number of clusters to generate. | 
|---|
|  | 153 | * | 
|---|
|  | 154 | * @param n the number of clusters to generate | 
|---|
|  | 155 | * @throws Exception if the wrapped clusterer has not been set, or if | 
|---|
|  | 156 | * the wrapped clusterer does not implement this facility. | 
|---|
|  | 157 | */ | 
|---|
|  | 158 | public void setNumClusters(int n) throws Exception { | 
|---|
|  | 159 | if (m_wrappedClusterer == null) { | 
|---|
|  | 160 | throw new Exception("Can't set the number of clusters to generate - " | 
|---|
|  | 161 | +"no clusterer has been set yet."); | 
|---|
|  | 162 | } | 
|---|
|  | 163 | if (!(m_wrappedClusterer instanceof NumberOfClustersRequestable)) { | 
|---|
|  | 164 | throw new Exception("Can't set the number of clusters to generate - " | 
|---|
|  | 165 | +"wrapped clusterer does not support this facility."); | 
|---|
|  | 166 | } | 
|---|
|  | 167 |  | 
|---|
|  | 168 | ((NumberOfClustersRequestable)m_wrappedClusterer).setNumClusters(n); | 
|---|
|  | 169 | } | 
|---|
|  | 170 |  | 
|---|
|  | 171 | /** | 
|---|
|  | 172 | * Returns default capabilities of the clusterer (i.e., of the wrapper | 
|---|
|  | 173 | * clusterer). | 
|---|
|  | 174 | * | 
|---|
|  | 175 | * @return      the capabilities of this clusterer | 
|---|
|  | 176 | */ | 
|---|
|  | 177 | public Capabilities getCapabilities() { | 
|---|
|  | 178 | if (m_wrappedClusterer != null) { | 
|---|
|  | 179 | return m_wrappedClusterer.getCapabilities(); | 
|---|
|  | 180 | } | 
|---|
|  | 181 | Capabilities result = super.getCapabilities(); | 
|---|
|  | 182 | result.disableAll(); | 
|---|
|  | 183 | result.enable(Capability.NO_CLASS); | 
|---|
|  | 184 |  | 
|---|
|  | 185 | return result; | 
|---|
|  | 186 | } | 
|---|
|  | 187 |  | 
|---|
|  | 188 | /** | 
|---|
|  | 189 | * Builds a clusterer for a set of instances. | 
|---|
|  | 190 | * | 
|---|
|  | 191 | * @param data the instances to train the clusterer with | 
|---|
|  | 192 | * @throws Exception if the clusterer hasn't been set or something goes wrong | 
|---|
|  | 193 | */ | 
|---|
|  | 194 | public void buildClusterer(Instances data) throws Exception { | 
|---|
|  | 195 | // can clusterer handle the data? | 
|---|
|  | 196 | getCapabilities().testWithFail(data); | 
|---|
|  | 197 |  | 
|---|
|  | 198 | m_replaceMissing = new ReplaceMissingValues(); | 
|---|
|  | 199 | m_replaceMissing.setInputFormat(data); | 
|---|
|  | 200 | data = weka.filters.Filter.useFilter(data, m_replaceMissing); | 
|---|
|  | 201 |  | 
|---|
|  | 202 | m_theInstances = new Instances(data, 0); | 
|---|
|  | 203 | if (m_wrappedClusterer == null) { | 
|---|
|  | 204 | throw new Exception("No clusterer has been set"); | 
|---|
|  | 205 | } | 
|---|
|  | 206 | m_wrappedClusterer.buildClusterer(data); | 
|---|
|  | 207 | m_model = | 
|---|
|  | 208 | new DiscreteEstimator[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; | 
|---|
|  | 209 | m_modelNormal = | 
|---|
|  | 210 | new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()][2]; | 
|---|
|  | 211 | double[][] weights =  new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()]; | 
|---|
|  | 212 | m_priors = new double[m_wrappedClusterer.numberOfClusters()]; | 
|---|
|  | 213 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { | 
|---|
|  | 214 | m_priors[i] = 1.0; // laplace correction | 
|---|
|  | 215 | for (int j = 0; j < data.numAttributes(); j++) { | 
|---|
|  | 216 | if (data.attribute(j).isNominal()) { | 
|---|
|  | 217 | m_model[i][j] = new DiscreteEstimator(data.attribute(j).numValues(), | 
|---|
|  | 218 | true); | 
|---|
|  | 219 | } | 
|---|
|  | 220 | } | 
|---|
|  | 221 | } | 
|---|
|  | 222 |  | 
|---|
|  | 223 | Instance inst = null; | 
|---|
|  | 224 |  | 
|---|
|  | 225 | // Compute mean, etc. | 
|---|
|  | 226 | int[] clusterIndex = new int[data.numInstances()]; | 
|---|
|  | 227 | for (int i = 0; i < data.numInstances(); i++) { | 
|---|
|  | 228 | inst = data.instance(i); | 
|---|
|  | 229 | int cluster = m_wrappedClusterer.clusterInstance(inst); | 
|---|
|  | 230 | m_priors[cluster] += inst.weight(); | 
|---|
|  | 231 | for (int j = 0; j < data.numAttributes(); j++) { | 
|---|
|  | 232 | if (!inst.isMissing(j)) { | 
|---|
|  | 233 | if (data.attribute(j).isNominal()) { | 
|---|
|  | 234 | m_model[cluster][j].addValue(inst.value(j),inst.weight()); | 
|---|
|  | 235 | } else { | 
|---|
|  | 236 | m_modelNormal[cluster][j][0] += inst.weight() * inst.value(j); | 
|---|
|  | 237 | weights[cluster][j] += inst.weight(); | 
|---|
|  | 238 | } | 
|---|
|  | 239 | } | 
|---|
|  | 240 | } | 
|---|
|  | 241 | clusterIndex[i] = cluster; | 
|---|
|  | 242 | } | 
|---|
|  | 243 |  | 
|---|
|  | 244 | for (int j = 0; j < data.numAttributes(); j++) { | 
|---|
|  | 245 | if (data.attribute(j).isNumeric()) { | 
|---|
|  | 246 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { | 
|---|
|  | 247 | if (weights[i][j] > 0) { | 
|---|
|  | 248 | m_modelNormal[i][j][0] /= weights[i][j]; | 
|---|
|  | 249 | } | 
|---|
|  | 250 | } | 
|---|
|  | 251 | } | 
|---|
|  | 252 | } | 
|---|
|  | 253 |  | 
|---|
|  | 254 | // Compute standard deviations | 
|---|
|  | 255 | for (int i = 0; i < data.numInstances(); i++) { | 
|---|
|  | 256 | inst = data.instance(i); | 
|---|
|  | 257 | for (int j = 0; j < data.numAttributes(); j++) { | 
|---|
|  | 258 | if (!inst.isMissing(j)) { | 
|---|
|  | 259 | if (data.attribute(j).isNumeric()) { | 
|---|
|  | 260 | double diff = m_modelNormal[clusterIndex[i]][j][0] - inst.value(j); | 
|---|
|  | 261 | m_modelNormal[clusterIndex[i]][j][1] += inst.weight() * diff * diff; | 
|---|
|  | 262 | } | 
|---|
|  | 263 | } | 
|---|
|  | 264 | } | 
|---|
|  | 265 | } | 
|---|
|  | 266 |  | 
|---|
|  | 267 | for (int j = 0; j < data.numAttributes(); j++) { | 
|---|
|  | 268 | if (data.attribute(j).isNumeric()) { | 
|---|
|  | 269 | for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { | 
|---|
|  | 270 | if (weights[i][j] > 0) { | 
|---|
|  | 271 | m_modelNormal[i][j][1] = | 
|---|
|  | 272 | Math.sqrt(m_modelNormal[i][j][1] / weights[i][j]); | 
|---|
|  | 273 | } else if (weights[i][j] <= 0) { | 
|---|
|  | 274 | m_modelNormal[i][j][1] = Double.MAX_VALUE; | 
|---|
|  | 275 | } | 
|---|
|  | 276 | if (m_modelNormal[i][j][1] <= m_minStdDev) { | 
|---|
|  | 277 | m_modelNormal[i][j][1] = data.attributeStats(j).numericStats.stdDev; | 
|---|
|  | 278 | if (m_modelNormal[i][j][1] <= m_minStdDev) { | 
|---|
|  | 279 | m_modelNormal[i][j][1] = m_minStdDev; | 
|---|
|  | 280 | } | 
|---|
|  | 281 | } | 
|---|
|  | 282 | } | 
|---|
|  | 283 | } | 
|---|
|  | 284 | } | 
|---|
|  | 285 |  | 
|---|
|  | 286 | Utils.normalize(m_priors); | 
|---|
|  | 287 | } | 
|---|
|  | 288 |  | 
|---|
|  | 289 | /** | 
|---|
|  | 290 | * Returns the cluster priors. | 
|---|
|  | 291 | * | 
|---|
|  | 292 | * @return the cluster priors | 
|---|
|  | 293 | */ | 
|---|
|  | 294 | public double[] clusterPriors() { | 
|---|
|  | 295 |  | 
|---|
|  | 296 | double[] n = new double[m_priors.length]; | 
|---|
|  | 297 |  | 
|---|
|  | 298 | System.arraycopy(m_priors, 0, n, 0, n.length); | 
|---|
|  | 299 | return n; | 
|---|
|  | 300 | } | 
|---|
|  | 301 |  | 
|---|
|  | 302 | /** | 
|---|
|  | 303 | * Computes the log of the conditional density (per cluster) for a given instance. | 
|---|
|  | 304 | * | 
|---|
|  | 305 | * @param inst the instance to compute the density for | 
|---|
|  | 306 | * @return an array containing the estimated densities | 
|---|
|  | 307 | * @throws Exception if the density could not be computed | 
|---|
|  | 308 | * successfully | 
|---|
|  | 309 | */ | 
|---|
|  | 310 | public double[] logDensityPerClusterForInstance(Instance inst) throws Exception { | 
|---|
|  | 311 |  | 
|---|
|  | 312 | int i, j; | 
|---|
|  | 313 | double logprob; | 
|---|
|  | 314 | double[] wghts = new double[m_wrappedClusterer.numberOfClusters()]; | 
|---|
|  | 315 |  | 
|---|
|  | 316 | m_replaceMissing.input(inst); | 
|---|
|  | 317 | inst = m_replaceMissing.output(); | 
|---|
|  | 318 |  | 
|---|
|  | 319 | for (i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) { | 
|---|
|  | 320 | logprob = 0; | 
|---|
|  | 321 | for (j = 0; j < inst.numAttributes(); j++) { | 
|---|
|  | 322 | if (!inst.isMissing(j)) { | 
|---|
|  | 323 | if (inst.attribute(j).isNominal()) { | 
|---|
|  | 324 | logprob += Math.log(m_model[i][j].getProbability(inst.value(j))); | 
|---|
|  | 325 | } else { // numeric attribute | 
|---|
|  | 326 | logprob += logNormalDens(inst.value(j), | 
|---|
|  | 327 | m_modelNormal[i][j][0], | 
|---|
|  | 328 | m_modelNormal[i][j][1]); | 
|---|
|  | 329 | } | 
|---|
|  | 330 | } | 
|---|
|  | 331 | } | 
|---|
|  | 332 | wghts[i] = logprob; | 
|---|
|  | 333 | } | 
|---|
|  | 334 | return  wghts; | 
|---|
|  | 335 | } | 
|---|
|  | 336 |  | 
|---|
|  | 337 | /** Constant for normal distribution. */ | 
|---|
|  | 338 | private static double m_normConst = 0.5 * Math.log(2 * Math.PI); | 
|---|
|  | 339 |  | 
|---|
|  | 340 | /** | 
|---|
|  | 341 | * Density function of normal distribution. | 
|---|
|  | 342 | * @param x input value | 
|---|
|  | 343 | * @param mean mean of distribution | 
|---|
|  | 344 | * @param stdDev standard deviation of distribution | 
|---|
|  | 345 | * @return the density | 
|---|
|  | 346 | */ | 
|---|
|  | 347 | private double logNormalDens (double x, double mean, double stdDev) { | 
|---|
|  | 348 |  | 
|---|
|  | 349 | double diff = x - mean; | 
|---|
|  | 350 |  | 
|---|
|  | 351 | return - (diff * diff / (2 * stdDev * stdDev))  - m_normConst - Math.log(stdDev); | 
|---|
|  | 352 | } | 
|---|
|  | 353 |  | 
|---|
|  | 354 | /** | 
|---|
|  | 355 | * Returns the number of clusters. | 
|---|
|  | 356 | * | 
|---|
|  | 357 | * @return the number of clusters generated for a training dataset. | 
|---|
|  | 358 | * @throws Exception if number of clusters could not be returned successfully | 
|---|
|  | 359 | */ | 
|---|
|  | 360 | public int numberOfClusters() throws Exception { | 
|---|
|  | 361 |  | 
|---|
|  | 362 | return m_wrappedClusterer.numberOfClusters(); | 
|---|
|  | 363 | } | 
|---|
|  | 364 |  | 
|---|
|  | 365 | /** | 
|---|
|  | 366 | * Returns a description of the clusterer. | 
|---|
|  | 367 | * | 
|---|
|  | 368 | * @return a string containing a description of the clusterer | 
|---|
|  | 369 | */ | 
|---|
|  | 370 | public String toString() { | 
|---|
|  | 371 | if (m_priors == null) { | 
|---|
|  | 372 | return "No clusterer built yet!"; | 
|---|
|  | 373 | } | 
|---|
|  | 374 |  | 
|---|
|  | 375 | StringBuffer text = new StringBuffer(); | 
|---|
|  | 376 | text.append("MakeDensityBasedClusterer: \n\nWrapped clusterer: " | 
|---|
|  | 377 | + m_wrappedClusterer.toString()); | 
|---|
|  | 378 |  | 
|---|
|  | 379 | text.append("\nFitted estimators (with ML estimates of variance):\n"); | 
|---|
|  | 380 |  | 
|---|
|  | 381 | for (int j = 0; j < m_priors.length; j++) { | 
|---|
|  | 382 | text.append("\nCluster: " + j + " Prior probability: " | 
|---|
|  | 383 | + Utils.doubleToString(m_priors[j], 4) + "\n\n"); | 
|---|
|  | 384 |  | 
|---|
|  | 385 | for (int i = 0; i < m_model[0].length; i++) { | 
|---|
|  | 386 | text.append("Attribute: " + m_theInstances.attribute(i).name() + "\n"); | 
|---|
|  | 387 |  | 
|---|
|  | 388 | if (m_theInstances.attribute(i).isNominal()) { | 
|---|
|  | 389 | if (m_model[j][i] != null) { | 
|---|
|  | 390 | text.append(m_model[j][i].toString()); | 
|---|
|  | 391 | } | 
|---|
|  | 392 | } | 
|---|
|  | 393 | else { | 
|---|
|  | 394 | text.append("Normal Distribution. Mean = " | 
|---|
|  | 395 | + Utils.doubleToString(m_modelNormal[j][i][0], 4) | 
|---|
|  | 396 | + " StdDev = " | 
|---|
|  | 397 | + Utils.doubleToString(m_modelNormal[j][i][1], 4) | 
|---|
|  | 398 | + "\n"); | 
|---|
|  | 399 | } | 
|---|
|  | 400 | } | 
|---|
|  | 401 | } | 
|---|
|  | 402 |  | 
|---|
|  | 403 | return  text.toString(); | 
|---|
|  | 404 | } | 
|---|
|  | 405 |  | 
|---|
|  | 406 | /** | 
|---|
|  | 407 | * Returns the tip text for this property | 
|---|
|  | 408 | * @return tip text for this property suitable for | 
|---|
|  | 409 | * displaying in the explorer/experimenter gui | 
|---|
|  | 410 | */ | 
|---|
|  | 411 | public String clustererTipText() { | 
|---|
|  | 412 | return "the clusterer to wrap"; | 
|---|
|  | 413 | } | 
|---|
|  | 414 |  | 
|---|
|  | 415 | /** | 
|---|
|  | 416 | * Sets the clusterer to wrap. | 
|---|
|  | 417 | * | 
|---|
|  | 418 | * @param toWrap the clusterer | 
|---|
|  | 419 | */ | 
|---|
|  | 420 | public void setClusterer(Clusterer toWrap) { | 
|---|
|  | 421 |  | 
|---|
|  | 422 | m_wrappedClusterer = toWrap; | 
|---|
|  | 423 | } | 
|---|
|  | 424 |  | 
|---|
|  | 425 | /** | 
|---|
|  | 426 | * Gets the clusterer being wrapped. | 
|---|
|  | 427 | * | 
|---|
|  | 428 | * @return the clusterer | 
|---|
|  | 429 | */ | 
|---|
|  | 430 | public Clusterer getClusterer() { | 
|---|
|  | 431 |  | 
|---|
|  | 432 | return m_wrappedClusterer; | 
|---|
|  | 433 | } | 
|---|
|  | 434 |  | 
|---|
|  | 435 | /** | 
|---|
|  | 436 | * Returns the tip text for this property | 
|---|
|  | 437 | * @return tip text for this property suitable for | 
|---|
|  | 438 | * displaying in the explorer/experimenter gui | 
|---|
|  | 439 | */ | 
|---|
|  | 440 | public String minStdDevTipText() { | 
|---|
|  | 441 | return "set minimum allowable standard deviation"; | 
|---|
|  | 442 | } | 
|---|
|  | 443 |  | 
|---|
|  | 444 | /** | 
|---|
|  | 445 | * Set the minimum value for standard deviation when calculating | 
|---|
|  | 446 | * normal density. Reducing this value can help prevent arithmetic | 
|---|
|  | 447 | * overflow resulting from multiplying large densities (arising from small | 
|---|
|  | 448 | * standard deviations) when there are many singleton or near singleton | 
|---|
|  | 449 | * values. | 
|---|
|  | 450 | * @param m minimum value for standard deviation | 
|---|
|  | 451 | */ | 
|---|
|  | 452 | public void setMinStdDev(double m) { | 
|---|
|  | 453 | m_minStdDev = m; | 
|---|
|  | 454 | } | 
|---|
|  | 455 |  | 
|---|
|  | 456 | /** | 
|---|
|  | 457 | * Get the minimum allowable standard deviation. | 
|---|
|  | 458 | * @return the minumum allowable standard deviation | 
|---|
|  | 459 | */ | 
|---|
|  | 460 | public double getMinStdDev() { | 
|---|
|  | 461 | return m_minStdDev; | 
|---|
|  | 462 | } | 
|---|
|  | 463 |  | 
|---|
|  | 464 | /** | 
|---|
|  | 465 | * Returns an enumeration describing the available options.. | 
|---|
|  | 466 | * | 
|---|
|  | 467 | * @return an enumeration of all the available options. | 
|---|
|  | 468 | */ | 
|---|
|  | 469 | public Enumeration listOptions() { | 
|---|
|  | 470 | Vector result = new Vector(); | 
|---|
|  | 471 |  | 
|---|
|  | 472 | result.addElement(new Option( | 
|---|
|  | 473 | "\tminimum allowable standard deviation for normal density computation " | 
|---|
|  | 474 | +"\n\t(default 1e-6)" | 
|---|
|  | 475 | ,"M",1,"-M <num>")); | 
|---|
|  | 476 |  | 
|---|
|  | 477 | result.addElement(new Option( | 
|---|
|  | 478 | "\tClusterer to wrap.\n" | 
|---|
|  | 479 | + "\t(default " + defaultClustererString() + ")", | 
|---|
|  | 480 | "W", 1,"-W <clusterer name>")); | 
|---|
|  | 481 |  | 
|---|
|  | 482 | if ((m_wrappedClusterer != null) && | 
|---|
|  | 483 | (m_wrappedClusterer instanceof OptionHandler)) { | 
|---|
|  | 484 | result.addElement(new Option( | 
|---|
|  | 485 | "", | 
|---|
|  | 486 | "", 0, "\nOptions specific to clusterer " | 
|---|
|  | 487 | + m_wrappedClusterer.getClass().getName() + ":")); | 
|---|
|  | 488 | Enumeration enu = ((OptionHandler)m_wrappedClusterer).listOptions(); | 
|---|
|  | 489 | while (enu.hasMoreElements()) { | 
|---|
|  | 490 | result.addElement(enu.nextElement()); | 
|---|
|  | 491 | } | 
|---|
|  | 492 | } | 
|---|
|  | 493 |  | 
|---|
|  | 494 | return result.elements(); | 
|---|
|  | 495 | } | 
|---|
|  | 496 |  | 
|---|
|  | 497 | /** | 
|---|
|  | 498 | * Parses a given list of options. <p/> | 
|---|
|  | 499 | * | 
|---|
|  | 500 | <!-- options-start --> | 
|---|
|  | 501 | * Valid options are: <p/> | 
|---|
|  | 502 | * | 
|---|
|  | 503 | * <pre> -M <num> | 
|---|
|  | 504 | *  minimum allowable standard deviation for normal density computation | 
|---|
|  | 505 | *  (default 1e-6)</pre> | 
|---|
|  | 506 | * | 
|---|
|  | 507 | * <pre> -W <clusterer name> | 
|---|
|  | 508 | *  Clusterer to wrap. | 
|---|
|  | 509 | *  (default weka.clusterers.SimpleKMeans)</pre> | 
|---|
|  | 510 | * | 
|---|
|  | 511 | * <pre> | 
|---|
|  | 512 | * Options specific to clusterer weka.clusterers.SimpleKMeans: | 
|---|
|  | 513 | * </pre> | 
|---|
|  | 514 | * | 
|---|
|  | 515 | * <pre> -N <num> | 
|---|
|  | 516 | *  number of clusters. | 
|---|
|  | 517 | *  (default 2).</pre> | 
|---|
|  | 518 | * | 
|---|
|  | 519 | * <pre> -V | 
|---|
|  | 520 | *  Display std. deviations for centroids. | 
|---|
|  | 521 | * </pre> | 
|---|
|  | 522 | * | 
|---|
|  | 523 | * <pre> -M | 
|---|
|  | 524 | *  Replace missing values with mean/mode. | 
|---|
|  | 525 | * </pre> | 
|---|
|  | 526 | * | 
|---|
|  | 527 | * <pre> -S <num> | 
|---|
|  | 528 | *  Random number seed. | 
|---|
|  | 529 | *  (default 10)</pre> | 
|---|
|  | 530 | * | 
|---|
|  | 531 | <!-- options-end --> | 
|---|
|  | 532 | * | 
|---|
|  | 533 | * @param options the list of options as an array of strings | 
|---|
|  | 534 | * @throws Exception if an option is not supported | 
|---|
|  | 535 | */ | 
|---|
|  | 536 | public void setOptions(String[] options) throws Exception { | 
|---|
|  | 537 |  | 
|---|
|  | 538 | String optionString = Utils.getOption('M', options); | 
|---|
|  | 539 | if (optionString.length() != 0) | 
|---|
|  | 540 | setMinStdDev((new Double(optionString)).doubleValue()); | 
|---|
|  | 541 | else | 
|---|
|  | 542 | setMinStdDev(1e-6); | 
|---|
|  | 543 |  | 
|---|
|  | 544 | String wString = Utils.getOption('W', options); | 
|---|
|  | 545 | if (wString.length() == 0) | 
|---|
|  | 546 | wString = defaultClustererString(); | 
|---|
|  | 547 | setClusterer(AbstractClusterer.forName(wString, Utils.partitionOptions(options))); | 
|---|
|  | 548 | } | 
|---|
|  | 549 |  | 
|---|
|  | 550 | /** | 
|---|
|  | 551 | * Gets the current settings of the clusterer. | 
|---|
|  | 552 | * | 
|---|
|  | 553 | * @return an array of strings suitable for passing to setOptions() | 
|---|
|  | 554 | */ | 
|---|
|  | 555 | public String[] getOptions() { | 
|---|
|  | 556 |  | 
|---|
|  | 557 | String [] clustererOptions = new String [0]; | 
|---|
|  | 558 | if ((m_wrappedClusterer != null) && | 
|---|
|  | 559 | (m_wrappedClusterer instanceof OptionHandler)) { | 
|---|
|  | 560 | clustererOptions = ((OptionHandler)m_wrappedClusterer).getOptions(); | 
|---|
|  | 561 | } | 
|---|
|  | 562 | String [] options = new String [clustererOptions.length + 5]; | 
|---|
|  | 563 | int current = 0; | 
|---|
|  | 564 |  | 
|---|
|  | 565 | options[current++] = "-M"; | 
|---|
|  | 566 | options[current++] = ""+getMinStdDev(); | 
|---|
|  | 567 |  | 
|---|
|  | 568 | if (getClusterer() != null) { | 
|---|
|  | 569 | options[current++] = "-W"; | 
|---|
|  | 570 | options[current++] = getClusterer().getClass().getName(); | 
|---|
|  | 571 | } | 
|---|
|  | 572 | options[current++] = "--"; | 
|---|
|  | 573 |  | 
|---|
|  | 574 | System.arraycopy(clustererOptions, 0, options, current, | 
|---|
|  | 575 | clustererOptions.length); | 
|---|
|  | 576 | current += clustererOptions.length; | 
|---|
|  | 577 | while (current < options.length) { | 
|---|
|  | 578 | options[current++] = ""; | 
|---|
|  | 579 | } | 
|---|
|  | 580 | return options; | 
|---|
|  | 581 | } | 
|---|
|  | 582 |  | 
|---|
|  | 583 | /** | 
|---|
|  | 584 | * Returns the revision string. | 
|---|
|  | 585 | * | 
|---|
|  | 586 | * @return            the revision | 
|---|
|  | 587 | */ | 
|---|
|  | 588 | public String getRevision() { | 
|---|
|  | 589 | return RevisionUtils.extract("$Revision: 5488 $"); | 
|---|
|  | 590 | } | 
|---|
|  | 591 |  | 
|---|
|  | 592 | /** | 
|---|
|  | 593 | * Main method for testing this class. | 
|---|
|  | 594 | * | 
|---|
|  | 595 | * @param argv the options | 
|---|
|  | 596 | */ | 
|---|
|  | 597 | public static void main(String [] argv) { | 
|---|
|  | 598 | runClusterer(new MakeDensityBasedClusterer(), argv); | 
|---|
|  | 599 | } | 
|---|
|  | 600 | } | 
|---|
|  | 601 |  | 
|---|