[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * FarthestFirst.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | package weka.clusterers; |
---|
| 23 | |
---|
| 24 | import weka.core.Attribute; |
---|
| 25 | import weka.core.Capabilities; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.Instances; |
---|
| 28 | import weka.core.Option; |
---|
| 29 | import weka.core.RevisionUtils; |
---|
| 30 | import weka.core.TechnicalInformation; |
---|
| 31 | import weka.core.TechnicalInformationHandler; |
---|
| 32 | import weka.core.Utils; |
---|
| 33 | import weka.core.Capabilities.Capability; |
---|
| 34 | import weka.core.TechnicalInformation.Field; |
---|
| 35 | import weka.core.TechnicalInformation.Type; |
---|
| 36 | import weka.filters.Filter; |
---|
| 37 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 38 | |
---|
| 39 | import java.util.Enumeration; |
---|
| 40 | import java.util.Random; |
---|
| 41 | import java.util.Vector; |
---|
| 42 | |
---|
| 43 | /** |
---|
| 44 | <!-- globalinfo-start --> |
---|
| 45 | * Cluster data using the FarthestFirst algorithm.<br/> |
---|
| 46 | * <br/> |
---|
| 47 | * For more information see:<br/> |
---|
| 48 | * <br/> |
---|
| 49 | * Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of Operations Research. 10(2):180-184.<br/> |
---|
| 50 | * <br/> |
---|
| 51 | * Sanjoy Dasgupta: Performance Guarantees for Hierarchical Clustering. In: 15th Annual Conference on Computational Learning Theory, 351-363, 2002.<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * Notes:<br/> |
---|
| 54 | * - works as a fast simple approximate clusterer<br/> |
---|
| 55 | * - modelled after SimpleKMeans, might be a useful initializer for it |
---|
| 56 | * <p/> |
---|
| 57 | <!-- globalinfo-end --> |
---|
| 58 | * |
---|
| 59 | <!-- technical-bibtex-start --> |
---|
| 60 | * BibTeX: |
---|
| 61 | * <pre> |
---|
| 62 | * @article{Hochbaum1985, |
---|
| 63 | * author = {Hochbaum and Shmoys}, |
---|
| 64 | * journal = {Mathematics of Operations Research}, |
---|
| 65 | * number = {2}, |
---|
| 66 | * pages = {180-184}, |
---|
| 67 | * title = {A best possible heuristic for the k-center problem}, |
---|
| 68 | * volume = {10}, |
---|
| 69 | * year = {1985} |
---|
| 70 | * } |
---|
| 71 | * |
---|
| 72 | * @inproceedings{Dasgupta2002, |
---|
| 73 | * author = {Sanjoy Dasgupta}, |
---|
| 74 | * booktitle = {15th Annual Conference on Computational Learning Theory}, |
---|
| 75 | * pages = {351-363}, |
---|
| 76 | * publisher = {Springer}, |
---|
| 77 | * title = {Performance Guarantees for Hierarchical Clustering}, |
---|
| 78 | * year = {2002} |
---|
| 79 | * } |
---|
| 80 | * </pre> |
---|
| 81 | * <p/> |
---|
| 82 | <!-- technical-bibtex-end --> |
---|
| 83 | * |
---|
| 84 | <!-- options-start --> |
---|
| 85 | * Valid options are: <p/> |
---|
| 86 | * |
---|
| 87 | * <pre> -N <num> |
---|
| 88 | * number of clusters. (default = 2).</pre> |
---|
| 89 | * |
---|
| 90 | * <pre> -S <num> |
---|
| 91 | * Random number seed. |
---|
| 92 | * (default 1)</pre> |
---|
| 93 | * |
---|
| 94 | <!-- options-end --> |
---|
| 95 | * |
---|
| 96 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
| 97 | * @version $Revision: 5987 $ |
---|
| 98 | * @see RandomizableClusterer |
---|
| 99 | */ |
---|
| 100 | public class FarthestFirst |
---|
| 101 | extends RandomizableClusterer |
---|
| 102 | implements TechnicalInformationHandler { |
---|
| 103 | |
---|
| 104 | //Todo: rewrite to be fully incremental |
---|
| 105 | // cleanup, like deleting m_instances |
---|
| 106 | |
---|
| 107 | /** for serialization */ |
---|
| 108 | static final long serialVersionUID = 7499838100631329509L; |
---|
| 109 | |
---|
| 110 | /** |
---|
| 111 | * training instances, not necessary to keep, |
---|
| 112 | * could be replaced by m_ClusterCentroids where needed for header info |
---|
| 113 | */ |
---|
| 114 | protected Instances m_instances; |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * replace missing values in training instances |
---|
| 118 | */ |
---|
| 119 | protected ReplaceMissingValues m_ReplaceMissingFilter; |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * number of clusters to generate |
---|
| 123 | */ |
---|
| 124 | protected int m_NumClusters = 2; |
---|
| 125 | |
---|
| 126 | /** |
---|
| 127 | * holds the cluster centroids |
---|
| 128 | */ |
---|
| 129 | protected Instances m_ClusterCentroids; |
---|
| 130 | |
---|
| 131 | /** |
---|
| 132 | * attribute min values |
---|
| 133 | */ |
---|
| 134 | private double [] m_Min; |
---|
| 135 | |
---|
| 136 | /** |
---|
| 137 | * attribute max values |
---|
| 138 | */ |
---|
| 139 | private double [] m_Max; |
---|
| 140 | |
---|
| 141 | /** |
---|
| 142 | * Returns a string describing this clusterer |
---|
| 143 | * @return a description of the evaluator suitable for |
---|
| 144 | * displaying in the explorer/experimenter gui |
---|
| 145 | */ |
---|
| 146 | public String globalInfo() { |
---|
| 147 | return "Cluster data using the FarthestFirst algorithm.\n\n" |
---|
| 148 | + "For more information see:\n\n" |
---|
| 149 | + getTechnicalInformation().toString() + "\n\n" |
---|
| 150 | + "Notes:\n" |
---|
| 151 | + "- works as a fast simple approximate clusterer\n" |
---|
| 152 | + "- modelled after SimpleKMeans, might be a useful initializer for it"; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 157 | * detailed information about the technical background of this class, |
---|
| 158 | * e.g., paper reference or book this class is based on. |
---|
| 159 | * |
---|
| 160 | * @return the technical information about this class |
---|
| 161 | */ |
---|
| 162 | public TechnicalInformation getTechnicalInformation() { |
---|
| 163 | TechnicalInformation result; |
---|
| 164 | TechnicalInformation additional; |
---|
| 165 | |
---|
| 166 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 167 | result.setValue(Field.AUTHOR, "Hochbaum and Shmoys"); |
---|
| 168 | result.setValue(Field.YEAR, "1985"); |
---|
| 169 | result.setValue(Field.TITLE, "A best possible heuristic for the k-center problem"); |
---|
| 170 | result.setValue(Field.JOURNAL, "Mathematics of Operations Research"); |
---|
| 171 | result.setValue(Field.VOLUME, "10"); |
---|
| 172 | result.setValue(Field.NUMBER, "2"); |
---|
| 173 | result.setValue(Field.PAGES, "180-184"); |
---|
| 174 | |
---|
| 175 | additional = result.add(Type.INPROCEEDINGS); |
---|
| 176 | additional.setValue(Field.AUTHOR, "Sanjoy Dasgupta"); |
---|
| 177 | additional.setValue(Field.TITLE, "Performance Guarantees for Hierarchical Clustering"); |
---|
| 178 | additional.setValue(Field.BOOKTITLE, "15th Annual Conference on Computational Learning Theory"); |
---|
| 179 | additional.setValue(Field.YEAR, "2002"); |
---|
| 180 | additional.setValue(Field.PAGES, "351-363"); |
---|
| 181 | additional.setValue(Field.PUBLISHER, "Springer"); |
---|
| 182 | |
---|
| 183 | return result; |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | /** |
---|
| 187 | * Returns default capabilities of the clusterer. |
---|
| 188 | * |
---|
| 189 | * @return the capabilities of this clusterer |
---|
| 190 | */ |
---|
| 191 | public Capabilities getCapabilities() { |
---|
| 192 | Capabilities result = super.getCapabilities(); |
---|
| 193 | result.disableAll(); |
---|
| 194 | result.enable(Capability.NO_CLASS); |
---|
| 195 | |
---|
| 196 | // attributes |
---|
| 197 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 198 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 199 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 200 | result.enable(Capability.MISSING_VALUES); |
---|
| 201 | |
---|
| 202 | return result; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Generates a clusterer. Has to initialize all fields of the clusterer |
---|
| 207 | * that are not being set via options. |
---|
| 208 | * |
---|
| 209 | * @param data set of instances serving as training data |
---|
| 210 | * @throws Exception if the clusterer has not been |
---|
| 211 | * generated successfully |
---|
| 212 | */ |
---|
| 213 | public void buildClusterer(Instances data) throws Exception { |
---|
| 214 | |
---|
| 215 | // can clusterer handle the data? |
---|
| 216 | getCapabilities().testWithFail(data); |
---|
| 217 | |
---|
| 218 | //long start = System.currentTimeMillis(); |
---|
| 219 | |
---|
| 220 | m_ReplaceMissingFilter = new ReplaceMissingValues(); |
---|
| 221 | m_ReplaceMissingFilter.setInputFormat(data); |
---|
| 222 | m_instances = Filter.useFilter(data, m_ReplaceMissingFilter); |
---|
| 223 | |
---|
| 224 | initMinMax(m_instances); |
---|
| 225 | |
---|
| 226 | m_ClusterCentroids = new Instances(m_instances, m_NumClusters); |
---|
| 227 | |
---|
| 228 | int n = m_instances.numInstances(); |
---|
| 229 | Random r = new Random(getSeed()); |
---|
| 230 | boolean[] selected = new boolean[n]; |
---|
| 231 | double[] minDistance = new double[n]; |
---|
| 232 | |
---|
| 233 | for(int i = 0; i<n; i++) minDistance[i] = Double.MAX_VALUE; |
---|
| 234 | |
---|
| 235 | int firstI = r.nextInt(n); |
---|
| 236 | m_ClusterCentroids.add(m_instances.instance(firstI)); |
---|
| 237 | selected[firstI] = true; |
---|
| 238 | |
---|
| 239 | updateMinDistance(minDistance,selected,m_instances,m_instances.instance(firstI)); |
---|
| 240 | |
---|
| 241 | if (m_NumClusters > n) m_NumClusters = n; |
---|
| 242 | |
---|
| 243 | for(int i = 1; i < m_NumClusters; i++) { |
---|
| 244 | int nextI = farthestAway(minDistance, selected); |
---|
| 245 | m_ClusterCentroids.add(m_instances.instance(nextI)); |
---|
| 246 | selected[nextI] = true; |
---|
| 247 | updateMinDistance(minDistance,selected,m_instances,m_instances.instance(nextI)); |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | m_instances = new Instances(m_instances,0); |
---|
| 251 | //long end = System.currentTimeMillis(); |
---|
| 252 | //System.out.println("Clustering Time = " + (end-start)); |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | protected void updateMinDistance(double[] minDistance, boolean[] selected, |
---|
| 257 | Instances data, Instance center) { |
---|
| 258 | for(int i = 0; i<selected.length; i++) |
---|
| 259 | if (!selected[i]) { |
---|
| 260 | double d = distance(center,data.instance(i)); |
---|
| 261 | if (d<minDistance[i]) |
---|
| 262 | minDistance[i] = d; |
---|
| 263 | } |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | protected int farthestAway(double[] minDistance, boolean[] selected) { |
---|
| 267 | double maxDistance = -1.0; |
---|
| 268 | int maxI = -1; |
---|
| 269 | for(int i = 0; i<selected.length; i++) |
---|
| 270 | if (!selected[i]) |
---|
| 271 | if (maxDistance < minDistance[i]) { |
---|
| 272 | maxDistance = minDistance[i]; |
---|
| 273 | maxI = i; |
---|
| 274 | } |
---|
| 275 | return maxI; |
---|
| 276 | } |
---|
| 277 | |
---|
| 278 | protected void initMinMax(Instances data) { |
---|
| 279 | m_Min = new double [data.numAttributes()]; |
---|
| 280 | m_Max = new double [data.numAttributes()]; |
---|
| 281 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 282 | m_Min[i] = m_Max[i] = Double.NaN; |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 286 | updateMinMax(data.instance(i)); |
---|
| 287 | } |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | /** |
---|
| 292 | * Updates the minimum and maximum values for all the attributes |
---|
| 293 | * based on a new instance. |
---|
| 294 | * |
---|
| 295 | * @param instance the new instance |
---|
| 296 | */ |
---|
| 297 | private void updateMinMax(Instance instance) { |
---|
| 298 | |
---|
| 299 | for (int j = 0;j < instance.numAttributes(); j++) { |
---|
| 300 | if (Double.isNaN(m_Min[j])) { |
---|
| 301 | m_Min[j] = instance.value(j); |
---|
| 302 | m_Max[j] = instance.value(j); |
---|
| 303 | } else { |
---|
| 304 | if (instance.value(j) < m_Min[j]) { |
---|
| 305 | m_Min[j] = instance.value(j); |
---|
| 306 | } else { |
---|
| 307 | if (instance.value(j) > m_Max[j]) { |
---|
| 308 | m_Max[j] = instance.value(j); |
---|
| 309 | } |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | |
---|
| 315 | |
---|
| 316 | /** |
---|
| 317 | * clusters an instance that has been through the filters |
---|
| 318 | * |
---|
| 319 | * @param instance the instance to assign a cluster to |
---|
| 320 | * @return a cluster number |
---|
| 321 | */ |
---|
| 322 | protected int clusterProcessedInstance(Instance instance) { |
---|
| 323 | double minDist = Double.MAX_VALUE; |
---|
| 324 | int bestCluster = 0; |
---|
| 325 | for (int i = 0; i < m_NumClusters; i++) { |
---|
| 326 | double dist = distance(instance, m_ClusterCentroids.instance(i)); |
---|
| 327 | if (dist < minDist) { |
---|
| 328 | minDist = dist; |
---|
| 329 | bestCluster = i; |
---|
| 330 | } |
---|
| 331 | } |
---|
| 332 | return bestCluster; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /** |
---|
| 336 | * Classifies a given instance. |
---|
| 337 | * |
---|
| 338 | * @param instance the instance to be assigned to a cluster |
---|
| 339 | * @return the number of the assigned cluster as an integer |
---|
| 340 | * if the class is enumerated, otherwise the predicted value |
---|
| 341 | * @throws Exception if instance could not be classified |
---|
| 342 | * successfully |
---|
| 343 | */ |
---|
| 344 | public int clusterInstance(Instance instance) throws Exception { |
---|
| 345 | m_ReplaceMissingFilter.input(instance); |
---|
| 346 | m_ReplaceMissingFilter.batchFinished(); |
---|
| 347 | Instance inst = m_ReplaceMissingFilter.output(); |
---|
| 348 | |
---|
| 349 | return clusterProcessedInstance(inst); |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /** |
---|
| 353 | * Calculates the distance between two instances |
---|
| 354 | * |
---|
| 355 | * @param first the first instance |
---|
| 356 | * @param second the second instance |
---|
| 357 | * @return the distance between the two given instances, between 0 and 1 |
---|
| 358 | */ |
---|
| 359 | protected double distance(Instance first, Instance second) { |
---|
| 360 | |
---|
| 361 | double distance = 0; |
---|
| 362 | int firstI, secondI; |
---|
| 363 | |
---|
| 364 | for (int p1 = 0, p2 = 0; |
---|
| 365 | p1 < first.numValues() || p2 < second.numValues();) { |
---|
| 366 | if (p1 >= first.numValues()) { |
---|
| 367 | firstI = m_instances.numAttributes(); |
---|
| 368 | } else { |
---|
| 369 | firstI = first.index(p1); |
---|
| 370 | } |
---|
| 371 | if (p2 >= second.numValues()) { |
---|
| 372 | secondI = m_instances.numAttributes(); |
---|
| 373 | } else { |
---|
| 374 | secondI = second.index(p2); |
---|
| 375 | } |
---|
| 376 | if (firstI == m_instances.classIndex()) { |
---|
| 377 | p1++; continue; |
---|
| 378 | } |
---|
| 379 | if (secondI == m_instances.classIndex()) { |
---|
| 380 | p2++; continue; |
---|
| 381 | } |
---|
| 382 | double diff; |
---|
| 383 | if (firstI == secondI) { |
---|
| 384 | diff = difference(firstI, |
---|
| 385 | first.valueSparse(p1), |
---|
| 386 | second.valueSparse(p2)); |
---|
| 387 | p1++; p2++; |
---|
| 388 | } else if (firstI > secondI) { |
---|
| 389 | diff = difference(secondI, |
---|
| 390 | 0, second.valueSparse(p2)); |
---|
| 391 | p2++; |
---|
| 392 | } else { |
---|
| 393 | diff = difference(firstI, |
---|
| 394 | first.valueSparse(p1), 0); |
---|
| 395 | p1++; |
---|
| 396 | } |
---|
| 397 | distance += diff * diff; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | return Math.sqrt(distance / m_instances.numAttributes()); |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | /** |
---|
| 404 | * Computes the difference between two given attribute |
---|
| 405 | * values. |
---|
| 406 | */ |
---|
| 407 | protected double difference(int index, double val1, double val2) { |
---|
| 408 | |
---|
| 409 | switch (m_instances.attribute(index).type()) { |
---|
| 410 | case Attribute.NOMINAL: |
---|
| 411 | |
---|
| 412 | // If attribute is nominal |
---|
| 413 | if (Utils.isMissingValue(val1) || |
---|
| 414 | Utils.isMissingValue(val2) || |
---|
| 415 | ((int)val1 != (int)val2)) { |
---|
| 416 | return 1; |
---|
| 417 | } else { |
---|
| 418 | return 0; |
---|
| 419 | } |
---|
| 420 | case Attribute.NUMERIC: |
---|
| 421 | |
---|
| 422 | // If attribute is numeric |
---|
| 423 | if (Utils.isMissingValue(val1) || |
---|
| 424 | Utils.isMissingValue(val2)) { |
---|
| 425 | if (Utils.isMissingValue(val1) && |
---|
| 426 | Utils.isMissingValue(val2)) { |
---|
| 427 | return 1; |
---|
| 428 | } else { |
---|
| 429 | double diff; |
---|
| 430 | if (Utils.isMissingValue(val2)) { |
---|
| 431 | diff = norm(val1, index); |
---|
| 432 | } else { |
---|
| 433 | diff = norm(val2, index); |
---|
| 434 | } |
---|
| 435 | if (diff < 0.5) { |
---|
| 436 | diff = 1.0 - diff; |
---|
| 437 | } |
---|
| 438 | return diff; |
---|
| 439 | } |
---|
| 440 | } else { |
---|
| 441 | return norm(val1, index) - norm(val2, index); |
---|
| 442 | } |
---|
| 443 | default: |
---|
| 444 | return 0; |
---|
| 445 | } |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Normalizes a given value of a numeric attribute. |
---|
| 450 | * |
---|
| 451 | * @param x the value to be normalized |
---|
| 452 | * @param i the attribute's index |
---|
| 453 | * @return the normalized value |
---|
| 454 | */ |
---|
| 455 | protected double norm(double x, int i) { |
---|
| 456 | |
---|
| 457 | if (Double.isNaN(m_Min[i]) || Utils.eq(m_Max[i],m_Min[i])) { |
---|
| 458 | return 0; |
---|
| 459 | } else { |
---|
| 460 | return (x - m_Min[i]) / (m_Max[i] - m_Min[i]); |
---|
| 461 | } |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | /** |
---|
| 465 | * Returns the number of clusters. |
---|
| 466 | * |
---|
| 467 | * @return the number of clusters generated for a training dataset. |
---|
| 468 | * @throws Exception if number of clusters could not be returned |
---|
| 469 | * successfully |
---|
| 470 | */ |
---|
| 471 | public int numberOfClusters() throws Exception { |
---|
| 472 | return m_NumClusters; |
---|
| 473 | } |
---|
| 474 | |
---|
| 475 | /** |
---|
| 476 | * Returns an enumeration describing the available options. |
---|
| 477 | * |
---|
| 478 | * @return an enumeration of all the available options. |
---|
| 479 | */ |
---|
| 480 | public Enumeration listOptions () { |
---|
| 481 | Vector result = new Vector(); |
---|
| 482 | |
---|
| 483 | result.addElement(new Option( |
---|
| 484 | "\tnumber of clusters. (default = 2).", |
---|
| 485 | "N", 1, "-N <num>")); |
---|
| 486 | |
---|
| 487 | Enumeration en = super.listOptions(); |
---|
| 488 | while (en.hasMoreElements()) |
---|
| 489 | result.addElement(en.nextElement()); |
---|
| 490 | |
---|
| 491 | return result.elements(); |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | /** |
---|
| 495 | * Returns the tip text for this property |
---|
| 496 | * @return tip text for this property suitable for |
---|
| 497 | * displaying in the explorer/experimenter gui |
---|
| 498 | */ |
---|
| 499 | public String numClustersTipText() { |
---|
| 500 | return "set number of clusters"; |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | /** |
---|
| 504 | * set the number of clusters to generate |
---|
| 505 | * |
---|
| 506 | * @param n the number of clusters to generate |
---|
| 507 | * @throws Exception if number of clusters is negative |
---|
| 508 | */ |
---|
| 509 | public void setNumClusters(int n) throws Exception { |
---|
| 510 | if (n < 0) { |
---|
| 511 | throw new Exception("Number of clusters must be > 0"); |
---|
| 512 | } |
---|
| 513 | m_NumClusters = n; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * gets the number of clusters to generate |
---|
| 518 | * |
---|
| 519 | * @return the number of clusters to generate |
---|
| 520 | */ |
---|
| 521 | public int getNumClusters() { |
---|
| 522 | return m_NumClusters; |
---|
| 523 | } |
---|
| 524 | |
---|
| 525 | /** |
---|
| 526 | * Parses a given list of options. <p/> |
---|
| 527 | * |
---|
| 528 | <!-- options-start --> |
---|
| 529 | * Valid options are: <p/> |
---|
| 530 | * |
---|
| 531 | * <pre> -N <num> |
---|
| 532 | * number of clusters. (default = 2).</pre> |
---|
| 533 | * |
---|
| 534 | * <pre> -S <num> |
---|
| 535 | * Random number seed. |
---|
| 536 | * (default 1)</pre> |
---|
| 537 | * |
---|
| 538 | <!-- options-end --> |
---|
| 539 | * |
---|
| 540 | * @param options the list of options as an array of strings |
---|
| 541 | * @throws Exception if an option is not supported |
---|
| 542 | */ |
---|
| 543 | public void setOptions (String[] options) |
---|
| 544 | throws Exception { |
---|
| 545 | |
---|
| 546 | String optionString = Utils.getOption('N', options); |
---|
| 547 | |
---|
| 548 | if (optionString.length() != 0) { |
---|
| 549 | setNumClusters(Integer.parseInt(optionString)); |
---|
| 550 | } |
---|
| 551 | |
---|
| 552 | super.setOptions(options); |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | /** |
---|
| 556 | * Gets the current settings of FarthestFirst |
---|
| 557 | * |
---|
| 558 | * @return an array of strings suitable for passing to setOptions() |
---|
| 559 | */ |
---|
| 560 | public String[] getOptions () { |
---|
| 561 | int i; |
---|
| 562 | Vector result; |
---|
| 563 | String[] options; |
---|
| 564 | |
---|
| 565 | result = new Vector(); |
---|
| 566 | |
---|
| 567 | result.add("-N"); |
---|
| 568 | result.add("" + getNumClusters()); |
---|
| 569 | |
---|
| 570 | options = super.getOptions(); |
---|
| 571 | for (i = 0; i < options.length; i++) |
---|
| 572 | result.add(options[i]); |
---|
| 573 | |
---|
| 574 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | /** |
---|
| 578 | * return a string describing this clusterer |
---|
| 579 | * |
---|
| 580 | * @return a description of the clusterer as a string |
---|
| 581 | */ |
---|
| 582 | public String toString() { |
---|
| 583 | StringBuffer temp = new StringBuffer(); |
---|
| 584 | |
---|
| 585 | temp.append("\n FarthestFirst\n==============\n"); |
---|
| 586 | |
---|
| 587 | temp.append("\nCluster centroids:\n"); |
---|
| 588 | for (int i = 0; i < m_NumClusters; i++) { |
---|
| 589 | temp.append("\nCluster "+i+"\n\t"); |
---|
| 590 | for (int j = 0; j < m_ClusterCentroids.numAttributes(); j++) { |
---|
| 591 | if (m_ClusterCentroids.attribute(j).isNominal()) { |
---|
| 592 | temp.append(" "+m_ClusterCentroids.attribute(j). |
---|
| 593 | value((int)m_ClusterCentroids.instance(i).value(j))); |
---|
| 594 | } else { |
---|
| 595 | temp.append(" "+m_ClusterCentroids.instance(i).value(j)); |
---|
| 596 | } |
---|
| 597 | } |
---|
| 598 | } |
---|
| 599 | temp.append("\n\n"); |
---|
| 600 | return temp.toString(); |
---|
| 601 | } |
---|
| 602 | |
---|
| 603 | /** |
---|
| 604 | * Returns the revision string. |
---|
| 605 | * |
---|
| 606 | * @return the revision |
---|
| 607 | */ |
---|
| 608 | public String getRevision() { |
---|
| 609 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 610 | } |
---|
| 611 | |
---|
| 612 | /** |
---|
| 613 | * Main method for testing this class. |
---|
| 614 | * |
---|
| 615 | * @param argv should contain the following arguments: <p> |
---|
| 616 | * -t training file [-N number of clusters] |
---|
| 617 | */ |
---|
| 618 | public static void main (String[] argv) { |
---|
| 619 | runClusterer(new FarthestFirst(), argv); |
---|
| 620 | } |
---|
| 621 | } |
---|