| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * Rule.java |
|---|
| 19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.m5; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Instance; |
|---|
| 26 | import weka.core.Instances; |
|---|
| 27 | import weka.core.RevisionHandler; |
|---|
| 28 | import weka.core.RevisionUtils; |
|---|
| 29 | import weka.core.Utils; |
|---|
| 30 | |
|---|
| 31 | import java.io.Serializable; |
|---|
| 32 | |
|---|
| 33 | /** |
|---|
| 34 | * Generates a single m5 tree or rule |
|---|
| 35 | * |
|---|
| 36 | * @author Mark Hall |
|---|
| 37 | * @version $Revision: 1.15 $ |
|---|
| 38 | */ |
|---|
| 39 | public class Rule |
|---|
| 40 | implements Serializable, RevisionHandler { |
|---|
| 41 | |
|---|
| 42 | /** for serialization */ |
|---|
| 43 | private static final long serialVersionUID = -4458627451682483204L; |
|---|
| 44 | |
|---|
| 45 | protected static int LEFT = 0; |
|---|
| 46 | protected static int RIGHT = 1; |
|---|
| 47 | |
|---|
| 48 | /** |
|---|
| 49 | * the instances covered by this rule |
|---|
| 50 | */ |
|---|
| 51 | private Instances m_instances; |
|---|
| 52 | |
|---|
| 53 | /** |
|---|
| 54 | * the class index |
|---|
| 55 | */ |
|---|
| 56 | private int m_classIndex; |
|---|
| 57 | |
|---|
| 58 | /** |
|---|
| 59 | * the number of attributes |
|---|
| 60 | */ |
|---|
| 61 | private int m_numAttributes; |
|---|
| 62 | |
|---|
| 63 | /** |
|---|
| 64 | * the number of instances in the dataset |
|---|
| 65 | */ |
|---|
| 66 | private int m_numInstances; |
|---|
| 67 | |
|---|
| 68 | /** |
|---|
| 69 | * the indexes of the attributes used to split on for this rule |
|---|
| 70 | */ |
|---|
| 71 | private int[] m_splitAtts; |
|---|
| 72 | |
|---|
| 73 | /** |
|---|
| 74 | * the corresponding values of the split points |
|---|
| 75 | */ |
|---|
| 76 | private double[] m_splitVals; |
|---|
| 77 | |
|---|
| 78 | /** |
|---|
| 79 | * the corresponding internal nodes. Used for smoothing rules. |
|---|
| 80 | */ |
|---|
| 81 | private RuleNode[] m_internalNodes; |
|---|
| 82 | |
|---|
| 83 | /** |
|---|
| 84 | * the corresponding relational operators (0 = "<=", 1 = ">") |
|---|
| 85 | */ |
|---|
| 86 | private int[] m_relOps; |
|---|
| 87 | |
|---|
| 88 | /** |
|---|
| 89 | * the leaf encapsulating the linear model for this rule |
|---|
| 90 | */ |
|---|
| 91 | private RuleNode m_ruleModel; |
|---|
| 92 | |
|---|
| 93 | /** |
|---|
| 94 | * the top of the m5 tree for this rule |
|---|
| 95 | */ |
|---|
| 96 | protected RuleNode m_topOfTree; |
|---|
| 97 | |
|---|
| 98 | /** |
|---|
| 99 | * the standard deviation of the class for all the instances |
|---|
| 100 | */ |
|---|
| 101 | private double m_globalStdDev; |
|---|
| 102 | |
|---|
| 103 | /** |
|---|
| 104 | * the absolute deviation of the class for all the instances |
|---|
| 105 | */ |
|---|
| 106 | private double m_globalAbsDev; |
|---|
| 107 | |
|---|
| 108 | /** |
|---|
| 109 | * the instances covered by this rule |
|---|
| 110 | */ |
|---|
| 111 | private Instances m_covered; |
|---|
| 112 | |
|---|
| 113 | /** |
|---|
| 114 | * the number of instances covered by this rule |
|---|
| 115 | */ |
|---|
| 116 | private int m_numCovered; |
|---|
| 117 | |
|---|
| 118 | /** |
|---|
| 119 | * the instances not covered by this rule |
|---|
| 120 | */ |
|---|
| 121 | private Instances m_notCovered; |
|---|
| 122 | |
|---|
| 123 | /** |
|---|
| 124 | * use a pruned m5 tree rather than make a rule |
|---|
| 125 | */ |
|---|
| 126 | private boolean m_useTree; |
|---|
| 127 | |
|---|
| 128 | /** |
|---|
| 129 | * use the original m5 smoothing procedure |
|---|
| 130 | */ |
|---|
| 131 | private boolean m_smoothPredictions; |
|---|
| 132 | |
|---|
| 133 | /** |
|---|
| 134 | * Save instances at each node in an M5 tree for visualization purposes. |
|---|
| 135 | */ |
|---|
| 136 | private boolean m_saveInstances; |
|---|
| 137 | |
|---|
| 138 | /** |
|---|
| 139 | * Make a regression tree instead of a model tree |
|---|
| 140 | */ |
|---|
| 141 | private boolean m_regressionTree; |
|---|
| 142 | |
|---|
| 143 | /** |
|---|
| 144 | * Build unpruned tree/rule |
|---|
| 145 | */ |
|---|
| 146 | private boolean m_useUnpruned; |
|---|
| 147 | |
|---|
| 148 | /** |
|---|
| 149 | * The minimum number of instances to allow at a leaf node |
|---|
| 150 | */ |
|---|
| 151 | private double m_minNumInstances; |
|---|
| 152 | |
|---|
| 153 | /** |
|---|
| 154 | * Constructor declaration |
|---|
| 155 | * |
|---|
| 156 | */ |
|---|
| 157 | public Rule() { |
|---|
| 158 | m_useTree = false; |
|---|
| 159 | m_smoothPredictions = false; |
|---|
| 160 | m_useUnpruned = false; |
|---|
| 161 | m_minNumInstances = 4; |
|---|
| 162 | } |
|---|
| 163 | |
|---|
| 164 | /** |
|---|
| 165 | * Generates a single rule or m5 model tree. |
|---|
| 166 | * |
|---|
| 167 | * @param data set of instances serving as training data |
|---|
| 168 | * @exception Exception if the rule has not been generated |
|---|
| 169 | * successfully |
|---|
| 170 | */ |
|---|
| 171 | public void buildClassifier(Instances data) throws Exception { |
|---|
| 172 | m_instances = null; |
|---|
| 173 | m_topOfTree = null; |
|---|
| 174 | m_covered = null; |
|---|
| 175 | m_notCovered = null; |
|---|
| 176 | m_ruleModel = null; |
|---|
| 177 | m_splitAtts = null; |
|---|
| 178 | m_splitVals = null; |
|---|
| 179 | m_relOps = null; |
|---|
| 180 | m_internalNodes = null; |
|---|
| 181 | m_instances = data; |
|---|
| 182 | m_classIndex = m_instances.classIndex(); |
|---|
| 183 | m_numAttributes = m_instances.numAttributes(); |
|---|
| 184 | m_numInstances = m_instances.numInstances(); |
|---|
| 185 | |
|---|
| 186 | // first calculate global deviation of class attribute |
|---|
| 187 | m_globalStdDev = Rule.stdDev(m_classIndex, m_instances); |
|---|
| 188 | m_globalAbsDev = Rule.absDev(m_classIndex, m_instances); |
|---|
| 189 | |
|---|
| 190 | m_topOfTree = new RuleNode(m_globalStdDev, m_globalAbsDev, null); |
|---|
| 191 | m_topOfTree.setSaveInstances(m_saveInstances); |
|---|
| 192 | m_topOfTree.setRegressionTree(m_regressionTree); |
|---|
| 193 | m_topOfTree.setMinNumInstances(m_minNumInstances); |
|---|
| 194 | m_topOfTree.buildClassifier(m_instances); |
|---|
| 195 | |
|---|
| 196 | |
|---|
| 197 | if (!m_useUnpruned) { |
|---|
| 198 | m_topOfTree.prune(); |
|---|
| 199 | } else { |
|---|
| 200 | m_topOfTree.installLinearModels(); |
|---|
| 201 | } |
|---|
| 202 | |
|---|
| 203 | if (m_smoothPredictions) { |
|---|
| 204 | m_topOfTree.installSmoothedModels(); |
|---|
| 205 | } |
|---|
| 206 | //m_topOfTree.printAllModels(); |
|---|
| 207 | m_topOfTree.numLeaves(0); |
|---|
| 208 | |
|---|
| 209 | if (!m_useTree) { |
|---|
| 210 | makeRule(); |
|---|
| 211 | // save space |
|---|
| 212 | // m_topOfTree = null; |
|---|
| 213 | } |
|---|
| 214 | |
|---|
| 215 | // save space |
|---|
| 216 | m_instances = new Instances(m_instances, 0); |
|---|
| 217 | |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | /** |
|---|
| 221 | * Calculates a prediction for an instance using this rule |
|---|
| 222 | * or M5 model tree |
|---|
| 223 | * |
|---|
| 224 | * @param instance the instance whos class value is to be predicted |
|---|
| 225 | * @return the prediction |
|---|
| 226 | * @exception Exception if a prediction can't be made. |
|---|
| 227 | */ |
|---|
| 228 | public double classifyInstance(Instance instance) throws Exception { |
|---|
| 229 | if (m_useTree) { |
|---|
| 230 | return m_topOfTree.classifyInstance(instance); |
|---|
| 231 | } |
|---|
| 232 | |
|---|
| 233 | // does the instance pass the rule's conditions? |
|---|
| 234 | if (m_splitAtts.length > 0) { |
|---|
| 235 | for (int i = 0; i < m_relOps.length; i++) { |
|---|
| 236 | if (m_relOps[i] == LEFT) // left |
|---|
| 237 | { |
|---|
| 238 | if (instance.value(m_splitAtts[i]) > m_splitVals[i]) { |
|---|
| 239 | throw new Exception("Rule does not classify instance"); |
|---|
| 240 | } |
|---|
| 241 | } else { |
|---|
| 242 | if (instance.value(m_splitAtts[i]) <= m_splitVals[i]) { |
|---|
| 243 | throw new Exception("Rule does not classify instance"); |
|---|
| 244 | } |
|---|
| 245 | } |
|---|
| 246 | } |
|---|
| 247 | } |
|---|
| 248 | |
|---|
| 249 | // the linear model's prediction for this rule |
|---|
| 250 | return m_ruleModel.classifyInstance(instance); |
|---|
| 251 | } |
|---|
| 252 | |
|---|
| 253 | /** |
|---|
| 254 | * Returns the top of the tree. |
|---|
| 255 | */ |
|---|
| 256 | public RuleNode topOfTree() { |
|---|
| 257 | |
|---|
| 258 | return m_topOfTree; |
|---|
| 259 | } |
|---|
| 260 | |
|---|
| 261 | /** |
|---|
| 262 | * Make the single best rule from a pruned m5 model tree |
|---|
| 263 | * |
|---|
| 264 | * @exception Exception if something goes wrong. |
|---|
| 265 | */ |
|---|
| 266 | private void makeRule() throws Exception { |
|---|
| 267 | RuleNode[] best_leaf = new RuleNode[1]; |
|---|
| 268 | double[] best_cov = new double[1]; |
|---|
| 269 | RuleNode temp; |
|---|
| 270 | |
|---|
| 271 | m_notCovered = new Instances(m_instances, 0); |
|---|
| 272 | m_covered = new Instances(m_instances, 0); |
|---|
| 273 | best_cov[0] = -1; |
|---|
| 274 | best_leaf[0] = null; |
|---|
| 275 | |
|---|
| 276 | m_topOfTree.findBestLeaf(best_cov, best_leaf); |
|---|
| 277 | |
|---|
| 278 | temp = best_leaf[0]; |
|---|
| 279 | |
|---|
| 280 | if (temp == null) { |
|---|
| 281 | throw new Exception("Unable to generate rule!"); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | // save the linear model for this rule |
|---|
| 285 | m_ruleModel = temp; |
|---|
| 286 | |
|---|
| 287 | int count = 0; |
|---|
| 288 | |
|---|
| 289 | while (temp.parentNode() != null) { |
|---|
| 290 | count++; |
|---|
| 291 | temp = temp.parentNode(); |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | temp = best_leaf[0]; |
|---|
| 295 | m_relOps = new int[count]; |
|---|
| 296 | m_splitAtts = new int[count]; |
|---|
| 297 | m_splitVals = new double[count]; |
|---|
| 298 | if (m_smoothPredictions) { |
|---|
| 299 | m_internalNodes = new RuleNode[count]; |
|---|
| 300 | } |
|---|
| 301 | |
|---|
| 302 | // trace back to the root |
|---|
| 303 | int i = 0; |
|---|
| 304 | |
|---|
| 305 | while (temp.parentNode() != null) { |
|---|
| 306 | m_splitAtts[i] = temp.parentNode().splitAtt(); |
|---|
| 307 | m_splitVals[i] = temp.parentNode().splitVal(); |
|---|
| 308 | |
|---|
| 309 | if (temp.parentNode().leftNode() == temp) { |
|---|
| 310 | m_relOps[i] = LEFT; |
|---|
| 311 | // temp.parentNode().m_right = null; |
|---|
| 312 | } else { |
|---|
| 313 | m_relOps[i] = RIGHT; |
|---|
| 314 | // temp.parentNode().m_left = null; |
|---|
| 315 | } |
|---|
| 316 | |
|---|
| 317 | if (m_smoothPredictions) { |
|---|
| 318 | m_internalNodes[i] = temp.parentNode(); |
|---|
| 319 | } |
|---|
| 320 | |
|---|
| 321 | temp = temp.parentNode(); |
|---|
| 322 | i++; |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | // now assemble the covered and uncovered instances |
|---|
| 326 | boolean ok; |
|---|
| 327 | |
|---|
| 328 | for (i = 0; i < m_numInstances; i++) { |
|---|
| 329 | ok = true; |
|---|
| 330 | |
|---|
| 331 | for (int j = 0; j < m_relOps.length; j++) { |
|---|
| 332 | if (m_relOps[j] == LEFT) |
|---|
| 333 | { |
|---|
| 334 | if (m_instances.instance(i).value(m_splitAtts[j]) |
|---|
| 335 | > m_splitVals[j]) { |
|---|
| 336 | m_notCovered.add(m_instances.instance(i)); |
|---|
| 337 | ok = false; |
|---|
| 338 | break; |
|---|
| 339 | } |
|---|
| 340 | } else { |
|---|
| 341 | if (m_instances.instance(i).value(m_splitAtts[j]) |
|---|
| 342 | <= m_splitVals[j]) { |
|---|
| 343 | m_notCovered.add(m_instances.instance(i)); |
|---|
| 344 | ok = false; |
|---|
| 345 | break; |
|---|
| 346 | } |
|---|
| 347 | } |
|---|
| 348 | } |
|---|
| 349 | |
|---|
| 350 | if (ok) { |
|---|
| 351 | m_numCovered++; |
|---|
| 352 | // m_covered.add(m_instances.instance(i)); |
|---|
| 353 | } |
|---|
| 354 | } |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | /** |
|---|
| 358 | * Return a description of the m5 tree or rule |
|---|
| 359 | * |
|---|
| 360 | * @return a description of the m5 tree or rule as a String |
|---|
| 361 | */ |
|---|
| 362 | public String toString() { |
|---|
| 363 | if (m_useTree) { |
|---|
| 364 | return treeToString(); |
|---|
| 365 | } else { |
|---|
| 366 | return ruleToString(); |
|---|
| 367 | } |
|---|
| 368 | } |
|---|
| 369 | |
|---|
| 370 | /** |
|---|
| 371 | * Return a description of the m5 tree |
|---|
| 372 | * |
|---|
| 373 | * @return a description of the m5 tree as a String |
|---|
| 374 | */ |
|---|
| 375 | private String treeToString() { |
|---|
| 376 | StringBuffer text = new StringBuffer(); |
|---|
| 377 | |
|---|
| 378 | if (m_topOfTree == null) { |
|---|
| 379 | return "Tree/Rule has not been built yet!"; |
|---|
| 380 | } |
|---|
| 381 | |
|---|
| 382 | text.append("M5 " |
|---|
| 383 | + ((m_useUnpruned) |
|---|
| 384 | ? "unpruned " |
|---|
| 385 | : "pruned ") |
|---|
| 386 | + ((m_regressionTree) |
|---|
| 387 | ? "regression " |
|---|
| 388 | : "model ") |
|---|
| 389 | +"tree:\n"); |
|---|
| 390 | |
|---|
| 391 | if (m_smoothPredictions == true) { |
|---|
| 392 | text.append("(using smoothed linear models)\n"); |
|---|
| 393 | } |
|---|
| 394 | |
|---|
| 395 | text.append(m_topOfTree.treeToString(0)); |
|---|
| 396 | text.append(m_topOfTree.printLeafModels()); |
|---|
| 397 | text.append("\nNumber of Rules : " + m_topOfTree.numberOfLinearModels()); |
|---|
| 398 | |
|---|
| 399 | return text.toString(); |
|---|
| 400 | } |
|---|
| 401 | |
|---|
| 402 | /** |
|---|
| 403 | * Return a description of the rule |
|---|
| 404 | * |
|---|
| 405 | * @return a description of the rule as a String |
|---|
| 406 | */ |
|---|
| 407 | private String ruleToString() { |
|---|
| 408 | StringBuffer text = new StringBuffer(); |
|---|
| 409 | |
|---|
| 410 | if (m_splitAtts.length > 0) { |
|---|
| 411 | text.append("IF\n"); |
|---|
| 412 | |
|---|
| 413 | for (int i = m_splitAtts.length - 1; i >= 0; i--) { |
|---|
| 414 | text.append("\t" + m_covered.attribute(m_splitAtts[i]).name() + " "); |
|---|
| 415 | |
|---|
| 416 | if (m_relOps[i] == 0) { |
|---|
| 417 | text.append("<= "); |
|---|
| 418 | } else { |
|---|
| 419 | text.append("> "); |
|---|
| 420 | } |
|---|
| 421 | |
|---|
| 422 | text.append(Utils.doubleToString(m_splitVals[i], 1, 3) + "\n"); |
|---|
| 423 | } |
|---|
| 424 | |
|---|
| 425 | text.append("THEN\n"); |
|---|
| 426 | } |
|---|
| 427 | |
|---|
| 428 | if (m_ruleModel != null) { |
|---|
| 429 | try { |
|---|
| 430 | text.append(m_ruleModel.printNodeLinearModel()); |
|---|
| 431 | text.append(" [" + m_numCovered/*m_covered.numInstances()*/); |
|---|
| 432 | |
|---|
| 433 | if (m_globalAbsDev > 0.0) { |
|---|
| 434 | text.append("/"+Utils.doubleToString((100 * |
|---|
| 435 | m_ruleModel. |
|---|
| 436 | rootMeanSquaredError() / |
|---|
| 437 | m_globalStdDev), 1, 3) |
|---|
| 438 | + "%]\n\n"); |
|---|
| 439 | } else { |
|---|
| 440 | text.append("]\n\n"); |
|---|
| 441 | } |
|---|
| 442 | } catch (Exception e) { |
|---|
| 443 | return "Can't print rule"; |
|---|
| 444 | } |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | // System.out.println(m_instances); |
|---|
| 448 | return text.toString(); |
|---|
| 449 | } |
|---|
| 450 | |
|---|
| 451 | /** |
|---|
| 452 | * Use unpruned tree/rules |
|---|
| 453 | * |
|---|
| 454 | * @param unpruned true if unpruned tree/rules are to be generated |
|---|
| 455 | */ |
|---|
| 456 | public void setUnpruned(boolean unpruned) { |
|---|
| 457 | m_useUnpruned = unpruned; |
|---|
| 458 | } |
|---|
| 459 | |
|---|
| 460 | /** |
|---|
| 461 | * Get whether unpruned tree/rules are being generated |
|---|
| 462 | * |
|---|
| 463 | * @return true if unpruned tree/rules are to be generated |
|---|
| 464 | */ |
|---|
| 465 | public boolean getUnpruned() { |
|---|
| 466 | return m_useUnpruned; |
|---|
| 467 | } |
|---|
| 468 | |
|---|
| 469 | /** |
|---|
| 470 | * Use an m5 tree rather than generate rules |
|---|
| 471 | * |
|---|
| 472 | * @param u true if m5 tree is to be used |
|---|
| 473 | */ |
|---|
| 474 | public void setUseTree(boolean u) { |
|---|
| 475 | m_useTree = u; |
|---|
| 476 | } |
|---|
| 477 | |
|---|
| 478 | /** |
|---|
| 479 | * get whether an m5 tree is being used rather than rules |
|---|
| 480 | * |
|---|
| 481 | * @return true if an m5 tree is being used. |
|---|
| 482 | */ |
|---|
| 483 | public boolean getUseTree() { |
|---|
| 484 | return m_useTree; |
|---|
| 485 | } |
|---|
| 486 | |
|---|
| 487 | /** |
|---|
| 488 | * Smooth predictions |
|---|
| 489 | * |
|---|
| 490 | * @param s true if smoothing is to be used |
|---|
| 491 | */ |
|---|
| 492 | public void setSmoothing(boolean s) { |
|---|
| 493 | m_smoothPredictions = s; |
|---|
| 494 | } |
|---|
| 495 | |
|---|
| 496 | /** |
|---|
| 497 | * Get whether or not smoothing has been turned on |
|---|
| 498 | * |
|---|
| 499 | * @return true if smoothing is being used |
|---|
| 500 | */ |
|---|
| 501 | public boolean getSmoothing() { |
|---|
| 502 | return m_smoothPredictions; |
|---|
| 503 | } |
|---|
| 504 | |
|---|
| 505 | /** |
|---|
| 506 | * Get the instances not covered by this rule |
|---|
| 507 | * |
|---|
| 508 | * @return the instances not covered |
|---|
| 509 | */ |
|---|
| 510 | public Instances notCoveredInstances() { |
|---|
| 511 | return m_notCovered; |
|---|
| 512 | } |
|---|
| 513 | |
|---|
| 514 | // /** |
|---|
| 515 | // * Get the instances covered by this rule |
|---|
| 516 | // * |
|---|
| 517 | // * @return the instances covered by this rule |
|---|
| 518 | // */ |
|---|
| 519 | // public Instances coveredInstances() { |
|---|
| 520 | // return m_covered; |
|---|
| 521 | // } |
|---|
| 522 | |
|---|
| 523 | /** |
|---|
| 524 | * Returns the standard deviation value of the supplied attribute index. |
|---|
| 525 | * |
|---|
| 526 | * @param attr an attribute index |
|---|
| 527 | * @param inst the instances |
|---|
| 528 | * @return the standard deviation value |
|---|
| 529 | */ |
|---|
| 530 | protected static final double stdDev(int attr, Instances inst) { |
|---|
| 531 | int i,count=0; |
|---|
| 532 | double sd,va,sum=0.0,sqrSum=0.0,value; |
|---|
| 533 | |
|---|
| 534 | for(i = 0; i <= inst.numInstances() - 1; i++) { |
|---|
| 535 | count++; |
|---|
| 536 | value = inst.instance(i).value(attr); |
|---|
| 537 | sum += value; |
|---|
| 538 | sqrSum += value * value; |
|---|
| 539 | } |
|---|
| 540 | |
|---|
| 541 | if(count > 1) { |
|---|
| 542 | va = (sqrSum - sum * sum / count) / count; |
|---|
| 543 | va = Math.abs(va); |
|---|
| 544 | sd = Math.sqrt(va); |
|---|
| 545 | } else { |
|---|
| 546 | sd = 0.0; |
|---|
| 547 | } |
|---|
| 548 | |
|---|
| 549 | return sd; |
|---|
| 550 | } |
|---|
| 551 | |
|---|
| 552 | /** |
|---|
| 553 | * Returns the absolute deviation value of the supplied attribute index. |
|---|
| 554 | * |
|---|
| 555 | * @param attr an attribute index |
|---|
| 556 | * @param inst the instances |
|---|
| 557 | * @return the absolute deviation value |
|---|
| 558 | */ |
|---|
| 559 | protected static final double absDev(int attr, Instances inst) { |
|---|
| 560 | int i; |
|---|
| 561 | double average=0.0,absdiff=0.0,absDev; |
|---|
| 562 | |
|---|
| 563 | for(i = 0; i <= inst.numInstances()-1; i++) { |
|---|
| 564 | average += inst.instance(i).value(attr); |
|---|
| 565 | } |
|---|
| 566 | if(inst.numInstances() > 1) { |
|---|
| 567 | average /= (double)inst.numInstances(); |
|---|
| 568 | for(i=0; i <= inst.numInstances()-1; i++) { |
|---|
| 569 | absdiff += Math.abs(inst.instance(i).value(attr) - average); |
|---|
| 570 | } |
|---|
| 571 | absDev = absdiff / (double)inst.numInstances(); |
|---|
| 572 | } else { |
|---|
| 573 | absDev = 0.0; |
|---|
| 574 | } |
|---|
| 575 | |
|---|
| 576 | return absDev; |
|---|
| 577 | } |
|---|
| 578 | |
|---|
| 579 | /** |
|---|
| 580 | * Sets whether instances at each node in an M5 tree should be saved |
|---|
| 581 | * for visualization purposes. Default is to save memory. |
|---|
| 582 | * |
|---|
| 583 | * @param save a <code>boolean</code> value |
|---|
| 584 | */ |
|---|
| 585 | protected void setSaveInstances(boolean save) { |
|---|
| 586 | m_saveInstances = save; |
|---|
| 587 | } |
|---|
| 588 | |
|---|
| 589 | /** |
|---|
| 590 | * Get the value of regressionTree. |
|---|
| 591 | * |
|---|
| 592 | * @return Value of regressionTree. |
|---|
| 593 | */ |
|---|
| 594 | public boolean getRegressionTree() { |
|---|
| 595 | |
|---|
| 596 | return m_regressionTree; |
|---|
| 597 | } |
|---|
| 598 | |
|---|
| 599 | /** |
|---|
| 600 | * Set the value of regressionTree. |
|---|
| 601 | * |
|---|
| 602 | * @param newregressionTree Value to assign to regressionTree. |
|---|
| 603 | */ |
|---|
| 604 | public void setRegressionTree(boolean newregressionTree) { |
|---|
| 605 | |
|---|
| 606 | m_regressionTree = newregressionTree; |
|---|
| 607 | } |
|---|
| 608 | |
|---|
| 609 | /** |
|---|
| 610 | * Set the minumum number of instances to allow at a leaf node |
|---|
| 611 | * |
|---|
| 612 | * @param minNum the minimum number of instances |
|---|
| 613 | */ |
|---|
| 614 | public void setMinNumInstances(double minNum) { |
|---|
| 615 | m_minNumInstances = minNum; |
|---|
| 616 | } |
|---|
| 617 | |
|---|
| 618 | /** |
|---|
| 619 | * Get the minimum number of instances to allow at a leaf node |
|---|
| 620 | * |
|---|
| 621 | * @return a <code>double</code> value |
|---|
| 622 | */ |
|---|
| 623 | public double getMinNumInstances() { |
|---|
| 624 | return m_minNumInstances; |
|---|
| 625 | } |
|---|
| 626 | |
|---|
| 627 | public RuleNode getM5RootNode() { |
|---|
| 628 | return m_topOfTree; |
|---|
| 629 | } |
|---|
| 630 | |
|---|
| 631 | /** |
|---|
| 632 | * Returns the revision string. |
|---|
| 633 | * |
|---|
| 634 | * @return the revision |
|---|
| 635 | */ |
|---|
| 636 | public String getRevision() { |
|---|
| 637 | return RevisionUtils.extract("$Revision: 1.15 $"); |
|---|
| 638 | } |
|---|
| 639 | } |
|---|