1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * NBTreeSplit.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees.j48; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.NaiveBayesUpdateable; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.RevisionUtils; |
---|
29 | import weka.filters.Filter; |
---|
30 | import weka.filters.supervised.attribute.Discretize; |
---|
31 | |
---|
32 | import java.util.Random; |
---|
33 | |
---|
34 | /** |
---|
35 | * Class implementing a NBTree split on an attribute. |
---|
36 | * |
---|
37 | * @author Mark Hall (mhall@cs.waikato.ac.nz) |
---|
38 | * @version $Revision: 6088 $ |
---|
39 | */ |
---|
40 | public class NBTreeSplit |
---|
41 | extends ClassifierSplitModel{ |
---|
42 | |
---|
43 | /** for serialization */ |
---|
44 | private static final long serialVersionUID = 8922627123884975070L; |
---|
45 | |
---|
46 | /** Desired number of branches. */ |
---|
47 | private int m_complexityIndex; |
---|
48 | |
---|
49 | /** Attribute to split on. */ |
---|
50 | private int m_attIndex; |
---|
51 | |
---|
52 | /** Minimum number of objects in a split. */ |
---|
53 | private int m_minNoObj; |
---|
54 | |
---|
55 | /** Value of split point. */ |
---|
56 | private double m_splitPoint; |
---|
57 | |
---|
58 | /** The sum of the weights of the instances. */ |
---|
59 | private double m_sumOfWeights; |
---|
60 | |
---|
61 | /** The weight of the instances incorrectly classified by the |
---|
62 | naive bayes models arising from this split*/ |
---|
63 | private double m_errors; |
---|
64 | |
---|
65 | private C45Split m_c45S; |
---|
66 | |
---|
67 | /** The global naive bayes model for this node */ |
---|
68 | NBTreeNoSplit m_globalNB; |
---|
69 | |
---|
70 | /** |
---|
71 | * Initializes the split model. |
---|
72 | */ |
---|
73 | public NBTreeSplit(int attIndex, int minNoObj, double sumOfWeights) { |
---|
74 | |
---|
75 | // Get index of attribute to split on. |
---|
76 | m_attIndex = attIndex; |
---|
77 | |
---|
78 | // Set minimum number of objects. |
---|
79 | m_minNoObj = minNoObj; |
---|
80 | |
---|
81 | // Set the sum of the weights |
---|
82 | m_sumOfWeights = sumOfWeights; |
---|
83 | |
---|
84 | } |
---|
85 | |
---|
86 | /** |
---|
87 | * Creates a NBTree-type split on the given data. Assumes that none of |
---|
88 | * the class values is missing. |
---|
89 | * |
---|
90 | * @exception Exception if something goes wrong |
---|
91 | */ |
---|
92 | public void buildClassifier(Instances trainInstances) |
---|
93 | throws Exception { |
---|
94 | |
---|
95 | // Initialize the remaining instance variables. |
---|
96 | m_numSubsets = 0; |
---|
97 | m_splitPoint = Double.MAX_VALUE; |
---|
98 | m_errors = 0; |
---|
99 | if (m_globalNB != null) { |
---|
100 | m_errors = m_globalNB.getErrors(); |
---|
101 | } |
---|
102 | |
---|
103 | // Different treatment for enumerated and numeric |
---|
104 | // attributes. |
---|
105 | if (trainInstances.attribute(m_attIndex).isNominal()) { |
---|
106 | m_complexityIndex = trainInstances.attribute(m_attIndex).numValues(); |
---|
107 | handleEnumeratedAttribute(trainInstances); |
---|
108 | }else{ |
---|
109 | m_complexityIndex = 2; |
---|
110 | trainInstances.sort(trainInstances.attribute(m_attIndex)); |
---|
111 | handleNumericAttribute(trainInstances); |
---|
112 | } |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Returns index of attribute for which split was generated. |
---|
117 | */ |
---|
118 | public final int attIndex() { |
---|
119 | |
---|
120 | return m_attIndex; |
---|
121 | } |
---|
122 | |
---|
123 | /** |
---|
124 | * Creates split on enumerated attribute. |
---|
125 | * |
---|
126 | * @exception Exception if something goes wrong |
---|
127 | */ |
---|
128 | private void handleEnumeratedAttribute(Instances trainInstances) |
---|
129 | throws Exception { |
---|
130 | |
---|
131 | m_c45S = new C45Split(m_attIndex, 2, m_sumOfWeights, true); |
---|
132 | m_c45S.buildClassifier(trainInstances); |
---|
133 | if (m_c45S.numSubsets() == 0) { |
---|
134 | return; |
---|
135 | } |
---|
136 | m_errors = 0; |
---|
137 | Instance instance; |
---|
138 | |
---|
139 | Instances [] trainingSets = new Instances [m_complexityIndex]; |
---|
140 | for (int i = 0; i < m_complexityIndex; i++) { |
---|
141 | trainingSets[i] = new Instances(trainInstances, 0); |
---|
142 | } |
---|
143 | /* m_distribution = new Distribution(m_complexityIndex, |
---|
144 | trainInstances.numClasses()); */ |
---|
145 | int subset; |
---|
146 | for (int i = 0; i < trainInstances.numInstances(); i++) { |
---|
147 | instance = trainInstances.instance(i); |
---|
148 | subset = m_c45S.whichSubset(instance); |
---|
149 | if (subset > -1) { |
---|
150 | trainingSets[subset].add((Instance)instance.copy()); |
---|
151 | } else { |
---|
152 | double [] weights = m_c45S.weights(instance); |
---|
153 | for (int j = 0; j < m_complexityIndex; j++) { |
---|
154 | try { |
---|
155 | Instance temp = (Instance) instance.copy(); |
---|
156 | if (weights.length == m_complexityIndex) { |
---|
157 | temp.setWeight(temp.weight() * weights[j]); |
---|
158 | } else { |
---|
159 | temp.setWeight(temp.weight() / m_complexityIndex); |
---|
160 | } |
---|
161 | trainingSets[j].add(temp); |
---|
162 | } catch (Exception ex) { |
---|
163 | ex.printStackTrace(); |
---|
164 | System.err.println("*** "+m_complexityIndex); |
---|
165 | System.err.println(weights.length); |
---|
166 | System.exit(1); |
---|
167 | } |
---|
168 | } |
---|
169 | } |
---|
170 | } |
---|
171 | |
---|
172 | /* // compute weights (weights of instances per subset |
---|
173 | m_weights = new double [m_complexityIndex]; |
---|
174 | for (int i = 0; i < m_complexityIndex; i++) { |
---|
175 | m_weights[i] = trainingSets[i].sumOfWeights(); |
---|
176 | } |
---|
177 | Utils.normalize(m_weights); */ |
---|
178 | |
---|
179 | /* |
---|
180 | // Only Instances with known values are relevant. |
---|
181 | Enumeration enu = trainInstances.enumerateInstances(); |
---|
182 | while (enu.hasMoreElements()) { |
---|
183 | instance = (Instance) enu.nextElement(); |
---|
184 | if (!instance.isMissing(m_attIndex)) { |
---|
185 | // m_distribution.add((int)instance.value(m_attIndex),instance); |
---|
186 | trainingSets[(int)instances.value(m_attIndex)].add(instance); |
---|
187 | } else { |
---|
188 | // add these to the error count |
---|
189 | m_errors += instance.weight(); |
---|
190 | } |
---|
191 | } */ |
---|
192 | |
---|
193 | Random r = new Random(1); |
---|
194 | int minNumCount = 0; |
---|
195 | for (int i = 0; i < m_complexityIndex; i++) { |
---|
196 | if (trainingSets[i].numInstances() >= 5) { |
---|
197 | minNumCount++; |
---|
198 | // Discretize the sets |
---|
199 | Discretize disc = new Discretize(); |
---|
200 | disc.setInputFormat(trainingSets[i]); |
---|
201 | trainingSets[i] = Filter.useFilter(trainingSets[i], disc); |
---|
202 | |
---|
203 | trainingSets[i].randomize(r); |
---|
204 | trainingSets[i].stratify(5); |
---|
205 | NaiveBayesUpdateable fullModel = new NaiveBayesUpdateable(); |
---|
206 | fullModel.buildClassifier(trainingSets[i]); |
---|
207 | |
---|
208 | // add the errors for this branch of the split |
---|
209 | m_errors += NBTreeNoSplit.crossValidate(fullModel, trainingSets[i], r); |
---|
210 | } else { |
---|
211 | // if fewer than min obj then just count them as errors |
---|
212 | for (int j = 0; j < trainingSets[i].numInstances(); j++) { |
---|
213 | m_errors += trainingSets[i].instance(j).weight(); |
---|
214 | } |
---|
215 | } |
---|
216 | } |
---|
217 | |
---|
218 | // Check if there are at least five instances in at least two of the subsets |
---|
219 | // subsets. |
---|
220 | if (minNumCount > 1) { |
---|
221 | m_numSubsets = m_complexityIndex; |
---|
222 | } |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Creates split on numeric attribute. |
---|
227 | * |
---|
228 | * @exception Exception if something goes wrong |
---|
229 | */ |
---|
230 | private void handleNumericAttribute(Instances trainInstances) |
---|
231 | throws Exception { |
---|
232 | |
---|
233 | m_c45S = new C45Split(m_attIndex, 2, m_sumOfWeights, true); |
---|
234 | m_c45S.buildClassifier(trainInstances); |
---|
235 | if (m_c45S.numSubsets() == 0) { |
---|
236 | return; |
---|
237 | } |
---|
238 | m_errors = 0; |
---|
239 | |
---|
240 | Instances [] trainingSets = new Instances [m_complexityIndex]; |
---|
241 | trainingSets[0] = new Instances(trainInstances, 0); |
---|
242 | trainingSets[1] = new Instances(trainInstances, 0); |
---|
243 | int subset = -1; |
---|
244 | |
---|
245 | // populate the subsets |
---|
246 | for (int i = 0; i < trainInstances.numInstances(); i++) { |
---|
247 | Instance instance = trainInstances.instance(i); |
---|
248 | subset = m_c45S.whichSubset(instance); |
---|
249 | if (subset != -1) { |
---|
250 | trainingSets[subset].add((Instance)instance.copy()); |
---|
251 | } else { |
---|
252 | double [] weights = m_c45S.weights(instance); |
---|
253 | for (int j = 0; j < m_complexityIndex; j++) { |
---|
254 | Instance temp = (Instance)instance.copy(); |
---|
255 | if (weights.length == m_complexityIndex) { |
---|
256 | temp.setWeight(temp.weight() * weights[j]); |
---|
257 | } else { |
---|
258 | temp.setWeight(temp.weight() / m_complexityIndex); |
---|
259 | } |
---|
260 | trainingSets[j].add(temp); |
---|
261 | } |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | /* // compute weights (weights of instances per subset |
---|
266 | m_weights = new double [m_complexityIndex]; |
---|
267 | for (int i = 0; i < m_complexityIndex; i++) { |
---|
268 | m_weights[i] = trainingSets[i].sumOfWeights(); |
---|
269 | } |
---|
270 | Utils.normalize(m_weights); */ |
---|
271 | |
---|
272 | Random r = new Random(1); |
---|
273 | int minNumCount = 0; |
---|
274 | for (int i = 0; i < m_complexityIndex; i++) { |
---|
275 | if (trainingSets[i].numInstances() > 5) { |
---|
276 | minNumCount++; |
---|
277 | // Discretize the sets |
---|
278 | Discretize disc = new Discretize(); |
---|
279 | disc.setInputFormat(trainingSets[i]); |
---|
280 | trainingSets[i] = Filter.useFilter(trainingSets[i], disc); |
---|
281 | |
---|
282 | trainingSets[i].randomize(r); |
---|
283 | trainingSets[i].stratify(5); |
---|
284 | NaiveBayesUpdateable fullModel = new NaiveBayesUpdateable(); |
---|
285 | fullModel.buildClassifier(trainingSets[i]); |
---|
286 | |
---|
287 | // add the errors for this branch of the split |
---|
288 | m_errors += NBTreeNoSplit.crossValidate(fullModel, trainingSets[i], r); |
---|
289 | } else { |
---|
290 | for (int j = 0; j < trainingSets[i].numInstances(); j++) { |
---|
291 | m_errors += trainingSets[i].instance(j).weight(); |
---|
292 | } |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | // Check if minimum number of Instances in at least two |
---|
297 | // subsets. |
---|
298 | if (minNumCount > 1) { |
---|
299 | m_numSubsets = m_complexityIndex; |
---|
300 | } |
---|
301 | } |
---|
302 | |
---|
303 | /** |
---|
304 | * Returns index of subset instance is assigned to. |
---|
305 | * Returns -1 if instance is assigned to more than one subset. |
---|
306 | * |
---|
307 | * @exception Exception if something goes wrong |
---|
308 | */ |
---|
309 | public final int whichSubset(Instance instance) |
---|
310 | throws Exception { |
---|
311 | |
---|
312 | return m_c45S.whichSubset(instance); |
---|
313 | } |
---|
314 | |
---|
315 | /** |
---|
316 | * Returns weights if instance is assigned to more than one subset. |
---|
317 | * Returns null if instance is only assigned to one subset. |
---|
318 | */ |
---|
319 | public final double [] weights(Instance instance) { |
---|
320 | return m_c45S.weights(instance); |
---|
321 | // return m_weights; |
---|
322 | } |
---|
323 | |
---|
324 | /** |
---|
325 | * Returns a string containing java source code equivalent to the test |
---|
326 | * made at this node. The instance being tested is called "i". |
---|
327 | * |
---|
328 | * @param index index of the nominal value tested |
---|
329 | * @param data the data containing instance structure info |
---|
330 | * @return a value of type 'String' |
---|
331 | */ |
---|
332 | public final String sourceExpression(int index, Instances data) { |
---|
333 | return m_c45S.sourceExpression(index, data); |
---|
334 | } |
---|
335 | |
---|
336 | /** |
---|
337 | * Prints the condition satisfied by instances in a subset. |
---|
338 | * |
---|
339 | * @param index of subset |
---|
340 | * @param data training set. |
---|
341 | */ |
---|
342 | public final String rightSide(int index,Instances data) { |
---|
343 | return m_c45S.rightSide(index, data); |
---|
344 | } |
---|
345 | |
---|
346 | /** |
---|
347 | * Prints left side of condition.. |
---|
348 | * |
---|
349 | * @param data training set. |
---|
350 | */ |
---|
351 | public final String leftSide(Instances data) { |
---|
352 | |
---|
353 | return m_c45S.leftSide(data); |
---|
354 | } |
---|
355 | |
---|
356 | /** |
---|
357 | * Return the probability for a class value |
---|
358 | * |
---|
359 | * @param classIndex the index of the class value |
---|
360 | * @param instance the instance to generate a probability for |
---|
361 | * @param theSubset the subset to consider |
---|
362 | * @return a probability |
---|
363 | * @exception Exception if an error occurs |
---|
364 | */ |
---|
365 | public double classProb(int classIndex, Instance instance, int theSubset) |
---|
366 | throws Exception { |
---|
367 | |
---|
368 | // use the global naive bayes model |
---|
369 | if (theSubset > -1) { |
---|
370 | return m_globalNB.classProb(classIndex, instance, theSubset); |
---|
371 | } else { |
---|
372 | throw new Exception("This shouldn't happen!!!"); |
---|
373 | } |
---|
374 | } |
---|
375 | |
---|
376 | /** |
---|
377 | * Return the global naive bayes model for this node |
---|
378 | * |
---|
379 | * @return a <code>NBTreeNoSplit</code> value |
---|
380 | */ |
---|
381 | public NBTreeNoSplit getGlobalModel() { |
---|
382 | return m_globalNB; |
---|
383 | } |
---|
384 | |
---|
385 | /** |
---|
386 | * Set the global naive bayes model for this node |
---|
387 | * |
---|
388 | * @param global a <code>NBTreeNoSplit</code> value |
---|
389 | */ |
---|
390 | public void setGlobalModel(NBTreeNoSplit global) { |
---|
391 | m_globalNB = global; |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | * Return the errors made by the naive bayes models arising |
---|
396 | * from this split. |
---|
397 | * |
---|
398 | * @return a <code>double</code> value |
---|
399 | */ |
---|
400 | public double getErrors() { |
---|
401 | return m_errors; |
---|
402 | } |
---|
403 | |
---|
404 | /** |
---|
405 | * Returns the revision string. |
---|
406 | * |
---|
407 | * @return the revision |
---|
408 | */ |
---|
409 | public String getRevision() { |
---|
410 | return RevisionUtils.extract("$Revision: 6088 $"); |
---|
411 | } |
---|
412 | } |
---|