[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * J48graft.java |
---|
| 19 | * Copyright (C) 2007 Geoff Webb & Janice Boughton |
---|
| 20 | * (adapted from code written by Eibe Frank). |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.classifiers.trees.j48.BinC45ModelSelection; |
---|
| 29 | import weka.classifiers.trees.j48.C45ModelSelection; |
---|
| 30 | import weka.classifiers.trees.j48.C45PruneableClassifierTreeG; |
---|
| 31 | import weka.classifiers.trees.j48.ClassifierTree; |
---|
| 32 | import weka.classifiers.trees.j48.ModelSelection; |
---|
| 33 | import weka.core.AdditionalMeasureProducer; |
---|
| 34 | import weka.core.Capabilities; |
---|
| 35 | import weka.core.Drawable; |
---|
| 36 | import weka.core.Instance; |
---|
| 37 | import weka.core.Instances; |
---|
| 38 | import weka.core.Matchable; |
---|
| 39 | import weka.core.Option; |
---|
| 40 | import weka.core.OptionHandler; |
---|
| 41 | import weka.core.RevisionUtils; |
---|
| 42 | import weka.core.Summarizable; |
---|
| 43 | import weka.core.TechnicalInformation; |
---|
| 44 | import weka.core.TechnicalInformationHandler; |
---|
| 45 | import weka.core.Utils; |
---|
| 46 | import weka.core.WeightedInstancesHandler; |
---|
| 47 | import weka.core.TechnicalInformation.Field; |
---|
| 48 | import weka.core.TechnicalInformation.Type; |
---|
| 49 | |
---|
| 50 | import java.util.Enumeration; |
---|
| 51 | import java.util.Vector; |
---|
| 52 | |
---|
| 53 | /** |
---|
| 54 | <!-- globalinfo-start --> |
---|
| 55 | * Class for generating a grafted (pruned or unpruned) C4.5 decision tree. For more information, see<br/> |
---|
| 56 | * <br/> |
---|
| 57 | * Geoff Webb: Decision Tree Grafting From the All-Tests-But-One Partition. In: , San Francisco, CA, 1999. |
---|
| 58 | * <p/> |
---|
| 59 | <!-- globalinfo-end --> |
---|
| 60 | * |
---|
| 61 | <!-- technical-bibtex-start --> |
---|
| 62 | * BibTeX: |
---|
| 63 | * <pre> |
---|
| 64 | * @inproceedings{Webb1999, |
---|
| 65 | * address = {San Francisco, CA}, |
---|
| 66 | * author = {Geoff Webb}, |
---|
| 67 | * publisher = {Morgan Kaufmann}, |
---|
| 68 | * title = {Decision Tree Grafting From the All-Tests-But-One Partition}, |
---|
| 69 | * year = {1999} |
---|
| 70 | * } |
---|
| 71 | * </pre> |
---|
| 72 | * <p/> |
---|
| 73 | <!-- technical-bibtex-end --> |
---|
| 74 | * |
---|
| 75 | <!-- options-start --> |
---|
| 76 | * Valid options are: <p/> |
---|
| 77 | * |
---|
| 78 | * <pre> -U |
---|
| 79 | * Use unpruned tree.</pre> |
---|
| 80 | * |
---|
| 81 | * <pre> -C <pruning confidence> |
---|
| 82 | * Set confidence threshold for pruning. |
---|
| 83 | * (default 0.25)</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -M <minimum number of instances> |
---|
| 86 | * Set minimum number of instances per leaf. |
---|
| 87 | * (default 2)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -B |
---|
| 90 | * Use binary splits only.</pre> |
---|
| 91 | * |
---|
| 92 | * <pre> -S |
---|
| 93 | * Don't perform subtree raising.</pre> |
---|
| 94 | * |
---|
| 95 | * <pre> -L |
---|
| 96 | * Do not clean up after the tree has been built.</pre> |
---|
| 97 | * |
---|
| 98 | * <pre> -A |
---|
| 99 | * Laplace smoothing for predicted probabilities. (note: this option only affects initial tree; grafting process always uses laplace).</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -E |
---|
| 102 | * Relabel when grafting.</pre> |
---|
| 103 | * |
---|
| 104 | <!-- options-end --> |
---|
| 105 | * |
---|
| 106 | * @author Janice Boughton (jrbought@csse.monash.edu.au) |
---|
| 107 | * (based on J48.java written by Eibe Frank) |
---|
| 108 | * @version $Revision: 6088 $ |
---|
| 109 | */ |
---|
| 110 | public class J48graft |
---|
| 111 | extends AbstractClassifier |
---|
| 112 | implements OptionHandler, Drawable, Matchable, Sourcable, |
---|
| 113 | WeightedInstancesHandler, Summarizable, |
---|
| 114 | AdditionalMeasureProducer, TechnicalInformationHandler { |
---|
| 115 | |
---|
| 116 | /** for serialization */ |
---|
| 117 | static final long serialVersionUID = 8823716098042427799L; |
---|
| 118 | |
---|
| 119 | /** The decision tree */ |
---|
| 120 | private ClassifierTree m_root; |
---|
| 121 | |
---|
| 122 | /** Unpruned tree? */ |
---|
| 123 | private boolean m_unpruned = false; |
---|
| 124 | |
---|
| 125 | /** Confidence level */ |
---|
| 126 | private float m_CF = 0.25f; |
---|
| 127 | |
---|
| 128 | /** Minimum number of instances */ |
---|
| 129 | private int m_minNumObj = 2; |
---|
| 130 | |
---|
| 131 | /** Determines whether probabilities are smoothed using |
---|
| 132 | Laplace correction when predictions are generated */ |
---|
| 133 | private boolean m_useLaplace = false; |
---|
| 134 | |
---|
| 135 | /** Number of folds for reduced error pruning. */ |
---|
| 136 | private int m_numFolds = 3; |
---|
| 137 | |
---|
| 138 | /** Binary splits on nominal attributes? */ |
---|
| 139 | private boolean m_binarySplits = false; |
---|
| 140 | |
---|
| 141 | /** Subtree raising to be performed? */ |
---|
| 142 | private boolean m_subtreeRaising = true; |
---|
| 143 | |
---|
| 144 | /** Cleanup after the tree has been built. */ |
---|
| 145 | private boolean m_noCleanup = false; |
---|
| 146 | |
---|
| 147 | /** relabel instances when grafting */ |
---|
| 148 | private boolean m_relabel = false; |
---|
| 149 | |
---|
| 150 | /** |
---|
| 151 | * Returns a string describing classifier |
---|
| 152 | * @return a description suitable for |
---|
| 153 | * displaying in the explorer/experimenter gui |
---|
| 154 | */ |
---|
| 155 | public String globalInfo() { |
---|
| 156 | return "Class for generating a grafted (pruned or unpruned) C4.5 " |
---|
| 157 | + "decision tree. For more information, see\n\n" |
---|
| 158 | + getTechnicalInformation().toString(); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 163 | * detailed information about the technical background of this class, |
---|
| 164 | * e.g., paper reference or book this class is based on. |
---|
| 165 | * |
---|
| 166 | * @return the technical information about this class |
---|
| 167 | */ |
---|
| 168 | public TechnicalInformation getTechnicalInformation() { |
---|
| 169 | TechnicalInformation result; |
---|
| 170 | |
---|
| 171 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 172 | result.setValue(Field.AUTHOR, "Geoff Webb"); |
---|
| 173 | result.setValue(Field.YEAR, "1999"); |
---|
| 174 | result.setValue(Field.TITLE, "Decision Tree Grafting From the All-Tests-But-One Partition"); |
---|
| 175 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
| 176 | result.setValue(Field.ADDRESS, "San Francisco, CA"); |
---|
| 177 | |
---|
| 178 | return result; |
---|
| 179 | } |
---|
| 180 | |
---|
| 181 | /** |
---|
| 182 | * Returns default capabilities of the classifier. |
---|
| 183 | * |
---|
| 184 | * @return the capabilities of this classifier |
---|
| 185 | */ |
---|
| 186 | public Capabilities getCapabilities() { |
---|
| 187 | Capabilities result; |
---|
| 188 | |
---|
| 189 | try { |
---|
| 190 | result = new C45PruneableClassifierTreeG(null, !m_unpruned, m_CF, m_subtreeRaising, m_relabel, !m_noCleanup).getCapabilities(); |
---|
| 191 | } |
---|
| 192 | catch (Exception e) { |
---|
| 193 | result = new Capabilities(this); |
---|
| 194 | result.disableAll(); |
---|
| 195 | } |
---|
| 196 | |
---|
| 197 | result.setOwner(this); |
---|
| 198 | |
---|
| 199 | return result; |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** |
---|
| 203 | * Generates the classifier. |
---|
| 204 | * |
---|
| 205 | * @param instances the data to train the classifier with |
---|
| 206 | * @throws Exception if classifier can't be built successfully |
---|
| 207 | */ |
---|
| 208 | public void buildClassifier(Instances instances) |
---|
| 209 | throws Exception { |
---|
| 210 | |
---|
| 211 | ModelSelection modSelection; |
---|
| 212 | |
---|
| 213 | if (m_binarySplits) |
---|
| 214 | modSelection = new BinC45ModelSelection(m_minNumObj, instances, true); |
---|
| 215 | else |
---|
| 216 | modSelection = new C45ModelSelection(m_minNumObj, instances, true); |
---|
| 217 | m_root = new C45PruneableClassifierTreeG(modSelection, |
---|
| 218 | !m_unpruned, m_CF, m_subtreeRaising, |
---|
| 219 | m_relabel, !m_noCleanup); |
---|
| 220 | m_root.buildClassifier(instances); |
---|
| 221 | |
---|
| 222 | if (m_binarySplits) { |
---|
| 223 | ((BinC45ModelSelection)modSelection).cleanup(); |
---|
| 224 | } else { |
---|
| 225 | ((C45ModelSelection)modSelection).cleanup(); |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** |
---|
| 230 | * Classifies an instance. |
---|
| 231 | * |
---|
| 232 | * @param instance the instance to classify |
---|
| 233 | * @return the classification for the instance |
---|
| 234 | * @throws Exception if instance can't be classified successfully |
---|
| 235 | */ |
---|
| 236 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 237 | |
---|
| 238 | return m_root.classifyInstance(instance); |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | /** |
---|
| 242 | * Returns class probabilities for an instance. |
---|
| 243 | * |
---|
| 244 | * @param instance the instance to calculate the class probabilities for |
---|
| 245 | * @return the class probabilities |
---|
| 246 | * @throws Exception if distribution can't be computed successfully |
---|
| 247 | */ |
---|
| 248 | public final double [] distributionForInstance(Instance instance) |
---|
| 249 | throws Exception { |
---|
| 250 | |
---|
| 251 | return m_root.distributionForInstance(instance, m_useLaplace); |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | /** |
---|
| 255 | * Returns the type of graph this classifier |
---|
| 256 | * represents. |
---|
| 257 | * @return Drawable.TREE |
---|
| 258 | */ |
---|
| 259 | public int graphType() { |
---|
| 260 | return Drawable.TREE; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | /** |
---|
| 264 | * Returns graph describing the tree. |
---|
| 265 | * |
---|
| 266 | * @return the graph describing the tree |
---|
| 267 | * @throws Exception if graph can't be computed |
---|
| 268 | */ |
---|
| 269 | public String graph() throws Exception { |
---|
| 270 | |
---|
| 271 | return m_root.graph(); |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | /** |
---|
| 275 | * Returns tree in prefix order. |
---|
| 276 | * |
---|
| 277 | * @return the tree in prefix order |
---|
| 278 | * @throws Exception if something goes wrong |
---|
| 279 | */ |
---|
| 280 | public String prefix() throws Exception { |
---|
| 281 | |
---|
| 282 | return m_root.prefix(); |
---|
| 283 | } |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | /** |
---|
| 287 | * Returns tree as an if-then statement. |
---|
| 288 | * |
---|
| 289 | * @param className the name of the Java class |
---|
| 290 | * @return the tree as a Java if-then type statement |
---|
| 291 | * @throws Exception if something goes wrong |
---|
| 292 | */ |
---|
| 293 | public String toSource(String className) throws Exception { |
---|
| 294 | |
---|
| 295 | StringBuffer [] source = m_root.toSource(className); |
---|
| 296 | return |
---|
| 297 | "class " + className + " {\n\n" |
---|
| 298 | +" public static double classify(Object [] i)\n" |
---|
| 299 | +" throws Exception {\n\n" |
---|
| 300 | +" double p = Double.NaN;\n" |
---|
| 301 | + source[0] // Assignment code |
---|
| 302 | +" return p;\n" |
---|
| 303 | +" }\n" |
---|
| 304 | + source[1] // Support code |
---|
| 305 | +"}\n"; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | /** |
---|
| 309 | * Returns an enumeration describing the available options. |
---|
| 310 | * |
---|
| 311 | * Valid options are: <p> |
---|
| 312 | * |
---|
| 313 | * -U <br> |
---|
| 314 | * Use unpruned tree.<p> |
---|
| 315 | * |
---|
| 316 | * -C confidence <br> |
---|
| 317 | * Set confidence threshold for pruning. (Default: 0.25) <p> |
---|
| 318 | * |
---|
| 319 | * -M number <br> |
---|
| 320 | * Set minimum number of instances per leaf. (Default: 2) <p> |
---|
| 321 | * |
---|
| 322 | * -B <br> |
---|
| 323 | * Use binary splits for nominal attributes. <p> |
---|
| 324 | * |
---|
| 325 | * -S <br> |
---|
| 326 | * Don't perform subtree raising. <p> |
---|
| 327 | * |
---|
| 328 | * -L <br> |
---|
| 329 | * Do not clean up after the tree has been built. |
---|
| 330 | * |
---|
| 331 | * -A <br> |
---|
| 332 | * If set, Laplace smoothing is used for predicted probabilites. |
---|
| 333 | * (note: this option only affects initial tree; grafting process always uses laplace). <p> |
---|
| 334 | * |
---|
| 335 | * -E <br> |
---|
| 336 | * Allow relabelling when grafting. <p> |
---|
| 337 | * |
---|
| 338 | * @return an enumeration of all the available options. |
---|
| 339 | */ |
---|
| 340 | public Enumeration listOptions() { |
---|
| 341 | |
---|
| 342 | Vector newVector = new Vector(9); |
---|
| 343 | |
---|
| 344 | newVector. |
---|
| 345 | addElement(new Option("\tUse unpruned tree.", |
---|
| 346 | "U", 0, "-U")); |
---|
| 347 | newVector. |
---|
| 348 | addElement(new Option("\tSet confidence threshold for pruning.\n" + |
---|
| 349 | "\t(default 0.25)", |
---|
| 350 | "C", 1, "-C <pruning confidence>")); |
---|
| 351 | newVector. |
---|
| 352 | addElement(new Option("\tSet minimum number of instances per leaf.\n" + |
---|
| 353 | "\t(default 2)", |
---|
| 354 | "M", 1, "-M <minimum number of instances>")); |
---|
| 355 | newVector. |
---|
| 356 | addElement(new Option("\tUse binary splits only.", |
---|
| 357 | "B", 0, "-B")); |
---|
| 358 | newVector. |
---|
| 359 | addElement(new Option("\tDon't perform subtree raising.", |
---|
| 360 | "S", 0, "-S")); |
---|
| 361 | newVector. |
---|
| 362 | addElement(new Option("\tDo not clean up after the tree has been built.", |
---|
| 363 | "L", 0, "-L")); |
---|
| 364 | newVector. |
---|
| 365 | addElement(new Option("\tLaplace smoothing for predicted probabilities. (note: this option only affects initial tree; grafting process always uses laplace).", |
---|
| 366 | |
---|
| 367 | "A", 0, "-A")); |
---|
| 368 | newVector. |
---|
| 369 | addElement(new Option("\tRelabel when grafting.", |
---|
| 370 | "E", 0, "-E")); |
---|
| 371 | return newVector.elements(); |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | /** |
---|
| 375 | * Parses a given list of options. |
---|
| 376 | * |
---|
| 377 | <!-- options-start --> |
---|
| 378 | * Valid options are: <p/> |
---|
| 379 | * |
---|
| 380 | * <pre> -U |
---|
| 381 | * Use unpruned tree.</pre> |
---|
| 382 | * |
---|
| 383 | * <pre> -C <pruning confidence> |
---|
| 384 | * Set confidence threshold for pruning. |
---|
| 385 | * (default 0.25)</pre> |
---|
| 386 | * |
---|
| 387 | * <pre> -M <minimum number of instances> |
---|
| 388 | * Set minimum number of instances per leaf. |
---|
| 389 | * (default 2)</pre> |
---|
| 390 | * |
---|
| 391 | * <pre> -B |
---|
| 392 | * Use binary splits only.</pre> |
---|
| 393 | * |
---|
| 394 | * <pre> -S |
---|
| 395 | * Don't perform subtree raising.</pre> |
---|
| 396 | * |
---|
| 397 | * <pre> -L |
---|
| 398 | * Do not clean up after the tree has been built.</pre> |
---|
| 399 | * |
---|
| 400 | * <pre> -A |
---|
| 401 | * Laplace smoothing for predicted probabilities. (note: this option only affects initial tree; grafting process always uses laplace).</pre> |
---|
| 402 | * |
---|
| 403 | * <pre> -E |
---|
| 404 | * Relabel when grafting.</pre> |
---|
| 405 | * |
---|
| 406 | <!-- options-end --> |
---|
| 407 | * |
---|
| 408 | * @param options the list of options as an array of strings |
---|
| 409 | * @throws Exception if an option is not supported |
---|
| 410 | */ |
---|
| 411 | public void setOptions(String[] options) throws Exception { |
---|
| 412 | |
---|
| 413 | // Other options |
---|
| 414 | String minNumString = Utils.getOption('M', options); |
---|
| 415 | if (minNumString.length() != 0) { |
---|
| 416 | m_minNumObj = Integer.parseInt(minNumString); |
---|
| 417 | } else { |
---|
| 418 | m_minNumObj = 2; |
---|
| 419 | } |
---|
| 420 | m_binarySplits = Utils.getFlag('B', options); |
---|
| 421 | m_useLaplace = Utils.getFlag('A', options); |
---|
| 422 | |
---|
| 423 | // Pruning options |
---|
| 424 | m_unpruned = Utils.getFlag('U', options); |
---|
| 425 | m_subtreeRaising = !Utils.getFlag('S', options); |
---|
| 426 | m_noCleanup = Utils.getFlag('L', options); |
---|
| 427 | if ((m_unpruned) && (!m_subtreeRaising)) { |
---|
| 428 | throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); |
---|
| 429 | } |
---|
| 430 | m_relabel = Utils.getFlag('E', options); |
---|
| 431 | String confidenceString = Utils.getOption('C', options); |
---|
| 432 | if (confidenceString.length() != 0) { |
---|
| 433 | if (m_unpruned) { |
---|
| 434 | throw new Exception("Doesn't make sense to change confidence for unpruned " |
---|
| 435 | +"tree!"); |
---|
| 436 | } else { |
---|
| 437 | m_CF = (new Float(confidenceString)).floatValue(); |
---|
| 438 | if ((m_CF <= 0) || (m_CF >= 1)) { |
---|
| 439 | throw new Exception("Confidence has to be greater than zero and smaller " + |
---|
| 440 | "than one!"); |
---|
| 441 | } |
---|
| 442 | } |
---|
| 443 | } else { |
---|
| 444 | m_CF = 0.25f; |
---|
| 445 | } |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Gets the current settings of the Classifier. |
---|
| 450 | * |
---|
| 451 | * @return an array of strings suitable for passing to setOptions |
---|
| 452 | */ |
---|
| 453 | public String [] getOptions() { |
---|
| 454 | |
---|
| 455 | String [] options = new String [10]; |
---|
| 456 | int current = 0; |
---|
| 457 | |
---|
| 458 | if (m_noCleanup) { |
---|
| 459 | options[current++] = "-L"; |
---|
| 460 | } |
---|
| 461 | if (m_unpruned) { |
---|
| 462 | options[current++] = "-U"; |
---|
| 463 | } else { |
---|
| 464 | if (!m_subtreeRaising) { |
---|
| 465 | options[current++] = "-S"; |
---|
| 466 | } |
---|
| 467 | options[current++] = "-C"; options[current++] = "" + m_CF; |
---|
| 468 | } |
---|
| 469 | if (m_binarySplits) { |
---|
| 470 | options[current++] = "-B"; |
---|
| 471 | } |
---|
| 472 | options[current++] = "-M"; options[current++] = "" + m_minNumObj; |
---|
| 473 | if (m_useLaplace) { |
---|
| 474 | options[current++] = "-A"; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | if(m_relabel) { |
---|
| 478 | options[current++] = "-E"; |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | while (current < options.length) { |
---|
| 482 | options[current++] = ""; |
---|
| 483 | } |
---|
| 484 | return options; |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | /** |
---|
| 488 | * Returns the tip text for this property |
---|
| 489 | * @return tip text for this property suitable for |
---|
| 490 | * displaying in the explorer/experimenter gui |
---|
| 491 | */ |
---|
| 492 | public String useLaplaceTipText() { |
---|
| 493 | return "Whether counts at leaves are smoothed based on Laplace."; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | /** |
---|
| 497 | * Get the value of useLaplace. |
---|
| 498 | * |
---|
| 499 | * @return Value of useLaplace. |
---|
| 500 | */ |
---|
| 501 | public boolean getUseLaplace() { |
---|
| 502 | |
---|
| 503 | return m_useLaplace; |
---|
| 504 | } |
---|
| 505 | |
---|
| 506 | /** |
---|
| 507 | * Set the value of useLaplace. |
---|
| 508 | * |
---|
| 509 | * @param newuseLaplace Value to assign to useLaplace. |
---|
| 510 | */ |
---|
| 511 | public void setUseLaplace(boolean newuseLaplace) { |
---|
| 512 | |
---|
| 513 | m_useLaplace = newuseLaplace; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | /** |
---|
| 517 | * Returns a description of the classifier. |
---|
| 518 | * |
---|
| 519 | * @return a description of the classifier |
---|
| 520 | */ |
---|
| 521 | public String toString() { |
---|
| 522 | |
---|
| 523 | if (m_root == null) { |
---|
| 524 | return "No classifier built"; |
---|
| 525 | } |
---|
| 526 | if (m_unpruned) |
---|
| 527 | return "J48graft unpruned tree\n------------------\n" + m_root.toString(); |
---|
| 528 | else |
---|
| 529 | return "J48graft pruned tree\n------------------\n" + m_root.toString(); |
---|
| 530 | } |
---|
| 531 | |
---|
| 532 | /** |
---|
| 533 | * Returns a superconcise version of the model |
---|
| 534 | * |
---|
| 535 | * @return a summary of the model |
---|
| 536 | */ |
---|
| 537 | public String toSummaryString() { |
---|
| 538 | |
---|
| 539 | return "Number of leaves: " + m_root.numLeaves() + "\n" |
---|
| 540 | + "Size of the tree: " + m_root.numNodes() + "\n"; |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | /** |
---|
| 544 | * Returns the size of the tree |
---|
| 545 | * @return the size of the tree |
---|
| 546 | */ |
---|
| 547 | public double measureTreeSize() { |
---|
| 548 | return m_root.numNodes(); |
---|
| 549 | } |
---|
| 550 | |
---|
| 551 | /** |
---|
| 552 | * Returns the number of leaves |
---|
| 553 | * @return the number of leaves |
---|
| 554 | */ |
---|
| 555 | public double measureNumLeaves() { |
---|
| 556 | return m_root.numLeaves(); |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** |
---|
| 560 | * Returns the number of rules (same as number of leaves) |
---|
| 561 | * @return the number of rules |
---|
| 562 | */ |
---|
| 563 | public double measureNumRules() { |
---|
| 564 | return m_root.numLeaves(); |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | /** |
---|
| 568 | * Returns an enumeration of the additional measure names |
---|
| 569 | * @return an enumeration of the measure names |
---|
| 570 | */ |
---|
| 571 | public Enumeration enumerateMeasures() { |
---|
| 572 | Vector newVector = new Vector(3); |
---|
| 573 | newVector.addElement("measureTreeSize"); |
---|
| 574 | newVector.addElement("measureNumLeaves"); |
---|
| 575 | newVector.addElement("measureNumRules"); |
---|
| 576 | return newVector.elements(); |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | /** |
---|
| 580 | * Returns the value of the named measure |
---|
| 581 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 582 | * @return the value of the named measure |
---|
| 583 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 584 | */ |
---|
| 585 | public double getMeasure(String additionalMeasureName) { |
---|
| 586 | if (additionalMeasureName.compareTo("measureNumRules") == 0) { |
---|
| 587 | return measureNumRules(); |
---|
| 588 | } else if (additionalMeasureName.compareTo("measureTreeSize") == 0) { |
---|
| 589 | return measureTreeSize(); |
---|
| 590 | } else if (additionalMeasureName.compareTo("measureNumLeaves") == 0) { |
---|
| 591 | return measureNumLeaves(); |
---|
| 592 | } else { |
---|
| 593 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 594 | + " not supported (j48)"); |
---|
| 595 | } |
---|
| 596 | } |
---|
| 597 | |
---|
| 598 | /** |
---|
| 599 | * Returns the tip text for this property |
---|
| 600 | * @return tip text for this property suitable for |
---|
| 601 | * displaying in the explorer/experimenter gui |
---|
| 602 | */ |
---|
| 603 | public String unprunedTipText() { |
---|
| 604 | return "Whether pruning is performed."; |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | /** |
---|
| 608 | * Get the value of unpruned. |
---|
| 609 | * |
---|
| 610 | * @return Value of unpruned. |
---|
| 611 | */ |
---|
| 612 | public boolean getUnpruned() { |
---|
| 613 | |
---|
| 614 | return m_unpruned; |
---|
| 615 | } |
---|
| 616 | |
---|
| 617 | /** |
---|
| 618 | * Set the value of unpruned. |
---|
| 619 | * @param v Value to assign to unpruned. |
---|
| 620 | */ |
---|
| 621 | public void setUnpruned(boolean v) { |
---|
| 622 | |
---|
| 623 | m_unpruned = v; |
---|
| 624 | } |
---|
| 625 | |
---|
| 626 | /** |
---|
| 627 | * Returns the tip text for this property |
---|
| 628 | * @return tip text for this property suitable for |
---|
| 629 | * displaying in the explorer/experimenter gui |
---|
| 630 | */ |
---|
| 631 | public String relabelTipText() { |
---|
| 632 | return "Whether relabelling is allowed during grafting."; |
---|
| 633 | } |
---|
| 634 | |
---|
| 635 | /** |
---|
| 636 | * Get the value of relabelling |
---|
| 637 | * |
---|
| 638 | * @return Value of relabelling. |
---|
| 639 | */ |
---|
| 640 | public boolean getRelabel() { |
---|
| 641 | |
---|
| 642 | return m_relabel; |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | /** |
---|
| 646 | * Set the value of relabelling. |
---|
| 647 | * |
---|
| 648 | * @param v Value to assign to relabelling flag. |
---|
| 649 | */ |
---|
| 650 | public void setRelabel(boolean v) { |
---|
| 651 | m_relabel = v; |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | /** |
---|
| 655 | * Returns the tip text for this property |
---|
| 656 | * @return tip text for this property suitable for |
---|
| 657 | * displaying in the explorer/experimenter gui |
---|
| 658 | */ |
---|
| 659 | public String confidenceFactorTipText() { |
---|
| 660 | return "The confidence factor used for pruning (smaller values incur " |
---|
| 661 | + "more pruning)."; |
---|
| 662 | } |
---|
| 663 | |
---|
| 664 | /** |
---|
| 665 | * Get the value of CF. |
---|
| 666 | * |
---|
| 667 | * @return Value of CF. |
---|
| 668 | */ |
---|
| 669 | public float getConfidenceFactor() { |
---|
| 670 | |
---|
| 671 | return m_CF; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | /** |
---|
| 675 | * Set the value of CF. |
---|
| 676 | * |
---|
| 677 | * @param v Value to assign to CF. |
---|
| 678 | */ |
---|
| 679 | public void setConfidenceFactor(float v) { |
---|
| 680 | |
---|
| 681 | m_CF = v; |
---|
| 682 | } |
---|
| 683 | |
---|
| 684 | /** |
---|
| 685 | * Returns the tip text for this property |
---|
| 686 | * @return tip text for this property suitable for |
---|
| 687 | * displaying in the explorer/experimenter gui |
---|
| 688 | */ |
---|
| 689 | public String minNumObjTipText() { |
---|
| 690 | return "The minimum number of instances per leaf."; |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | /** |
---|
| 694 | * Get the value of minNumObj. |
---|
| 695 | * |
---|
| 696 | * @return Value of minNumObj. |
---|
| 697 | */ |
---|
| 698 | public int getMinNumObj() { |
---|
| 699 | |
---|
| 700 | return m_minNumObj; |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | /** |
---|
| 704 | * Set the value of minNumObj. |
---|
| 705 | * |
---|
| 706 | * @param v Value to assign to minNumObj. |
---|
| 707 | */ |
---|
| 708 | public void setMinNumObj(int v) { |
---|
| 709 | |
---|
| 710 | m_minNumObj = v; |
---|
| 711 | } |
---|
| 712 | |
---|
| 713 | /** |
---|
| 714 | * Returns the tip text for this property |
---|
| 715 | * @return tip text for this property suitable for |
---|
| 716 | * displaying in the explorer/experimenter gui |
---|
| 717 | */ |
---|
| 718 | public String binarySplitsTipText() { |
---|
| 719 | return "Whether to use binary splits on nominal attributes when " |
---|
| 720 | + "building the trees."; |
---|
| 721 | } |
---|
| 722 | |
---|
| 723 | /** |
---|
| 724 | * Get the value of binarySplits. |
---|
| 725 | * |
---|
| 726 | * @return Value of binarySplits. |
---|
| 727 | */ |
---|
| 728 | public boolean getBinarySplits() { |
---|
| 729 | |
---|
| 730 | return m_binarySplits; |
---|
| 731 | } |
---|
| 732 | |
---|
| 733 | /** |
---|
| 734 | * Set the value of binarySplits. |
---|
| 735 | * |
---|
| 736 | * @param v Value to assign to binarySplits. |
---|
| 737 | */ |
---|
| 738 | public void setBinarySplits(boolean v) { |
---|
| 739 | |
---|
| 740 | m_binarySplits = v; |
---|
| 741 | } |
---|
| 742 | |
---|
| 743 | /** |
---|
| 744 | * Returns the tip text for this property |
---|
| 745 | * @return tip text for this property suitable for |
---|
| 746 | * displaying in the explorer/experimenter gui |
---|
| 747 | */ |
---|
| 748 | public String subtreeRaisingTipText() { |
---|
| 749 | return "Whether to consider the subtree raising operation when pruning."; |
---|
| 750 | } |
---|
| 751 | |
---|
| 752 | /** |
---|
| 753 | * Get the value of subtreeRaising. |
---|
| 754 | * |
---|
| 755 | * @return Value of subtreeRaising. |
---|
| 756 | */ |
---|
| 757 | public boolean getSubtreeRaising() { |
---|
| 758 | |
---|
| 759 | return m_subtreeRaising; |
---|
| 760 | } |
---|
| 761 | |
---|
| 762 | /** |
---|
| 763 | * Set the value of subtreeRaising. |
---|
| 764 | * |
---|
| 765 | * @param v Value to assign to subtreeRaising. |
---|
| 766 | */ |
---|
| 767 | public void setSubtreeRaising(boolean v) { |
---|
| 768 | |
---|
| 769 | m_subtreeRaising = v; |
---|
| 770 | } |
---|
| 771 | |
---|
| 772 | /** |
---|
| 773 | * Returns the tip text for this property |
---|
| 774 | * @return tip text for this property suitable for |
---|
| 775 | * displaying in the explorer/experimenter gui |
---|
| 776 | */ |
---|
| 777 | public String saveInstanceDataTipText() { |
---|
| 778 | return "Whether to save the training data for visualization."; |
---|
| 779 | } |
---|
| 780 | |
---|
| 781 | /** |
---|
| 782 | * Check whether instance data is to be saved. |
---|
| 783 | * |
---|
| 784 | * @return true if instance data is saved |
---|
| 785 | */ |
---|
| 786 | public boolean getSaveInstanceData() { |
---|
| 787 | |
---|
| 788 | return m_noCleanup; |
---|
| 789 | } |
---|
| 790 | |
---|
| 791 | /** |
---|
| 792 | * Set whether instance data is to be saved. |
---|
| 793 | * @param v true if instance data is to be saved |
---|
| 794 | */ |
---|
| 795 | public void setSaveInstanceData(boolean v) { |
---|
| 796 | |
---|
| 797 | m_noCleanup = v; |
---|
| 798 | } |
---|
| 799 | |
---|
| 800 | /** |
---|
| 801 | * Returns the revision string. |
---|
| 802 | * |
---|
| 803 | * @return the revision |
---|
| 804 | */ |
---|
| 805 | public String getRevision() { |
---|
| 806 | return RevisionUtils.extract("$Revision: 6088 $"); |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | /** |
---|
| 810 | * Main method for testing this class |
---|
| 811 | * |
---|
| 812 | * @param argv the commandline options |
---|
| 813 | */ |
---|
| 814 | public static void main(String [] argv){ |
---|
| 815 | runClassifier(new J48graft(), argv); |
---|
| 816 | } |
---|
| 817 | } |
---|
| 818 | |
---|