source: branches/MetisMQI/src/main/java/weka/classifiers/trees/J48.java @ 37

Last change on this file since 37 was 29, checked in by gnappo, 14 years ago

Taggata versione per la demo e aggiunto branch.

File size: 26.8 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    J48.java
19 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23package weka.classifiers.trees;
24
25import weka.classifiers.Classifier;
26import weka.classifiers.AbstractClassifier;
27import weka.classifiers.Sourcable;
28import weka.classifiers.trees.j48.BinC45ModelSelection;
29import weka.classifiers.trees.j48.C45ModelSelection;
30import weka.classifiers.trees.j48.C45PruneableClassifierTree;
31import weka.classifiers.trees.j48.ClassifierTree;
32import weka.classifiers.trees.j48.ModelSelection;
33import weka.classifiers.trees.j48.PruneableClassifierTree;
34import weka.core.AdditionalMeasureProducer;
35import weka.core.Capabilities;
36import weka.core.Drawable;
37import weka.core.Instance;
38import weka.core.Instances;
39import weka.core.Matchable;
40import weka.core.Option;
41import weka.core.OptionHandler;
42import weka.core.RevisionUtils;
43import weka.core.Summarizable;
44import weka.core.TechnicalInformation;
45import weka.core.TechnicalInformationHandler;
46import weka.core.Utils;
47import weka.core.WeightedInstancesHandler;
48import weka.core.TechnicalInformation.Field;
49import weka.core.TechnicalInformation.Type;
50
51import java.util.Enumeration;
52import java.util.Vector;
53
54/**
55 <!-- globalinfo-start -->
56 * Class for generating a pruned or unpruned C4.5 decision tree. For more information, see<br/>
57 * <br/>
58 * Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
59 * <p/>
60 <!-- globalinfo-end -->
61 *
62 <!-- technical-bibtex-start -->
63 * BibTeX:
64 * <pre>
65 * &#64;book{Quinlan1993,
66 *    address = {San Mateo, CA},
67 *    author = {Ross Quinlan},
68 *    publisher = {Morgan Kaufmann Publishers},
69 *    title = {C4.5: Programs for Machine Learning},
70 *    year = {1993}
71 * }
72 * </pre>
73 * <p/>
74 <!-- technical-bibtex-end -->
75 *
76 <!-- options-start -->
77 * Valid options are: <p/>
78 *
79 * <pre> -U
80 *  Use unpruned tree.</pre>
81 *
82 * <pre> -O
83 *  Do not collapse tree.</pre>
84 *
85 * <pre> -C &lt;pruning confidence&gt;
86 *  Set confidence threshold for pruning.
87 *  (default 0.25)</pre>
88 *
89 * <pre> -M &lt;minimum number of instances&gt;
90 *  Set minimum number of instances per leaf.
91 *  (default 2)</pre>
92 *
93 * <pre> -R
94 *  Use reduced error pruning.</pre>
95 *
96 * <pre> -N &lt;number of folds&gt;
97 *  Set number of folds for reduced error
98 *  pruning. One fold is used as pruning set.
99 *  (default 3)</pre>
100 *
101 * <pre> -B
102 *  Use binary splits only.</pre>
103 *
104 * <pre> -S
105 *  Don't perform subtree raising.</pre>
106 *
107 * <pre> -L
108 *  Do not clean up after the tree has been built.</pre>
109 *
110 * <pre> -A
111 *  Laplace smoothing for predicted probabilities.</pre>
112 *
113 * <pre> -J
114 *  Do not use MDL correction for info gain on numeric attributes.</pre>
115 *
116 * <pre> -Q &lt;seed&gt;
117 *  Seed for random data shuffling (default 1).</pre>
118 *
119 <!-- options-end -->
120 *
121 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
122 * @version $Revision: 6088 $
123 */
124public class J48 
125  extends AbstractClassifier
126  implements OptionHandler, Drawable, Matchable, Sourcable, 
127             WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, 
128             TechnicalInformationHandler {
129
130  /** for serialization */
131  static final long serialVersionUID = -217733168393644444L;
132
133  /** The decision tree */
134  protected ClassifierTree m_root;
135 
136  /** Unpruned tree? */
137  private boolean m_unpruned = false;
138
139  /** Collapse tree? */
140  private boolean m_collapseTree = true;
141
142  /** Confidence level */
143  private float m_CF = 0.25f;
144
145  /** Minimum number of instances */
146  private int m_minNumObj = 2;
147
148  /** Use MDL correction? */
149  private boolean m_useMDLcorrection = true;         
150
151  /** Determines whether probabilities are smoothed using
152      Laplace correction when predictions are generated */
153  private boolean m_useLaplace = false;
154
155  /** Use reduced error pruning? */
156  private boolean m_reducedErrorPruning = false;
157
158  /** Number of folds for reduced error pruning. */
159  private int m_numFolds = 3;
160
161  /** Binary splits on nominal attributes? */
162  private boolean m_binarySplits = false;
163
164  /** Subtree raising to be performed? */
165  private boolean m_subtreeRaising = true;
166
167  /** Cleanup after the tree has been built. */
168  private boolean m_noCleanup = false;
169
170  /** Random number seed for reduced-error pruning. */
171  private int m_Seed = 1;
172
173  /**
174   * Returns a string describing classifier
175   * @return a description suitable for
176   * displaying in the explorer/experimenter gui
177   */
178  public String globalInfo() {
179
180    return  "Class for generating a pruned or unpruned C4.5 decision tree. For more "
181      + "information, see\n\n"
182      + getTechnicalInformation().toString();
183  }
184
185  /**
186   * Returns an instance of a TechnicalInformation object, containing
187   * detailed information about the technical background of this class,
188   * e.g., paper reference or book this class is based on.
189   *
190   * @return the technical information about this class
191   */
192  public TechnicalInformation getTechnicalInformation() {
193    TechnicalInformation        result;
194   
195    result = new TechnicalInformation(Type.BOOK);
196    result.setValue(Field.AUTHOR, "Ross Quinlan");
197    result.setValue(Field.YEAR, "1993");
198    result.setValue(Field.TITLE, "C4.5: Programs for Machine Learning");
199    result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers");
200    result.setValue(Field.ADDRESS, "San Mateo, CA");
201   
202    return result;
203  }
204
205  /**
206   * Returns default capabilities of the classifier.
207   *
208   * @return      the capabilities of this classifier
209   */
210  public Capabilities getCapabilities() {
211    Capabilities      result;
212   
213    try {
214      if (!m_reducedErrorPruning)
215        result = new C45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup, m_collapseTree).getCapabilities();
216      else
217        result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed).getCapabilities();
218    }
219    catch (Exception e) {
220      result = new Capabilities(this);
221      result.disableAll();
222    }
223   
224    result.setOwner(this);
225   
226    return result;
227  }
228 
229  /**
230   * Generates the classifier.
231   *
232   * @param instances the data to train the classifier with
233   * @throws Exception if classifier can't be built successfully
234   */
235  public void buildClassifier(Instances instances) 
236       throws Exception {
237
238    ModelSelection modSelection;         
239
240    if (m_binarySplits)
241      modSelection = new BinC45ModelSelection(m_minNumObj, instances, m_useMDLcorrection);
242    else
243      modSelection = new C45ModelSelection(m_minNumObj, instances, m_useMDLcorrection);
244    if (!m_reducedErrorPruning)
245      m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF,
246                                              m_subtreeRaising, !m_noCleanup, m_collapseTree);
247    else
248      m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds,
249                                           !m_noCleanup, m_Seed);
250    m_root.buildClassifier(instances);
251    if (m_binarySplits) {
252      ((BinC45ModelSelection)modSelection).cleanup();
253    } else {
254      ((C45ModelSelection)modSelection).cleanup();
255    }
256  }
257
258  /**
259   * Classifies an instance.
260   *
261   * @param instance the instance to classify
262   * @return the classification for the instance
263   * @throws Exception if instance can't be classified successfully
264   */
265  public double classifyInstance(Instance instance) throws Exception {
266
267    return m_root.classifyInstance(instance);
268  }
269
270  /**
271   * Returns class probabilities for an instance.
272   *
273   * @param instance the instance to calculate the class probabilities for
274   * @return the class probabilities
275   * @throws Exception if distribution can't be computed successfully
276   */
277  public final double [] distributionForInstance(Instance instance) 
278       throws Exception {
279
280    return m_root.distributionForInstance(instance, m_useLaplace);
281  }
282
283  /**
284   *  Returns the type of graph this classifier
285   *  represents.
286   *  @return Drawable.TREE
287   */   
288  public int graphType() {
289      return Drawable.TREE;
290  }
291
292  /**
293   * Returns graph describing the tree.
294   *
295   * @return the graph describing the tree
296   * @throws Exception if graph can't be computed
297   */
298  public String graph() throws Exception {
299
300    return m_root.graph();
301  }
302
303  /**
304   * Returns tree in prefix order.
305   *
306   * @return the tree in prefix order
307   * @throws Exception if something goes wrong
308   */
309  public String prefix() throws Exception {
310   
311    return m_root.prefix();
312  }
313
314
315  /**
316   * Returns tree as an if-then statement.
317   *
318   * @param className the name of the Java class
319   * @return the tree as a Java if-then type statement
320   * @throws Exception if something goes wrong
321   */
322  public String toSource(String className) throws Exception {
323
324    StringBuffer [] source = m_root.toSource(className);
325    return 
326    "class " + className + " {\n\n"
327    +"  public static double classify(Object[] i)\n"
328    +"    throws Exception {\n\n"
329    +"    double p = Double.NaN;\n"
330    + source[0]  // Assignment code
331    +"    return p;\n"
332    +"  }\n"
333    + source[1]  // Support code
334    +"}\n";
335  }
336
337  /**
338   * Returns an enumeration describing the available options.
339   *
340   * Valid options are: <p>
341   *
342   * -U <br>
343   * Use unpruned tree.<p>
344   *
345   * -C confidence <br>
346   * Set confidence threshold for pruning. (Default: 0.25) <p>
347   *
348   * -M number <br>
349   * Set minimum number of instances per leaf. (Default: 2) <p>
350   *
351   * -R <br>
352   * Use reduced error pruning. No subtree raising is performed. <p>
353   *
354   * -N number <br>
355   * Set number of folds for reduced error pruning. One fold is
356   * used as the pruning set. (Default: 3) <p>
357   *
358   * -B <br>
359   * Use binary splits for nominal attributes. <p>
360   *
361   * -S <br>
362   * Don't perform subtree raising. <p>
363   *
364   * -L <br>
365   * Do not clean up after the tree has been built.
366   *
367   * -A <br>
368   * If set, Laplace smoothing is used for predicted probabilites. <p>
369   *
370   * -Q <br>
371   * The seed for reduced-error pruning. <p>
372   *
373   * @return an enumeration of all the available options.
374   */
375  public Enumeration listOptions() {
376
377    Vector newVector = new Vector(12);
378
379    newVector.
380        addElement(new Option("\tUse unpruned tree.",
381                              "U", 0, "-U"));
382    newVector.
383        addElement(new Option("\tDo not collapse tree.",
384                              "O", 0, "-O"));
385    newVector.
386        addElement(new Option("\tSet confidence threshold for pruning.\n" +
387                              "\t(default 0.25)",
388                              "C", 1, "-C <pruning confidence>"));
389    newVector.
390        addElement(new Option("\tSet minimum number of instances per leaf.\n" +
391                              "\t(default 2)",
392                              "M", 1, "-M <minimum number of instances>"));
393    newVector.
394        addElement(new Option("\tUse reduced error pruning.",
395                              "R", 0, "-R"));
396    newVector.
397        addElement(new Option("\tSet number of folds for reduced error\n" +
398                              "\tpruning. One fold is used as pruning set.\n" +
399                              "\t(default 3)",
400                              "N", 1, "-N <number of folds>"));
401    newVector.
402        addElement(new Option("\tUse binary splits only.",
403                              "B", 0, "-B"));
404    newVector.
405        addElement(new Option("\tDon't perform subtree raising.",
406                              "S", 0, "-S"));
407    newVector.
408        addElement(new Option("\tDo not clean up after the tree has been built.",
409                              "L", 0, "-L"));
410    newVector.
411      addElement(new Option("\tLaplace smoothing for predicted probabilities.",
412                            "A", 0, "-A"));
413    newVector.
414      addElement(new Option("\tDo not use MDL correction for info gain on numeric attributes.",
415                            "J", 0, "-J"));
416    newVector.
417      addElement(new Option("\tSeed for random data shuffling (default 1).",
418                            "Q", 1, "-Q <seed>"));
419
420    return newVector.elements();
421  }
422
423  /**
424   * Parses a given list of options.
425   *
426   <!-- options-start -->
427   * Valid options are: <p/>
428   *
429   * <pre> -U
430   *  Use unpruned tree.</pre>
431   *
432   * <pre> -O
433   *  Do not collapse tree.</pre>
434   *
435   * <pre> -C &lt;pruning confidence&gt;
436   *  Set confidence threshold for pruning.
437   *  (default 0.25)</pre>
438   *
439   * <pre> -M &lt;minimum number of instances&gt;
440   *  Set minimum number of instances per leaf.
441   *  (default 2)</pre>
442   *
443   * <pre> -R
444   *  Use reduced error pruning.</pre>
445   *
446   * <pre> -N &lt;number of folds&gt;
447   *  Set number of folds for reduced error
448   *  pruning. One fold is used as pruning set.
449   *  (default 3)</pre>
450   *
451   * <pre> -B
452   *  Use binary splits only.</pre>
453   *
454   * <pre> -S
455   *  Don't perform subtree raising.</pre>
456   *
457   * <pre> -L
458   *  Do not clean up after the tree has been built.</pre>
459   *
460   * <pre> -A
461   *  Laplace smoothing for predicted probabilities.</pre>
462   *
463   * <pre> -J
464   *  Do not use MDL correction for info gain on numeric attributes.</pre>
465   *
466   * <pre> -Q &lt;seed&gt;
467   *  Seed for random data shuffling (default 1).</pre>
468   *
469   <!-- options-end -->
470   *
471   * @param options the list of options as an array of strings
472   * @throws Exception if an option is not supported
473   */
474  public void setOptions(String[] options) throws Exception {
475   
476    // Other options
477    String minNumString = Utils.getOption('M', options);
478    if (minNumString.length() != 0) {
479      m_minNumObj = Integer.parseInt(minNumString);
480    } else {
481      m_minNumObj = 2;
482    }
483    m_binarySplits = Utils.getFlag('B', options);
484    m_useLaplace = Utils.getFlag('A', options);
485    m_useMDLcorrection = !Utils.getFlag('J', options);
486
487    // Pruning options
488    m_unpruned = Utils.getFlag('U', options);
489    m_collapseTree = !Utils.getFlag('O', options);
490    m_subtreeRaising = !Utils.getFlag('S', options);
491    m_noCleanup = Utils.getFlag('L', options);
492    if ((m_unpruned) && (!m_subtreeRaising)) {
493      throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!");
494    }
495    m_reducedErrorPruning = Utils.getFlag('R', options);
496    if ((m_unpruned) && (m_reducedErrorPruning)) {
497      throw new Exception("Unpruned tree and reduced error pruning can't be selected " +
498                          "simultaneously!");
499    }
500    String confidenceString = Utils.getOption('C', options);
501    if (confidenceString.length() != 0) {
502      if (m_reducedErrorPruning) {
503        throw new Exception("Setting the confidence doesn't make sense " +
504                            "for reduced error pruning.");
505      } else if (m_unpruned) {
506        throw new Exception("Doesn't make sense to change confidence for unpruned "
507                            +"tree!");
508      } else {
509        m_CF = (new Float(confidenceString)).floatValue();
510        if ((m_CF <= 0) || (m_CF >= 1)) {
511          throw new Exception("Confidence has to be greater than zero and smaller " +
512                              "than one!");
513        }
514      }
515    } else {
516      m_CF = 0.25f;
517    }
518    String numFoldsString = Utils.getOption('N', options);
519    if (numFoldsString.length() != 0) {
520      if (!m_reducedErrorPruning) {
521        throw new Exception("Setting the number of folds" +
522                            " doesn't make sense if" +
523                            " reduced error pruning is not selected.");
524      } else {
525        m_numFolds = Integer.parseInt(numFoldsString);
526      }
527    } else {
528      m_numFolds = 3;
529    }
530    String seedString = Utils.getOption('Q', options);
531    if (seedString.length() != 0) {
532      m_Seed = Integer.parseInt(seedString);
533    } else {
534      m_Seed = 1;
535    }
536  }
537
538  /**
539   * Gets the current settings of the Classifier.
540   *
541   * @return an array of strings suitable for passing to setOptions
542   */
543  public String [] getOptions() {
544
545    String [] options = new String [16];
546    int current = 0;
547
548    if (m_noCleanup) {
549      options[current++] = "-L";
550    }
551    if (!m_collapseTree) {
552      options[current++] = "-O";
553    }
554    if (m_unpruned) {
555      options[current++] = "-U";
556    } else {
557      if (!m_subtreeRaising) {
558        options[current++] = "-S";
559      }
560      if (m_reducedErrorPruning) {
561        options[current++] = "-R";
562        options[current++] = "-N"; options[current++] = "" + m_numFolds;
563        options[current++] = "-Q"; options[current++] = "" + m_Seed;
564      } else {
565        options[current++] = "-C"; options[current++] = "" + m_CF;
566      }
567    }
568    if (m_binarySplits) {
569      options[current++] = "-B";
570    }
571    options[current++] = "-M"; options[current++] = "" + m_minNumObj;
572    if (m_useLaplace) {
573      options[current++] = "-A";
574    }
575    if (!m_useMDLcorrection) {
576      options[current++] = "-J";
577    }
578
579    while (current < options.length) {
580      options[current++] = "";
581    }
582    return options;
583  }
584
585  /**
586   * Returns the tip text for this property
587   * @return tip text for this property suitable for
588   * displaying in the explorer/experimenter gui
589   */
590  public String seedTipText() {
591    return "The seed used for randomizing the data " +
592      "when reduced-error pruning is used.";
593  }
594
595  /**
596   * Get the value of Seed.
597   *
598   * @return Value of Seed.
599   */
600  public int getSeed() {
601   
602    return m_Seed;
603  }
604 
605  /**
606   * Set the value of Seed.
607   *
608   * @param newSeed Value to assign to Seed.
609   */
610  public void setSeed(int newSeed) {
611   
612    m_Seed = newSeed;
613  }
614
615  /**
616   * Returns the tip text for this property
617   * @return tip text for this property suitable for
618   * displaying in the explorer/experimenter gui
619   */
620  public String useLaplaceTipText() {
621    return "Whether counts at leaves are smoothed based on Laplace.";
622  }
623
624  /**
625   * Get the value of useLaplace.
626   *
627   * @return Value of useLaplace.
628   */
629  public boolean getUseLaplace() {
630   
631    return m_useLaplace;
632  }
633 
634  /**
635   * Set the value of useLaplace.
636   *
637   * @param newuseLaplace Value to assign to useLaplace.
638   */
639  public void setUseLaplace(boolean newuseLaplace) {
640   
641    m_useLaplace = newuseLaplace;
642  }
643
644  /**
645   * Returns the tip text for this property
646   * @return tip text for this property suitable for
647   * displaying in the explorer/experimenter gui
648   */
649  public String useMDLcorrectionTipText() {
650    return "Whether MDL correction is used when finding splits on numeric attributes.";
651  }
652
653  /**
654   * Get the value of useMDLcorrection.
655   *
656   * @return Value of useMDLcorrection.
657   */
658  public boolean getUseMDLcorrection() {
659   
660    return m_useMDLcorrection;
661  }
662 
663  /**
664   * Set the value of useMDLcorrection.
665   *
666   * @param newuseMDLcorrection Value to assign to useMDLcorrection.
667   */
668  public void setUseMDLcorrection(boolean newuseMDLcorrection) {
669   
670    m_useMDLcorrection = newuseMDLcorrection;
671  }
672 
673  /**
674   * Returns a description of the classifier.
675   *
676   * @return a description of the classifier
677   */
678  public String toString() {
679
680    if (m_root == null) {
681      return "No classifier built";
682    }
683    if (m_unpruned)
684      return "J48 unpruned tree\n------------------\n" + m_root.toString();
685    else
686      return "J48 pruned tree\n------------------\n" + m_root.toString();
687  }
688
689  /**
690   * Returns a superconcise version of the model
691   *
692   * @return a summary of the model
693   */
694  public String toSummaryString() {
695
696    return "Number of leaves: " + m_root.numLeaves() + "\n"
697         + "Size of the tree: " + m_root.numNodes() + "\n";
698  }
699
700  /**
701   * Returns the size of the tree
702   * @return the size of the tree
703   */
704  public double measureTreeSize() {
705    return m_root.numNodes();
706  }
707
708  /**
709   * Returns the number of leaves
710   * @return the number of leaves
711   */
712  public double measureNumLeaves() {
713    return m_root.numLeaves();
714  }
715
716  /**
717   * Returns the number of rules (same as number of leaves)
718   * @return the number of rules
719   */
720  public double measureNumRules() {
721    return m_root.numLeaves();
722  }
723 
724  /**
725   * Returns an enumeration of the additional measure names
726   * @return an enumeration of the measure names
727   */
728  public Enumeration enumerateMeasures() {
729    Vector newVector = new Vector(3);
730    newVector.addElement("measureTreeSize");
731    newVector.addElement("measureNumLeaves");
732    newVector.addElement("measureNumRules");
733    return newVector.elements();
734  }
735
736  /**
737   * Returns the value of the named measure
738   * @param additionalMeasureName the name of the measure to query for its value
739   * @return the value of the named measure
740   * @throws IllegalArgumentException if the named measure is not supported
741   */
742  public double getMeasure(String additionalMeasureName) {
743    if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) {
744      return measureNumRules();
745    } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) {
746      return measureTreeSize();
747    } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) {
748      return measureNumLeaves();
749    } else {
750      throw new IllegalArgumentException(additionalMeasureName
751                          + " not supported (j48)");
752    }
753  }
754 
755  /**
756   * Returns the tip text for this property
757   * @return tip text for this property suitable for
758   * displaying in the explorer/experimenter gui
759   */
760  public String unprunedTipText() {
761    return "Whether pruning is performed.";
762  }
763
764  /**
765   * Get the value of unpruned.
766   *
767   * @return Value of unpruned.
768   */
769  public boolean getUnpruned() {
770   
771    return m_unpruned;
772  }
773 
774  /**
775   * Set the value of unpruned. Turns reduced-error pruning
776   * off if set.
777   * @param v  Value to assign to unpruned.
778   */
779  public void setUnpruned(boolean v) {
780
781    if (v) {
782      m_reducedErrorPruning = false;
783    }
784    m_unpruned = v;
785  }
786 
787  /**
788   * Returns the tip text for this property
789   * @return tip text for this property suitable for
790   * displaying in the explorer/experimenter gui
791   */
792  public String collapseTreeTipText() {
793    return "Whether parts are removed that do not reduce training error.";
794  }
795
796  /**
797   * Get the value of collapseTree.
798   *
799   * @return Value of collapseTree.
800   */
801  public boolean getCollapseTree() {
802   
803    return m_collapseTree;
804  }
805 
806  /**
807   * Set the value of collapseTree.
808   * @param v  Value to assign to collapseTree.
809   */
810  public void setCollapseTree(boolean v) {
811
812    m_collapseTree = v;
813  }
814
815  /**
816   * Returns the tip text for this property
817   * @return tip text for this property suitable for
818   * displaying in the explorer/experimenter gui
819   */
820  public String confidenceFactorTipText() {
821    return "The confidence factor used for pruning (smaller values incur "
822      + "more pruning).";
823  }
824 
825  /**
826   * Get the value of CF.
827   *
828   * @return Value of CF.
829   */
830  public float getConfidenceFactor() {
831   
832    return m_CF;
833  }
834 
835  /**
836   * Set the value of CF.
837   *
838   * @param v  Value to assign to CF.
839   */
840  public void setConfidenceFactor(float v) {
841   
842    m_CF = v;
843  }
844   
845  /**
846   * Returns the tip text for this property
847   * @return tip text for this property suitable for
848   * displaying in the explorer/experimenter gui
849   */
850  public String minNumObjTipText() {
851    return "The minimum number of instances per leaf.";
852  }
853
854  /**
855   * Get the value of minNumObj.
856   *
857   * @return Value of minNumObj.
858   */
859  public int getMinNumObj() {
860   
861    return m_minNumObj;
862  }
863 
864  /**
865   * Set the value of minNumObj.
866   *
867   * @param v  Value to assign to minNumObj.
868   */
869  public void setMinNumObj(int v) {
870   
871    m_minNumObj = v;
872  }
873
874  /**
875   * Returns the tip text for this property
876   * @return tip text for this property suitable for
877   * displaying in the explorer/experimenter gui
878   */
879  public String reducedErrorPruningTipText() {
880    return "Whether reduced-error pruning is used instead of C.4.5 pruning.";
881  }
882 
883  /**
884   * Get the value of reducedErrorPruning.
885   *
886   * @return Value of reducedErrorPruning.
887   */
888  public boolean getReducedErrorPruning() {
889   
890    return m_reducedErrorPruning;
891  }
892 
893  /**
894   * Set the value of reducedErrorPruning. Turns
895   * unpruned trees off if set.
896   *
897   * @param v  Value to assign to reducedErrorPruning.
898   */
899  public void setReducedErrorPruning(boolean v) {
900   
901    if (v) {
902      m_unpruned = false;
903    }
904    m_reducedErrorPruning = v;
905  }
906 
907  /**
908   * Returns the tip text for this property
909   * @return tip text for this property suitable for
910   * displaying in the explorer/experimenter gui
911   */
912  public String numFoldsTipText() {
913    return "Determines the amount of data used for reduced-error pruning. "
914      + " One fold is used for pruning, the rest for growing the tree.";
915  }
916
917  /**
918   * Get the value of numFolds.
919   *
920   * @return Value of numFolds.
921   */
922  public int getNumFolds() {
923   
924    return m_numFolds;
925  }
926 
927  /**
928   * Set the value of numFolds.
929   *
930   * @param v  Value to assign to numFolds.
931   */
932  public void setNumFolds(int v) {
933   
934    m_numFolds = v;
935  }
936 
937  /**
938   * Returns the tip text for this property
939   * @return tip text for this property suitable for
940   * displaying in the explorer/experimenter gui
941   */
942  public String binarySplitsTipText() {
943    return "Whether to use binary splits on nominal attributes when "
944      + "building the trees.";
945  }
946 
947  /**
948   * Get the value of binarySplits.
949   *
950   * @return Value of binarySplits.
951   */
952  public boolean getBinarySplits() {
953   
954    return m_binarySplits;
955  }
956 
957  /**
958   * Set the value of binarySplits.
959   *
960   * @param v  Value to assign to binarySplits.
961   */
962  public void setBinarySplits(boolean v) {
963   
964    m_binarySplits = v;
965  }
966 
967  /**
968   * Returns the tip text for this property
969   * @return tip text for this property suitable for
970   * displaying in the explorer/experimenter gui
971   */
972  public String subtreeRaisingTipText() {
973    return "Whether to consider the subtree raising operation when pruning.";
974  }
975 
976  /**
977   * Get the value of subtreeRaising.
978   *
979   * @return Value of subtreeRaising.
980   */
981  public boolean getSubtreeRaising() {
982   
983    return m_subtreeRaising;
984  }
985 
986  /**
987   * Set the value of subtreeRaising.
988   *
989   * @param v  Value to assign to subtreeRaising.
990   */
991  public void setSubtreeRaising(boolean v) {
992   
993    m_subtreeRaising = v;
994  }
995
996  /**
997   * Returns the tip text for this property
998   * @return tip text for this property suitable for
999   * displaying in the explorer/experimenter gui
1000   */
1001  public String saveInstanceDataTipText() {
1002    return "Whether to save the training data for visualization.";
1003  }
1004
1005  /**
1006   * Check whether instance data is to be saved.
1007   *
1008   * @return true if instance data is saved
1009   */
1010  public boolean getSaveInstanceData() {
1011   
1012    return m_noCleanup;
1013  }
1014 
1015  /**
1016   * Set whether instance data is to be saved.
1017   * @param v true if instance data is to be saved
1018   */
1019  public void setSaveInstanceData(boolean v) {
1020   
1021    m_noCleanup = v;
1022  }
1023 
1024  /**
1025   * Returns the revision string.
1026   *
1027   * @return            the revision
1028   */
1029  public String getRevision() {
1030    return RevisionUtils.extract("$Revision: 6088 $");
1031  }
1032 
1033  /**
1034   * Main method for testing this class
1035   *
1036   * @param argv the commandline options
1037   */
1038  public static void main(String [] argv){
1039    runClassifier(new J48(), argv);
1040  }
1041}
1042
Note: See TracBrowser for help on using the repository browser.