[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * J48.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.classifiers.trees.j48.BinC45ModelSelection; |
---|
| 29 | import weka.classifiers.trees.j48.C45ModelSelection; |
---|
| 30 | import weka.classifiers.trees.j48.C45PruneableClassifierTree; |
---|
| 31 | import weka.classifiers.trees.j48.ClassifierTree; |
---|
| 32 | import weka.classifiers.trees.j48.ModelSelection; |
---|
| 33 | import weka.classifiers.trees.j48.PruneableClassifierTree; |
---|
| 34 | import weka.core.AdditionalMeasureProducer; |
---|
| 35 | import weka.core.Capabilities; |
---|
| 36 | import weka.core.Drawable; |
---|
| 37 | import weka.core.Instance; |
---|
| 38 | import weka.core.Instances; |
---|
| 39 | import weka.core.Matchable; |
---|
| 40 | import weka.core.Option; |
---|
| 41 | import weka.core.OptionHandler; |
---|
| 42 | import weka.core.RevisionUtils; |
---|
| 43 | import weka.core.Summarizable; |
---|
| 44 | import weka.core.TechnicalInformation; |
---|
| 45 | import weka.core.TechnicalInformationHandler; |
---|
| 46 | import weka.core.Utils; |
---|
| 47 | import weka.core.WeightedInstancesHandler; |
---|
| 48 | import weka.core.TechnicalInformation.Field; |
---|
| 49 | import weka.core.TechnicalInformation.Type; |
---|
| 50 | |
---|
| 51 | import java.util.Enumeration; |
---|
| 52 | import java.util.Vector; |
---|
| 53 | |
---|
| 54 | /** |
---|
| 55 | <!-- globalinfo-start --> |
---|
| 56 | * Class for generating a pruned or unpruned C4.5 decision tree. For more information, see<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA. |
---|
| 59 | * <p/> |
---|
| 60 | <!-- globalinfo-end --> |
---|
| 61 | * |
---|
| 62 | <!-- technical-bibtex-start --> |
---|
| 63 | * BibTeX: |
---|
| 64 | * <pre> |
---|
| 65 | * @book{Quinlan1993, |
---|
| 66 | * address = {San Mateo, CA}, |
---|
| 67 | * author = {Ross Quinlan}, |
---|
| 68 | * publisher = {Morgan Kaufmann Publishers}, |
---|
| 69 | * title = {C4.5: Programs for Machine Learning}, |
---|
| 70 | * year = {1993} |
---|
| 71 | * } |
---|
| 72 | * </pre> |
---|
| 73 | * <p/> |
---|
| 74 | <!-- technical-bibtex-end --> |
---|
| 75 | * |
---|
| 76 | <!-- options-start --> |
---|
| 77 | * Valid options are: <p/> |
---|
| 78 | * |
---|
| 79 | * <pre> -U |
---|
| 80 | * Use unpruned tree.</pre> |
---|
| 81 | * |
---|
| 82 | * <pre> -O |
---|
| 83 | * Do not collapse tree.</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -C <pruning confidence> |
---|
| 86 | * Set confidence threshold for pruning. |
---|
| 87 | * (default 0.25)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -M <minimum number of instances> |
---|
| 90 | * Set minimum number of instances per leaf. |
---|
| 91 | * (default 2)</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -R |
---|
| 94 | * Use reduced error pruning.</pre> |
---|
| 95 | * |
---|
| 96 | * <pre> -N <number of folds> |
---|
| 97 | * Set number of folds for reduced error |
---|
| 98 | * pruning. One fold is used as pruning set. |
---|
| 99 | * (default 3)</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -B |
---|
| 102 | * Use binary splits only.</pre> |
---|
| 103 | * |
---|
| 104 | * <pre> -S |
---|
| 105 | * Don't perform subtree raising.</pre> |
---|
| 106 | * |
---|
| 107 | * <pre> -L |
---|
| 108 | * Do not clean up after the tree has been built.</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -A |
---|
| 111 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 112 | * |
---|
| 113 | * <pre> -J |
---|
| 114 | * Do not use MDL correction for info gain on numeric attributes.</pre> |
---|
| 115 | * |
---|
| 116 | * <pre> -Q <seed> |
---|
| 117 | * Seed for random data shuffling (default 1).</pre> |
---|
| 118 | * |
---|
| 119 | <!-- options-end --> |
---|
| 120 | * |
---|
| 121 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 122 | * @version $Revision: 6088 $ |
---|
| 123 | */ |
---|
| 124 | public class J48 |
---|
| 125 | extends AbstractClassifier |
---|
| 126 | implements OptionHandler, Drawable, Matchable, Sourcable, |
---|
| 127 | WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, |
---|
| 128 | TechnicalInformationHandler { |
---|
| 129 | |
---|
| 130 | /** for serialization */ |
---|
| 131 | static final long serialVersionUID = -217733168393644444L; |
---|
| 132 | |
---|
| 133 | /** The decision tree */ |
---|
| 134 | protected ClassifierTree m_root; |
---|
| 135 | |
---|
| 136 | /** Unpruned tree? */ |
---|
| 137 | private boolean m_unpruned = false; |
---|
| 138 | |
---|
| 139 | /** Collapse tree? */ |
---|
| 140 | private boolean m_collapseTree = true; |
---|
| 141 | |
---|
| 142 | /** Confidence level */ |
---|
| 143 | private float m_CF = 0.25f; |
---|
| 144 | |
---|
| 145 | /** Minimum number of instances */ |
---|
| 146 | private int m_minNumObj = 2; |
---|
| 147 | |
---|
| 148 | /** Use MDL correction? */ |
---|
| 149 | private boolean m_useMDLcorrection = true; |
---|
| 150 | |
---|
| 151 | /** Determines whether probabilities are smoothed using |
---|
| 152 | Laplace correction when predictions are generated */ |
---|
| 153 | private boolean m_useLaplace = false; |
---|
| 154 | |
---|
| 155 | /** Use reduced error pruning? */ |
---|
| 156 | private boolean m_reducedErrorPruning = false; |
---|
| 157 | |
---|
| 158 | /** Number of folds for reduced error pruning. */ |
---|
| 159 | private int m_numFolds = 3; |
---|
| 160 | |
---|
| 161 | /** Binary splits on nominal attributes? */ |
---|
| 162 | private boolean m_binarySplits = false; |
---|
| 163 | |
---|
| 164 | /** Subtree raising to be performed? */ |
---|
| 165 | private boolean m_subtreeRaising = true; |
---|
| 166 | |
---|
| 167 | /** Cleanup after the tree has been built. */ |
---|
| 168 | private boolean m_noCleanup = false; |
---|
| 169 | |
---|
| 170 | /** Random number seed for reduced-error pruning. */ |
---|
| 171 | private int m_Seed = 1; |
---|
| 172 | |
---|
| 173 | /** |
---|
| 174 | * Returns a string describing classifier |
---|
| 175 | * @return a description suitable for |
---|
| 176 | * displaying in the explorer/experimenter gui |
---|
| 177 | */ |
---|
| 178 | public String globalInfo() { |
---|
| 179 | |
---|
| 180 | return "Class for generating a pruned or unpruned C4.5 decision tree. For more " |
---|
| 181 | + "information, see\n\n" |
---|
| 182 | + getTechnicalInformation().toString(); |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | /** |
---|
| 186 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 187 | * detailed information about the technical background of this class, |
---|
| 188 | * e.g., paper reference or book this class is based on. |
---|
| 189 | * |
---|
| 190 | * @return the technical information about this class |
---|
| 191 | */ |
---|
| 192 | public TechnicalInformation getTechnicalInformation() { |
---|
| 193 | TechnicalInformation result; |
---|
| 194 | |
---|
| 195 | result = new TechnicalInformation(Type.BOOK); |
---|
| 196 | result.setValue(Field.AUTHOR, "Ross Quinlan"); |
---|
| 197 | result.setValue(Field.YEAR, "1993"); |
---|
| 198 | result.setValue(Field.TITLE, "C4.5: Programs for Machine Learning"); |
---|
| 199 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); |
---|
| 200 | result.setValue(Field.ADDRESS, "San Mateo, CA"); |
---|
| 201 | |
---|
| 202 | return result; |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Returns default capabilities of the classifier. |
---|
| 207 | * |
---|
| 208 | * @return the capabilities of this classifier |
---|
| 209 | */ |
---|
| 210 | public Capabilities getCapabilities() { |
---|
| 211 | Capabilities result; |
---|
| 212 | |
---|
| 213 | try { |
---|
| 214 | if (!m_reducedErrorPruning) |
---|
| 215 | result = new C45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup, m_collapseTree).getCapabilities(); |
---|
| 216 | else |
---|
| 217 | result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed).getCapabilities(); |
---|
| 218 | } |
---|
| 219 | catch (Exception e) { |
---|
| 220 | result = new Capabilities(this); |
---|
| 221 | result.disableAll(); |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | result.setOwner(this); |
---|
| 225 | |
---|
| 226 | return result; |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** |
---|
| 230 | * Generates the classifier. |
---|
| 231 | * |
---|
| 232 | * @param instances the data to train the classifier with |
---|
| 233 | * @throws Exception if classifier can't be built successfully |
---|
| 234 | */ |
---|
| 235 | public void buildClassifier(Instances instances) |
---|
| 236 | throws Exception { |
---|
| 237 | |
---|
| 238 | ModelSelection modSelection; |
---|
| 239 | |
---|
| 240 | if (m_binarySplits) |
---|
| 241 | modSelection = new BinC45ModelSelection(m_minNumObj, instances, m_useMDLcorrection); |
---|
| 242 | else |
---|
| 243 | modSelection = new C45ModelSelection(m_minNumObj, instances, m_useMDLcorrection); |
---|
| 244 | if (!m_reducedErrorPruning) |
---|
| 245 | m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF, |
---|
| 246 | m_subtreeRaising, !m_noCleanup, m_collapseTree); |
---|
| 247 | else |
---|
| 248 | m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds, |
---|
| 249 | !m_noCleanup, m_Seed); |
---|
| 250 | m_root.buildClassifier(instances); |
---|
| 251 | if (m_binarySplits) { |
---|
| 252 | ((BinC45ModelSelection)modSelection).cleanup(); |
---|
| 253 | } else { |
---|
| 254 | ((C45ModelSelection)modSelection).cleanup(); |
---|
| 255 | } |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | /** |
---|
| 259 | * Classifies an instance. |
---|
| 260 | * |
---|
| 261 | * @param instance the instance to classify |
---|
| 262 | * @return the classification for the instance |
---|
| 263 | * @throws Exception if instance can't be classified successfully |
---|
| 264 | */ |
---|
| 265 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 266 | |
---|
| 267 | return m_root.classifyInstance(instance); |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Returns class probabilities for an instance. |
---|
| 272 | * |
---|
| 273 | * @param instance the instance to calculate the class probabilities for |
---|
| 274 | * @return the class probabilities |
---|
| 275 | * @throws Exception if distribution can't be computed successfully |
---|
| 276 | */ |
---|
| 277 | public final double [] distributionForInstance(Instance instance) |
---|
| 278 | throws Exception { |
---|
| 279 | |
---|
| 280 | return m_root.distributionForInstance(instance, m_useLaplace); |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** |
---|
| 284 | * Returns the type of graph this classifier |
---|
| 285 | * represents. |
---|
| 286 | * @return Drawable.TREE |
---|
| 287 | */ |
---|
| 288 | public int graphType() { |
---|
| 289 | return Drawable.TREE; |
---|
| 290 | } |
---|
| 291 | |
---|
| 292 | /** |
---|
| 293 | * Returns graph describing the tree. |
---|
| 294 | * |
---|
| 295 | * @return the graph describing the tree |
---|
| 296 | * @throws Exception if graph can't be computed |
---|
| 297 | */ |
---|
| 298 | public String graph() throws Exception { |
---|
| 299 | |
---|
| 300 | return m_root.graph(); |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | /** |
---|
| 304 | * Returns tree in prefix order. |
---|
| 305 | * |
---|
| 306 | * @return the tree in prefix order |
---|
| 307 | * @throws Exception if something goes wrong |
---|
| 308 | */ |
---|
| 309 | public String prefix() throws Exception { |
---|
| 310 | |
---|
| 311 | return m_root.prefix(); |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | /** |
---|
| 316 | * Returns tree as an if-then statement. |
---|
| 317 | * |
---|
| 318 | * @param className the name of the Java class |
---|
| 319 | * @return the tree as a Java if-then type statement |
---|
| 320 | * @throws Exception if something goes wrong |
---|
| 321 | */ |
---|
| 322 | public String toSource(String className) throws Exception { |
---|
| 323 | |
---|
| 324 | StringBuffer [] source = m_root.toSource(className); |
---|
| 325 | return |
---|
| 326 | "class " + className + " {\n\n" |
---|
| 327 | +" public static double classify(Object[] i)\n" |
---|
| 328 | +" throws Exception {\n\n" |
---|
| 329 | +" double p = Double.NaN;\n" |
---|
| 330 | + source[0] // Assignment code |
---|
| 331 | +" return p;\n" |
---|
| 332 | +" }\n" |
---|
| 333 | + source[1] // Support code |
---|
| 334 | +"}\n"; |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * Returns an enumeration describing the available options. |
---|
| 339 | * |
---|
| 340 | * Valid options are: <p> |
---|
| 341 | * |
---|
| 342 | * -U <br> |
---|
| 343 | * Use unpruned tree.<p> |
---|
| 344 | * |
---|
| 345 | * -C confidence <br> |
---|
| 346 | * Set confidence threshold for pruning. (Default: 0.25) <p> |
---|
| 347 | * |
---|
| 348 | * -M number <br> |
---|
| 349 | * Set minimum number of instances per leaf. (Default: 2) <p> |
---|
| 350 | * |
---|
| 351 | * -R <br> |
---|
| 352 | * Use reduced error pruning. No subtree raising is performed. <p> |
---|
| 353 | * |
---|
| 354 | * -N number <br> |
---|
| 355 | * Set number of folds for reduced error pruning. One fold is |
---|
| 356 | * used as the pruning set. (Default: 3) <p> |
---|
| 357 | * |
---|
| 358 | * -B <br> |
---|
| 359 | * Use binary splits for nominal attributes. <p> |
---|
| 360 | * |
---|
| 361 | * -S <br> |
---|
| 362 | * Don't perform subtree raising. <p> |
---|
| 363 | * |
---|
| 364 | * -L <br> |
---|
| 365 | * Do not clean up after the tree has been built. |
---|
| 366 | * |
---|
| 367 | * -A <br> |
---|
| 368 | * If set, Laplace smoothing is used for predicted probabilites. <p> |
---|
| 369 | * |
---|
| 370 | * -Q <br> |
---|
| 371 | * The seed for reduced-error pruning. <p> |
---|
| 372 | * |
---|
| 373 | * @return an enumeration of all the available options. |
---|
| 374 | */ |
---|
| 375 | public Enumeration listOptions() { |
---|
| 376 | |
---|
| 377 | Vector newVector = new Vector(12); |
---|
| 378 | |
---|
| 379 | newVector. |
---|
| 380 | addElement(new Option("\tUse unpruned tree.", |
---|
| 381 | "U", 0, "-U")); |
---|
| 382 | newVector. |
---|
| 383 | addElement(new Option("\tDo not collapse tree.", |
---|
| 384 | "O", 0, "-O")); |
---|
| 385 | newVector. |
---|
| 386 | addElement(new Option("\tSet confidence threshold for pruning.\n" + |
---|
| 387 | "\t(default 0.25)", |
---|
| 388 | "C", 1, "-C <pruning confidence>")); |
---|
| 389 | newVector. |
---|
| 390 | addElement(new Option("\tSet minimum number of instances per leaf.\n" + |
---|
| 391 | "\t(default 2)", |
---|
| 392 | "M", 1, "-M <minimum number of instances>")); |
---|
| 393 | newVector. |
---|
| 394 | addElement(new Option("\tUse reduced error pruning.", |
---|
| 395 | "R", 0, "-R")); |
---|
| 396 | newVector. |
---|
| 397 | addElement(new Option("\tSet number of folds for reduced error\n" + |
---|
| 398 | "\tpruning. One fold is used as pruning set.\n" + |
---|
| 399 | "\t(default 3)", |
---|
| 400 | "N", 1, "-N <number of folds>")); |
---|
| 401 | newVector. |
---|
| 402 | addElement(new Option("\tUse binary splits only.", |
---|
| 403 | "B", 0, "-B")); |
---|
| 404 | newVector. |
---|
| 405 | addElement(new Option("\tDon't perform subtree raising.", |
---|
| 406 | "S", 0, "-S")); |
---|
| 407 | newVector. |
---|
| 408 | addElement(new Option("\tDo not clean up after the tree has been built.", |
---|
| 409 | "L", 0, "-L")); |
---|
| 410 | newVector. |
---|
| 411 | addElement(new Option("\tLaplace smoothing for predicted probabilities.", |
---|
| 412 | "A", 0, "-A")); |
---|
| 413 | newVector. |
---|
| 414 | addElement(new Option("\tDo not use MDL correction for info gain on numeric attributes.", |
---|
| 415 | "J", 0, "-J")); |
---|
| 416 | newVector. |
---|
| 417 | addElement(new Option("\tSeed for random data shuffling (default 1).", |
---|
| 418 | "Q", 1, "-Q <seed>")); |
---|
| 419 | |
---|
| 420 | return newVector.elements(); |
---|
| 421 | } |
---|
| 422 | |
---|
| 423 | /** |
---|
| 424 | * Parses a given list of options. |
---|
| 425 | * |
---|
| 426 | <!-- options-start --> |
---|
| 427 | * Valid options are: <p/> |
---|
| 428 | * |
---|
| 429 | * <pre> -U |
---|
| 430 | * Use unpruned tree.</pre> |
---|
| 431 | * |
---|
| 432 | * <pre> -O |
---|
| 433 | * Do not collapse tree.</pre> |
---|
| 434 | * |
---|
| 435 | * <pre> -C <pruning confidence> |
---|
| 436 | * Set confidence threshold for pruning. |
---|
| 437 | * (default 0.25)</pre> |
---|
| 438 | * |
---|
| 439 | * <pre> -M <minimum number of instances> |
---|
| 440 | * Set minimum number of instances per leaf. |
---|
| 441 | * (default 2)</pre> |
---|
| 442 | * |
---|
| 443 | * <pre> -R |
---|
| 444 | * Use reduced error pruning.</pre> |
---|
| 445 | * |
---|
| 446 | * <pre> -N <number of folds> |
---|
| 447 | * Set number of folds for reduced error |
---|
| 448 | * pruning. One fold is used as pruning set. |
---|
| 449 | * (default 3)</pre> |
---|
| 450 | * |
---|
| 451 | * <pre> -B |
---|
| 452 | * Use binary splits only.</pre> |
---|
| 453 | * |
---|
| 454 | * <pre> -S |
---|
| 455 | * Don't perform subtree raising.</pre> |
---|
| 456 | * |
---|
| 457 | * <pre> -L |
---|
| 458 | * Do not clean up after the tree has been built.</pre> |
---|
| 459 | * |
---|
| 460 | * <pre> -A |
---|
| 461 | * Laplace smoothing for predicted probabilities.</pre> |
---|
| 462 | * |
---|
| 463 | * <pre> -J |
---|
| 464 | * Do not use MDL correction for info gain on numeric attributes.</pre> |
---|
| 465 | * |
---|
| 466 | * <pre> -Q <seed> |
---|
| 467 | * Seed for random data shuffling (default 1).</pre> |
---|
| 468 | * |
---|
| 469 | <!-- options-end --> |
---|
| 470 | * |
---|
| 471 | * @param options the list of options as an array of strings |
---|
| 472 | * @throws Exception if an option is not supported |
---|
| 473 | */ |
---|
| 474 | public void setOptions(String[] options) throws Exception { |
---|
| 475 | |
---|
| 476 | // Other options |
---|
| 477 | String minNumString = Utils.getOption('M', options); |
---|
| 478 | if (minNumString.length() != 0) { |
---|
| 479 | m_minNumObj = Integer.parseInt(minNumString); |
---|
| 480 | } else { |
---|
| 481 | m_minNumObj = 2; |
---|
| 482 | } |
---|
| 483 | m_binarySplits = Utils.getFlag('B', options); |
---|
| 484 | m_useLaplace = Utils.getFlag('A', options); |
---|
| 485 | m_useMDLcorrection = !Utils.getFlag('J', options); |
---|
| 486 | |
---|
| 487 | // Pruning options |
---|
| 488 | m_unpruned = Utils.getFlag('U', options); |
---|
| 489 | m_collapseTree = !Utils.getFlag('O', options); |
---|
| 490 | m_subtreeRaising = !Utils.getFlag('S', options); |
---|
| 491 | m_noCleanup = Utils.getFlag('L', options); |
---|
| 492 | if ((m_unpruned) && (!m_subtreeRaising)) { |
---|
| 493 | throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); |
---|
| 494 | } |
---|
| 495 | m_reducedErrorPruning = Utils.getFlag('R', options); |
---|
| 496 | if ((m_unpruned) && (m_reducedErrorPruning)) { |
---|
| 497 | throw new Exception("Unpruned tree and reduced error pruning can't be selected " + |
---|
| 498 | "simultaneously!"); |
---|
| 499 | } |
---|
| 500 | String confidenceString = Utils.getOption('C', options); |
---|
| 501 | if (confidenceString.length() != 0) { |
---|
| 502 | if (m_reducedErrorPruning) { |
---|
| 503 | throw new Exception("Setting the confidence doesn't make sense " + |
---|
| 504 | "for reduced error pruning."); |
---|
| 505 | } else if (m_unpruned) { |
---|
| 506 | throw new Exception("Doesn't make sense to change confidence for unpruned " |
---|
| 507 | +"tree!"); |
---|
| 508 | } else { |
---|
| 509 | m_CF = (new Float(confidenceString)).floatValue(); |
---|
| 510 | if ((m_CF <= 0) || (m_CF >= 1)) { |
---|
| 511 | throw new Exception("Confidence has to be greater than zero and smaller " + |
---|
| 512 | "than one!"); |
---|
| 513 | } |
---|
| 514 | } |
---|
| 515 | } else { |
---|
| 516 | m_CF = 0.25f; |
---|
| 517 | } |
---|
| 518 | String numFoldsString = Utils.getOption('N', options); |
---|
| 519 | if (numFoldsString.length() != 0) { |
---|
| 520 | if (!m_reducedErrorPruning) { |
---|
| 521 | throw new Exception("Setting the number of folds" + |
---|
| 522 | " doesn't make sense if" + |
---|
| 523 | " reduced error pruning is not selected."); |
---|
| 524 | } else { |
---|
| 525 | m_numFolds = Integer.parseInt(numFoldsString); |
---|
| 526 | } |
---|
| 527 | } else { |
---|
| 528 | m_numFolds = 3; |
---|
| 529 | } |
---|
| 530 | String seedString = Utils.getOption('Q', options); |
---|
| 531 | if (seedString.length() != 0) { |
---|
| 532 | m_Seed = Integer.parseInt(seedString); |
---|
| 533 | } else { |
---|
| 534 | m_Seed = 1; |
---|
| 535 | } |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | /** |
---|
| 539 | * Gets the current settings of the Classifier. |
---|
| 540 | * |
---|
| 541 | * @return an array of strings suitable for passing to setOptions |
---|
| 542 | */ |
---|
| 543 | public String [] getOptions() { |
---|
| 544 | |
---|
| 545 | String [] options = new String [16]; |
---|
| 546 | int current = 0; |
---|
| 547 | |
---|
| 548 | if (m_noCleanup) { |
---|
| 549 | options[current++] = "-L"; |
---|
| 550 | } |
---|
| 551 | if (!m_collapseTree) { |
---|
| 552 | options[current++] = "-O"; |
---|
| 553 | } |
---|
| 554 | if (m_unpruned) { |
---|
| 555 | options[current++] = "-U"; |
---|
| 556 | } else { |
---|
| 557 | if (!m_subtreeRaising) { |
---|
| 558 | options[current++] = "-S"; |
---|
| 559 | } |
---|
| 560 | if (m_reducedErrorPruning) { |
---|
| 561 | options[current++] = "-R"; |
---|
| 562 | options[current++] = "-N"; options[current++] = "" + m_numFolds; |
---|
| 563 | options[current++] = "-Q"; options[current++] = "" + m_Seed; |
---|
| 564 | } else { |
---|
| 565 | options[current++] = "-C"; options[current++] = "" + m_CF; |
---|
| 566 | } |
---|
| 567 | } |
---|
| 568 | if (m_binarySplits) { |
---|
| 569 | options[current++] = "-B"; |
---|
| 570 | } |
---|
| 571 | options[current++] = "-M"; options[current++] = "" + m_minNumObj; |
---|
| 572 | if (m_useLaplace) { |
---|
| 573 | options[current++] = "-A"; |
---|
| 574 | } |
---|
| 575 | if (!m_useMDLcorrection) { |
---|
| 576 | options[current++] = "-J"; |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | while (current < options.length) { |
---|
| 580 | options[current++] = ""; |
---|
| 581 | } |
---|
| 582 | return options; |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | /** |
---|
| 586 | * Returns the tip text for this property |
---|
| 587 | * @return tip text for this property suitable for |
---|
| 588 | * displaying in the explorer/experimenter gui |
---|
| 589 | */ |
---|
| 590 | public String seedTipText() { |
---|
| 591 | return "The seed used for randomizing the data " + |
---|
| 592 | "when reduced-error pruning is used."; |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | /** |
---|
| 596 | * Get the value of Seed. |
---|
| 597 | * |
---|
| 598 | * @return Value of Seed. |
---|
| 599 | */ |
---|
| 600 | public int getSeed() { |
---|
| 601 | |
---|
| 602 | return m_Seed; |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | /** |
---|
| 606 | * Set the value of Seed. |
---|
| 607 | * |
---|
| 608 | * @param newSeed Value to assign to Seed. |
---|
| 609 | */ |
---|
| 610 | public void setSeed(int newSeed) { |
---|
| 611 | |
---|
| 612 | m_Seed = newSeed; |
---|
| 613 | } |
---|
| 614 | |
---|
| 615 | /** |
---|
| 616 | * Returns the tip text for this property |
---|
| 617 | * @return tip text for this property suitable for |
---|
| 618 | * displaying in the explorer/experimenter gui |
---|
| 619 | */ |
---|
| 620 | public String useLaplaceTipText() { |
---|
| 621 | return "Whether counts at leaves are smoothed based on Laplace."; |
---|
| 622 | } |
---|
| 623 | |
---|
| 624 | /** |
---|
| 625 | * Get the value of useLaplace. |
---|
| 626 | * |
---|
| 627 | * @return Value of useLaplace. |
---|
| 628 | */ |
---|
| 629 | public boolean getUseLaplace() { |
---|
| 630 | |
---|
| 631 | return m_useLaplace; |
---|
| 632 | } |
---|
| 633 | |
---|
| 634 | /** |
---|
| 635 | * Set the value of useLaplace. |
---|
| 636 | * |
---|
| 637 | * @param newuseLaplace Value to assign to useLaplace. |
---|
| 638 | */ |
---|
| 639 | public void setUseLaplace(boolean newuseLaplace) { |
---|
| 640 | |
---|
| 641 | m_useLaplace = newuseLaplace; |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | /** |
---|
| 645 | * Returns the tip text for this property |
---|
| 646 | * @return tip text for this property suitable for |
---|
| 647 | * displaying in the explorer/experimenter gui |
---|
| 648 | */ |
---|
| 649 | public String useMDLcorrectionTipText() { |
---|
| 650 | return "Whether MDL correction is used when finding splits on numeric attributes."; |
---|
| 651 | } |
---|
| 652 | |
---|
| 653 | /** |
---|
| 654 | * Get the value of useMDLcorrection. |
---|
| 655 | * |
---|
| 656 | * @return Value of useMDLcorrection. |
---|
| 657 | */ |
---|
| 658 | public boolean getUseMDLcorrection() { |
---|
| 659 | |
---|
| 660 | return m_useMDLcorrection; |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | /** |
---|
| 664 | * Set the value of useMDLcorrection. |
---|
| 665 | * |
---|
| 666 | * @param newuseMDLcorrection Value to assign to useMDLcorrection. |
---|
| 667 | */ |
---|
| 668 | public void setUseMDLcorrection(boolean newuseMDLcorrection) { |
---|
| 669 | |
---|
| 670 | m_useMDLcorrection = newuseMDLcorrection; |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Returns a description of the classifier. |
---|
| 675 | * |
---|
| 676 | * @return a description of the classifier |
---|
| 677 | */ |
---|
| 678 | public String toString() { |
---|
| 679 | |
---|
| 680 | if (m_root == null) { |
---|
| 681 | return "No classifier built"; |
---|
| 682 | } |
---|
| 683 | if (m_unpruned) |
---|
| 684 | return "J48 unpruned tree\n------------------\n" + m_root.toString(); |
---|
| 685 | else |
---|
| 686 | return "J48 pruned tree\n------------------\n" + m_root.toString(); |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | /** |
---|
| 690 | * Returns a superconcise version of the model |
---|
| 691 | * |
---|
| 692 | * @return a summary of the model |
---|
| 693 | */ |
---|
| 694 | public String toSummaryString() { |
---|
| 695 | |
---|
| 696 | return "Number of leaves: " + m_root.numLeaves() + "\n" |
---|
| 697 | + "Size of the tree: " + m_root.numNodes() + "\n"; |
---|
| 698 | } |
---|
| 699 | |
---|
| 700 | /** |
---|
| 701 | * Returns the size of the tree |
---|
| 702 | * @return the size of the tree |
---|
| 703 | */ |
---|
| 704 | public double measureTreeSize() { |
---|
| 705 | return m_root.numNodes(); |
---|
| 706 | } |
---|
| 707 | |
---|
| 708 | /** |
---|
| 709 | * Returns the number of leaves |
---|
| 710 | * @return the number of leaves |
---|
| 711 | */ |
---|
| 712 | public double measureNumLeaves() { |
---|
| 713 | return m_root.numLeaves(); |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | /** |
---|
| 717 | * Returns the number of rules (same as number of leaves) |
---|
| 718 | * @return the number of rules |
---|
| 719 | */ |
---|
| 720 | public double measureNumRules() { |
---|
| 721 | return m_root.numLeaves(); |
---|
| 722 | } |
---|
| 723 | |
---|
| 724 | /** |
---|
| 725 | * Returns an enumeration of the additional measure names |
---|
| 726 | * @return an enumeration of the measure names |
---|
| 727 | */ |
---|
| 728 | public Enumeration enumerateMeasures() { |
---|
| 729 | Vector newVector = new Vector(3); |
---|
| 730 | newVector.addElement("measureTreeSize"); |
---|
| 731 | newVector.addElement("measureNumLeaves"); |
---|
| 732 | newVector.addElement("measureNumRules"); |
---|
| 733 | return newVector.elements(); |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | /** |
---|
| 737 | * Returns the value of the named measure |
---|
| 738 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 739 | * @return the value of the named measure |
---|
| 740 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 741 | */ |
---|
| 742 | public double getMeasure(String additionalMeasureName) { |
---|
| 743 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { |
---|
| 744 | return measureNumRules(); |
---|
| 745 | } else if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { |
---|
| 746 | return measureTreeSize(); |
---|
| 747 | } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { |
---|
| 748 | return measureNumLeaves(); |
---|
| 749 | } else { |
---|
| 750 | throw new IllegalArgumentException(additionalMeasureName |
---|
| 751 | + " not supported (j48)"); |
---|
| 752 | } |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /** |
---|
| 756 | * Returns the tip text for this property |
---|
| 757 | * @return tip text for this property suitable for |
---|
| 758 | * displaying in the explorer/experimenter gui |
---|
| 759 | */ |
---|
| 760 | public String unprunedTipText() { |
---|
| 761 | return "Whether pruning is performed."; |
---|
| 762 | } |
---|
| 763 | |
---|
| 764 | /** |
---|
| 765 | * Get the value of unpruned. |
---|
| 766 | * |
---|
| 767 | * @return Value of unpruned. |
---|
| 768 | */ |
---|
| 769 | public boolean getUnpruned() { |
---|
| 770 | |
---|
| 771 | return m_unpruned; |
---|
| 772 | } |
---|
| 773 | |
---|
| 774 | /** |
---|
| 775 | * Set the value of unpruned. Turns reduced-error pruning |
---|
| 776 | * off if set. |
---|
| 777 | * @param v Value to assign to unpruned. |
---|
| 778 | */ |
---|
| 779 | public void setUnpruned(boolean v) { |
---|
| 780 | |
---|
| 781 | if (v) { |
---|
| 782 | m_reducedErrorPruning = false; |
---|
| 783 | } |
---|
| 784 | m_unpruned = v; |
---|
| 785 | } |
---|
| 786 | |
---|
| 787 | /** |
---|
| 788 | * Returns the tip text for this property |
---|
| 789 | * @return tip text for this property suitable for |
---|
| 790 | * displaying in the explorer/experimenter gui |
---|
| 791 | */ |
---|
| 792 | public String collapseTreeTipText() { |
---|
| 793 | return "Whether parts are removed that do not reduce training error."; |
---|
| 794 | } |
---|
| 795 | |
---|
| 796 | /** |
---|
| 797 | * Get the value of collapseTree. |
---|
| 798 | * |
---|
| 799 | * @return Value of collapseTree. |
---|
| 800 | */ |
---|
| 801 | public boolean getCollapseTree() { |
---|
| 802 | |
---|
| 803 | return m_collapseTree; |
---|
| 804 | } |
---|
| 805 | |
---|
| 806 | /** |
---|
| 807 | * Set the value of collapseTree. |
---|
| 808 | * @param v Value to assign to collapseTree. |
---|
| 809 | */ |
---|
| 810 | public void setCollapseTree(boolean v) { |
---|
| 811 | |
---|
| 812 | m_collapseTree = v; |
---|
| 813 | } |
---|
| 814 | |
---|
| 815 | /** |
---|
| 816 | * Returns the tip text for this property |
---|
| 817 | * @return tip text for this property suitable for |
---|
| 818 | * displaying in the explorer/experimenter gui |
---|
| 819 | */ |
---|
| 820 | public String confidenceFactorTipText() { |
---|
| 821 | return "The confidence factor used for pruning (smaller values incur " |
---|
| 822 | + "more pruning)."; |
---|
| 823 | } |
---|
| 824 | |
---|
| 825 | /** |
---|
| 826 | * Get the value of CF. |
---|
| 827 | * |
---|
| 828 | * @return Value of CF. |
---|
| 829 | */ |
---|
| 830 | public float getConfidenceFactor() { |
---|
| 831 | |
---|
| 832 | return m_CF; |
---|
| 833 | } |
---|
| 834 | |
---|
| 835 | /** |
---|
| 836 | * Set the value of CF. |
---|
| 837 | * |
---|
| 838 | * @param v Value to assign to CF. |
---|
| 839 | */ |
---|
| 840 | public void setConfidenceFactor(float v) { |
---|
| 841 | |
---|
| 842 | m_CF = v; |
---|
| 843 | } |
---|
| 844 | |
---|
| 845 | /** |
---|
| 846 | * Returns the tip text for this property |
---|
| 847 | * @return tip text for this property suitable for |
---|
| 848 | * displaying in the explorer/experimenter gui |
---|
| 849 | */ |
---|
| 850 | public String minNumObjTipText() { |
---|
| 851 | return "The minimum number of instances per leaf."; |
---|
| 852 | } |
---|
| 853 | |
---|
| 854 | /** |
---|
| 855 | * Get the value of minNumObj. |
---|
| 856 | * |
---|
| 857 | * @return Value of minNumObj. |
---|
| 858 | */ |
---|
| 859 | public int getMinNumObj() { |
---|
| 860 | |
---|
| 861 | return m_minNumObj; |
---|
| 862 | } |
---|
| 863 | |
---|
| 864 | /** |
---|
| 865 | * Set the value of minNumObj. |
---|
| 866 | * |
---|
| 867 | * @param v Value to assign to minNumObj. |
---|
| 868 | */ |
---|
| 869 | public void setMinNumObj(int v) { |
---|
| 870 | |
---|
| 871 | m_minNumObj = v; |
---|
| 872 | } |
---|
| 873 | |
---|
| 874 | /** |
---|
| 875 | * Returns the tip text for this property |
---|
| 876 | * @return tip text for this property suitable for |
---|
| 877 | * displaying in the explorer/experimenter gui |
---|
| 878 | */ |
---|
| 879 | public String reducedErrorPruningTipText() { |
---|
| 880 | return "Whether reduced-error pruning is used instead of C.4.5 pruning."; |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | /** |
---|
| 884 | * Get the value of reducedErrorPruning. |
---|
| 885 | * |
---|
| 886 | * @return Value of reducedErrorPruning. |
---|
| 887 | */ |
---|
| 888 | public boolean getReducedErrorPruning() { |
---|
| 889 | |
---|
| 890 | return m_reducedErrorPruning; |
---|
| 891 | } |
---|
| 892 | |
---|
| 893 | /** |
---|
| 894 | * Set the value of reducedErrorPruning. Turns |
---|
| 895 | * unpruned trees off if set. |
---|
| 896 | * |
---|
| 897 | * @param v Value to assign to reducedErrorPruning. |
---|
| 898 | */ |
---|
| 899 | public void setReducedErrorPruning(boolean v) { |
---|
| 900 | |
---|
| 901 | if (v) { |
---|
| 902 | m_unpruned = false; |
---|
| 903 | } |
---|
| 904 | m_reducedErrorPruning = v; |
---|
| 905 | } |
---|
| 906 | |
---|
| 907 | /** |
---|
| 908 | * Returns the tip text for this property |
---|
| 909 | * @return tip text for this property suitable for |
---|
| 910 | * displaying in the explorer/experimenter gui |
---|
| 911 | */ |
---|
| 912 | public String numFoldsTipText() { |
---|
| 913 | return "Determines the amount of data used for reduced-error pruning. " |
---|
| 914 | + " One fold is used for pruning, the rest for growing the tree."; |
---|
| 915 | } |
---|
| 916 | |
---|
| 917 | /** |
---|
| 918 | * Get the value of numFolds. |
---|
| 919 | * |
---|
| 920 | * @return Value of numFolds. |
---|
| 921 | */ |
---|
| 922 | public int getNumFolds() { |
---|
| 923 | |
---|
| 924 | return m_numFolds; |
---|
| 925 | } |
---|
| 926 | |
---|
| 927 | /** |
---|
| 928 | * Set the value of numFolds. |
---|
| 929 | * |
---|
| 930 | * @param v Value to assign to numFolds. |
---|
| 931 | */ |
---|
| 932 | public void setNumFolds(int v) { |
---|
| 933 | |
---|
| 934 | m_numFolds = v; |
---|
| 935 | } |
---|
| 936 | |
---|
| 937 | /** |
---|
| 938 | * Returns the tip text for this property |
---|
| 939 | * @return tip text for this property suitable for |
---|
| 940 | * displaying in the explorer/experimenter gui |
---|
| 941 | */ |
---|
| 942 | public String binarySplitsTipText() { |
---|
| 943 | return "Whether to use binary splits on nominal attributes when " |
---|
| 944 | + "building the trees."; |
---|
| 945 | } |
---|
| 946 | |
---|
| 947 | /** |
---|
| 948 | * Get the value of binarySplits. |
---|
| 949 | * |
---|
| 950 | * @return Value of binarySplits. |
---|
| 951 | */ |
---|
| 952 | public boolean getBinarySplits() { |
---|
| 953 | |
---|
| 954 | return m_binarySplits; |
---|
| 955 | } |
---|
| 956 | |
---|
| 957 | /** |
---|
| 958 | * Set the value of binarySplits. |
---|
| 959 | * |
---|
| 960 | * @param v Value to assign to binarySplits. |
---|
| 961 | */ |
---|
| 962 | public void setBinarySplits(boolean v) { |
---|
| 963 | |
---|
| 964 | m_binarySplits = v; |
---|
| 965 | } |
---|
| 966 | |
---|
| 967 | /** |
---|
| 968 | * Returns the tip text for this property |
---|
| 969 | * @return tip text for this property suitable for |
---|
| 970 | * displaying in the explorer/experimenter gui |
---|
| 971 | */ |
---|
| 972 | public String subtreeRaisingTipText() { |
---|
| 973 | return "Whether to consider the subtree raising operation when pruning."; |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | /** |
---|
| 977 | * Get the value of subtreeRaising. |
---|
| 978 | * |
---|
| 979 | * @return Value of subtreeRaising. |
---|
| 980 | */ |
---|
| 981 | public boolean getSubtreeRaising() { |
---|
| 982 | |
---|
| 983 | return m_subtreeRaising; |
---|
| 984 | } |
---|
| 985 | |
---|
| 986 | /** |
---|
| 987 | * Set the value of subtreeRaising. |
---|
| 988 | * |
---|
| 989 | * @param v Value to assign to subtreeRaising. |
---|
| 990 | */ |
---|
| 991 | public void setSubtreeRaising(boolean v) { |
---|
| 992 | |
---|
| 993 | m_subtreeRaising = v; |
---|
| 994 | } |
---|
| 995 | |
---|
| 996 | /** |
---|
| 997 | * Returns the tip text for this property |
---|
| 998 | * @return tip text for this property suitable for |
---|
| 999 | * displaying in the explorer/experimenter gui |
---|
| 1000 | */ |
---|
| 1001 | public String saveInstanceDataTipText() { |
---|
| 1002 | return "Whether to save the training data for visualization."; |
---|
| 1003 | } |
---|
| 1004 | |
---|
| 1005 | /** |
---|
| 1006 | * Check whether instance data is to be saved. |
---|
| 1007 | * |
---|
| 1008 | * @return true if instance data is saved |
---|
| 1009 | */ |
---|
| 1010 | public boolean getSaveInstanceData() { |
---|
| 1011 | |
---|
| 1012 | return m_noCleanup; |
---|
| 1013 | } |
---|
| 1014 | |
---|
| 1015 | /** |
---|
| 1016 | * Set whether instance data is to be saved. |
---|
| 1017 | * @param v true if instance data is to be saved |
---|
| 1018 | */ |
---|
| 1019 | public void setSaveInstanceData(boolean v) { |
---|
| 1020 | |
---|
| 1021 | m_noCleanup = v; |
---|
| 1022 | } |
---|
| 1023 | |
---|
| 1024 | /** |
---|
| 1025 | * Returns the revision string. |
---|
| 1026 | * |
---|
| 1027 | * @return the revision |
---|
| 1028 | */ |
---|
| 1029 | public String getRevision() { |
---|
| 1030 | return RevisionUtils.extract("$Revision: 6088 $"); |
---|
| 1031 | } |
---|
| 1032 | |
---|
| 1033 | /** |
---|
| 1034 | * Main method for testing this class |
---|
| 1035 | * |
---|
| 1036 | * @param argv the commandline options |
---|
| 1037 | */ |
---|
| 1038 | public static void main(String [] argv){ |
---|
| 1039 | runClassifier(new J48(), argv); |
---|
| 1040 | } |
---|
| 1041 | } |
---|
| 1042 | |
---|