[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * ADTree.java |
---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.IterativeClassifier; |
---|
| 28 | import weka.classifiers.trees.adtree.PredictionNode; |
---|
| 29 | import weka.classifiers.trees.adtree.ReferenceInstances; |
---|
| 30 | import weka.classifiers.trees.adtree.Splitter; |
---|
| 31 | import weka.classifiers.trees.adtree.TwoWayNominalSplit; |
---|
| 32 | import weka.classifiers.trees.adtree.TwoWayNumericSplit; |
---|
| 33 | import weka.core.AdditionalMeasureProducer; |
---|
| 34 | import weka.core.Attribute; |
---|
| 35 | import weka.core.Capabilities; |
---|
| 36 | import weka.core.Drawable; |
---|
| 37 | import weka.core.FastVector; |
---|
| 38 | import weka.core.Instance; |
---|
| 39 | import weka.core.Instances; |
---|
| 40 | import weka.core.Option; |
---|
| 41 | import weka.core.OptionHandler; |
---|
| 42 | import weka.core.RevisionUtils; |
---|
| 43 | import weka.core.SelectedTag; |
---|
| 44 | import weka.core.SerializedObject; |
---|
| 45 | import weka.core.Tag; |
---|
| 46 | import weka.core.TechnicalInformation; |
---|
| 47 | import weka.core.TechnicalInformationHandler; |
---|
| 48 | import weka.core.Utils; |
---|
| 49 | import weka.core.WeightedInstancesHandler; |
---|
| 50 | import weka.core.Capabilities.Capability; |
---|
| 51 | import weka.core.TechnicalInformation.Field; |
---|
| 52 | import weka.core.TechnicalInformation.Type; |
---|
| 53 | |
---|
| 54 | import java.util.Enumeration; |
---|
| 55 | import java.util.Random; |
---|
| 56 | import java.util.Vector; |
---|
| 57 | |
---|
| 58 | /** |
---|
| 59 | <!-- globalinfo-start --> |
---|
| 60 | * Class for generating an alternating decision tree. The basic algorithm is based on:<br/> |
---|
| 61 | * <br/> |
---|
| 62 | * Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999.<br/> |
---|
| 63 | * <br/> |
---|
| 64 | * This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning. |
---|
| 65 | * <p/> |
---|
| 66 | <!-- globalinfo-end --> |
---|
| 67 | * |
---|
| 68 | <!-- technical-bibtex-start --> |
---|
| 69 | * BibTeX: |
---|
| 70 | * <pre> |
---|
| 71 | * @inproceedings{Freund1999, |
---|
| 72 | * address = {Bled, Slovenia}, |
---|
| 73 | * author = {Freund, Y. and Mason, L.}, |
---|
| 74 | * booktitle = {Proceeding of the Sixteenth International Conference on Machine Learning}, |
---|
| 75 | * pages = {124-133}, |
---|
| 76 | * title = {The alternating decision tree learning algorithm}, |
---|
| 77 | * year = {1999} |
---|
| 78 | * } |
---|
| 79 | * </pre> |
---|
| 80 | * <p/> |
---|
| 81 | <!-- technical-bibtex-end --> |
---|
| 82 | * |
---|
| 83 | <!-- options-start --> |
---|
| 84 | * Valid options are: <p/> |
---|
| 85 | * |
---|
| 86 | * <pre> -B <number of boosting iterations> |
---|
| 87 | * Number of boosting iterations. |
---|
| 88 | * (Default = 10)</pre> |
---|
| 89 | * |
---|
| 90 | * <pre> -E <-3|-2|-1|>=0> |
---|
| 91 | * Expand nodes: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk |
---|
| 92 | * (Default = -3)</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -D |
---|
| 95 | * Save the instance data with the model</pre> |
---|
| 96 | * |
---|
| 97 | <!-- options-end --> |
---|
| 98 | * |
---|
| 99 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
| 100 | * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) |
---|
| 101 | * @version $Revision: 5928 $ |
---|
| 102 | */ |
---|
| 103 | public class ADTree |
---|
| 104 | extends AbstractClassifier |
---|
| 105 | implements OptionHandler, Drawable, AdditionalMeasureProducer, |
---|
| 106 | WeightedInstancesHandler, IterativeClassifier, |
---|
| 107 | TechnicalInformationHandler { |
---|
| 108 | |
---|
| 109 | /** for serialization */ |
---|
| 110 | static final long serialVersionUID = -1532264837167690683L; |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Returns a string describing classifier |
---|
| 114 | * @return a description suitable for |
---|
| 115 | * displaying in the explorer/experimenter gui |
---|
| 116 | */ |
---|
| 117 | public String globalInfo() { |
---|
| 118 | |
---|
| 119 | return "Class for generating an alternating decision tree. The basic " |
---|
| 120 | + "algorithm is based on:\n\n" |
---|
| 121 | + getTechnicalInformation().toString() + "\n\n" |
---|
| 122 | + "This version currently only supports two-class problems. The number of boosting " |
---|
| 123 | + "iterations needs to be manually tuned to suit the dataset and the desired " |
---|
| 124 | + "complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic " |
---|
| 125 | + "search methods have been introduced to speed learning."; |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | /** search mode: Expand all paths */ |
---|
| 129 | public static final int SEARCHPATH_ALL = 0; |
---|
| 130 | /** search mode: Expand the heaviest path */ |
---|
| 131 | public static final int SEARCHPATH_HEAVIEST = 1; |
---|
| 132 | /** search mode: Expand the best z-pure path */ |
---|
| 133 | public static final int SEARCHPATH_ZPURE = 2; |
---|
| 134 | /** search mode: Expand a random path */ |
---|
| 135 | public static final int SEARCHPATH_RANDOM = 3; |
---|
| 136 | /** The search modes */ |
---|
| 137 | public static final Tag [] TAGS_SEARCHPATH = { |
---|
| 138 | new Tag(SEARCHPATH_ALL, "Expand all paths"), |
---|
| 139 | new Tag(SEARCHPATH_HEAVIEST, "Expand the heaviest path"), |
---|
| 140 | new Tag(SEARCHPATH_ZPURE, "Expand the best z-pure path"), |
---|
| 141 | new Tag(SEARCHPATH_RANDOM, "Expand a random path") |
---|
| 142 | }; |
---|
| 143 | |
---|
| 144 | /** The instances used to train the tree */ |
---|
| 145 | protected Instances m_trainInstances; |
---|
| 146 | |
---|
| 147 | /** The root of the tree */ |
---|
| 148 | protected PredictionNode m_root = null; |
---|
| 149 | |
---|
| 150 | /** The random number generator - used for the random search heuristic */ |
---|
| 151 | protected Random m_random = null; |
---|
| 152 | |
---|
| 153 | /** The number of the last splitter added to the tree */ |
---|
| 154 | protected int m_lastAddedSplitNum = 0; |
---|
| 155 | |
---|
| 156 | /** An array containing the inidices to the numeric attributes in the data */ |
---|
| 157 | protected int[] m_numericAttIndices; |
---|
| 158 | |
---|
| 159 | /** An array containing the inidices to the nominal attributes in the data */ |
---|
| 160 | protected int[] m_nominalAttIndices; |
---|
| 161 | |
---|
| 162 | /** The total weight of the instances - used to speed Z calculations */ |
---|
| 163 | protected double m_trainTotalWeight; |
---|
| 164 | |
---|
| 165 | /** The training instances with positive class - referencing the training dataset */ |
---|
| 166 | protected ReferenceInstances m_posTrainInstances; |
---|
| 167 | |
---|
| 168 | /** The training instances with negative class - referencing the training dataset */ |
---|
| 169 | protected ReferenceInstances m_negTrainInstances; |
---|
| 170 | |
---|
| 171 | /** The best node to insert under, as found so far by the latest search */ |
---|
| 172 | protected PredictionNode m_search_bestInsertionNode; |
---|
| 173 | |
---|
| 174 | /** The best splitter to insert, as found so far by the latest search */ |
---|
| 175 | protected Splitter m_search_bestSplitter; |
---|
| 176 | |
---|
| 177 | /** The smallest Z value found so far by the latest search */ |
---|
| 178 | protected double m_search_smallestZ; |
---|
| 179 | |
---|
| 180 | /** The positive instances that apply to the best path found so far */ |
---|
| 181 | protected Instances m_search_bestPathPosInstances; |
---|
| 182 | |
---|
| 183 | /** The negative instances that apply to the best path found so far */ |
---|
| 184 | protected Instances m_search_bestPathNegInstances; |
---|
| 185 | |
---|
| 186 | /** Statistics - the number of prediction nodes investigated during search */ |
---|
| 187 | protected int m_nodesExpanded = 0; |
---|
| 188 | |
---|
| 189 | /** Statistics - the number of instances processed during search */ |
---|
| 190 | protected int m_examplesCounted = 0; |
---|
| 191 | |
---|
| 192 | /** Option - the number of boosting iterations o perform */ |
---|
| 193 | protected int m_boostingIterations = 10; |
---|
| 194 | |
---|
| 195 | /** Option - the search mode */ |
---|
| 196 | protected int m_searchPath = 0; |
---|
| 197 | |
---|
| 198 | /** Option - the seed to use for a random search */ |
---|
| 199 | protected int m_randomSeed = 0; |
---|
| 200 | |
---|
| 201 | /** Option - whether the tree should remember the instance data */ |
---|
| 202 | protected boolean m_saveInstanceData = false; |
---|
| 203 | |
---|
| 204 | /** |
---|
| 205 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 206 | * detailed information about the technical background of this class, |
---|
| 207 | * e.g., paper reference or book this class is based on. |
---|
| 208 | * |
---|
| 209 | * @return the technical information about this class |
---|
| 210 | */ |
---|
| 211 | public TechnicalInformation getTechnicalInformation() { |
---|
| 212 | TechnicalInformation result; |
---|
| 213 | |
---|
| 214 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 215 | result.setValue(Field.AUTHOR, "Freund, Y. and Mason, L."); |
---|
| 216 | result.setValue(Field.YEAR, "1999"); |
---|
| 217 | result.setValue(Field.TITLE, "The alternating decision tree learning algorithm"); |
---|
| 218 | result.setValue(Field.BOOKTITLE, "Proceeding of the Sixteenth International Conference on Machine Learning"); |
---|
| 219 | result.setValue(Field.ADDRESS, "Bled, Slovenia"); |
---|
| 220 | result.setValue(Field.PAGES, "124-133"); |
---|
| 221 | |
---|
| 222 | return result; |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | /** |
---|
| 226 | * Sets up the tree ready to be trained, using two-class optimized method. |
---|
| 227 | * |
---|
| 228 | * @param instances the instances to train the tree with |
---|
| 229 | * @exception Exception if training data is unsuitable |
---|
| 230 | */ |
---|
| 231 | public void initClassifier(Instances instances) throws Exception { |
---|
| 232 | |
---|
| 233 | // clear stats |
---|
| 234 | m_nodesExpanded = 0; |
---|
| 235 | m_examplesCounted = 0; |
---|
| 236 | m_lastAddedSplitNum = 0; |
---|
| 237 | |
---|
| 238 | // prepare the random generator |
---|
| 239 | m_random = new Random(m_randomSeed); |
---|
| 240 | |
---|
| 241 | // create training set |
---|
| 242 | m_trainInstances = new Instances(instances); |
---|
| 243 | |
---|
| 244 | // create positive/negative subsets |
---|
| 245 | m_posTrainInstances = new ReferenceInstances(m_trainInstances, |
---|
| 246 | m_trainInstances.numInstances()); |
---|
| 247 | m_negTrainInstances = new ReferenceInstances(m_trainInstances, |
---|
| 248 | m_trainInstances.numInstances()); |
---|
| 249 | for (Enumeration e = m_trainInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
| 250 | Instance inst = (Instance) e.nextElement(); |
---|
| 251 | if ((int) inst.classValue() == 0) |
---|
| 252 | m_negTrainInstances.addReference(inst); // belongs in negative class |
---|
| 253 | else |
---|
| 254 | m_posTrainInstances.addReference(inst); // belongs in positive class |
---|
| 255 | } |
---|
| 256 | m_posTrainInstances.compactify(); |
---|
| 257 | m_negTrainInstances.compactify(); |
---|
| 258 | |
---|
| 259 | // create the root prediction node |
---|
| 260 | double rootPredictionValue = calcPredictionValue(m_posTrainInstances, |
---|
| 261 | m_negTrainInstances); |
---|
| 262 | m_root = new PredictionNode(rootPredictionValue); |
---|
| 263 | |
---|
| 264 | // pre-adjust weights |
---|
| 265 | updateWeights(m_posTrainInstances, m_negTrainInstances, rootPredictionValue); |
---|
| 266 | |
---|
| 267 | // pre-calculate what we can |
---|
| 268 | generateAttributeIndicesSingle(); |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | /** |
---|
| 272 | * Performs one iteration. |
---|
| 273 | * |
---|
| 274 | * @param iteration the index of the current iteration (0-based) |
---|
| 275 | * @exception Exception if this iteration fails |
---|
| 276 | */ |
---|
| 277 | public void next(int iteration) throws Exception { |
---|
| 278 | |
---|
| 279 | boost(); |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | /** |
---|
| 283 | * Performs a single boosting iteration, using two-class optimized method. |
---|
| 284 | * Will add a new splitter node and two prediction nodes to the tree |
---|
| 285 | * (unless merging takes place). |
---|
| 286 | * |
---|
| 287 | * @exception Exception if try to boost without setting up tree first or there are no |
---|
| 288 | * instances to train with |
---|
| 289 | */ |
---|
| 290 | public void boost() throws Exception { |
---|
| 291 | |
---|
| 292 | if (m_trainInstances == null || m_trainInstances.numInstances() == 0) |
---|
| 293 | throw new Exception("Trying to boost with no training data"); |
---|
| 294 | |
---|
| 295 | // perform the search |
---|
| 296 | searchForBestTestSingle(); |
---|
| 297 | |
---|
| 298 | if (m_search_bestSplitter == null) return; // handle empty instances |
---|
| 299 | |
---|
| 300 | // create the new nodes for the tree, updating the weights |
---|
| 301 | for (int i=0; i<2; i++) { |
---|
| 302 | Instances posInstances = |
---|
| 303 | m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathPosInstances); |
---|
| 304 | Instances negInstances = |
---|
| 305 | m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathNegInstances); |
---|
| 306 | double predictionValue = calcPredictionValue(posInstances, negInstances); |
---|
| 307 | PredictionNode newPredictor = new PredictionNode(predictionValue); |
---|
| 308 | updateWeights(posInstances, negInstances, predictionValue); |
---|
| 309 | m_search_bestSplitter.setChildForBranch(i, newPredictor); |
---|
| 310 | } |
---|
| 311 | |
---|
| 312 | // insert the new nodes |
---|
| 313 | m_search_bestInsertionNode.addChild((Splitter) m_search_bestSplitter, this); |
---|
| 314 | |
---|
| 315 | // free memory |
---|
| 316 | m_search_bestPathPosInstances = null; |
---|
| 317 | m_search_bestPathNegInstances = null; |
---|
| 318 | m_search_bestSplitter = null; |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | /** |
---|
| 322 | * Generates the m_nominalAttIndices and m_numericAttIndices arrays to index |
---|
| 323 | * the respective attribute types in the training data. |
---|
| 324 | * |
---|
| 325 | */ |
---|
| 326 | private void generateAttributeIndicesSingle() { |
---|
| 327 | |
---|
| 328 | // insert indices into vectors |
---|
| 329 | FastVector nominalIndices = new FastVector(); |
---|
| 330 | FastVector numericIndices = new FastVector(); |
---|
| 331 | |
---|
| 332 | for (int i=0; i<m_trainInstances.numAttributes(); i++) { |
---|
| 333 | if (i != m_trainInstances.classIndex()) { |
---|
| 334 | if (m_trainInstances.attribute(i).isNumeric()) |
---|
| 335 | numericIndices.addElement(new Integer(i)); |
---|
| 336 | else |
---|
| 337 | nominalIndices.addElement(new Integer(i)); |
---|
| 338 | } |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | // create nominal array |
---|
| 342 | m_nominalAttIndices = new int[nominalIndices.size()]; |
---|
| 343 | for (int i=0; i<nominalIndices.size(); i++) |
---|
| 344 | m_nominalAttIndices[i] = ((Integer)nominalIndices.elementAt(i)).intValue(); |
---|
| 345 | |
---|
| 346 | // create numeric array |
---|
| 347 | m_numericAttIndices = new int[numericIndices.size()]; |
---|
| 348 | for (int i=0; i<numericIndices.size(); i++) |
---|
| 349 | m_numericAttIndices[i] = ((Integer)numericIndices.elementAt(i)).intValue(); |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /** |
---|
| 353 | * Performs a search for the best test (splitter) to add to the tree, by aiming to |
---|
| 354 | * minimize the Z value. |
---|
| 355 | * |
---|
| 356 | * @exception Exception if search fails |
---|
| 357 | */ |
---|
| 358 | private void searchForBestTestSingle() throws Exception { |
---|
| 359 | |
---|
| 360 | // keep track of total weight for efficient wRemainder calculations |
---|
| 361 | m_trainTotalWeight = m_trainInstances.sumOfWeights(); |
---|
| 362 | |
---|
| 363 | m_search_smallestZ = Double.POSITIVE_INFINITY; |
---|
| 364 | searchForBestTestSingle(m_root, m_posTrainInstances, m_negTrainInstances); |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /** |
---|
| 368 | * Recursive function that carries out search for the best test (splitter) to add to |
---|
| 369 | * this part of the tree, by aiming to minimize the Z value. Performs Z-pure cutoff to |
---|
| 370 | * reduce search space. |
---|
| 371 | * |
---|
| 372 | * @param currentNode the root of the subtree to be searched, and the current node |
---|
| 373 | * being considered as parent of a new split |
---|
| 374 | * @param posInstances the positive-class instances that apply at this node |
---|
| 375 | * @param negInstances the negative-class instances that apply at this node |
---|
| 376 | * @exception Exception if search fails |
---|
| 377 | */ |
---|
| 378 | private void searchForBestTestSingle(PredictionNode currentNode, |
---|
| 379 | Instances posInstances, Instances negInstances) |
---|
| 380 | throws Exception { |
---|
| 381 | |
---|
| 382 | // don't investigate pure or empty nodes any further |
---|
| 383 | if (posInstances.numInstances() == 0 || negInstances.numInstances() == 0) return; |
---|
| 384 | |
---|
| 385 | // do z-pure cutoff |
---|
| 386 | if (calcZpure(posInstances, negInstances) >= m_search_smallestZ) return; |
---|
| 387 | |
---|
| 388 | // keep stats |
---|
| 389 | m_nodesExpanded++; |
---|
| 390 | m_examplesCounted += posInstances.numInstances() + negInstances.numInstances(); |
---|
| 391 | |
---|
| 392 | // evaluate static splitters (nominal) |
---|
| 393 | for (int i=0; i<m_nominalAttIndices.length; i++) |
---|
| 394 | evaluateNominalSplitSingle(m_nominalAttIndices[i], currentNode, |
---|
| 395 | posInstances, negInstances); |
---|
| 396 | |
---|
| 397 | // evaluate dynamic splitters (numeric) |
---|
| 398 | if (m_numericAttIndices.length > 0) { |
---|
| 399 | |
---|
| 400 | // merge the two sets of instances into one |
---|
| 401 | Instances allInstances = new Instances(posInstances); |
---|
| 402 | for (Enumeration e = negInstances.enumerateInstances(); e.hasMoreElements(); ) |
---|
| 403 | allInstances.add((Instance) e.nextElement()); |
---|
| 404 | |
---|
| 405 | // use method of finding the optimal Z split-point |
---|
| 406 | for (int i=0; i<m_numericAttIndices.length; i++) |
---|
| 407 | evaluateNumericSplitSingle(m_numericAttIndices[i], currentNode, |
---|
| 408 | posInstances, negInstances, allInstances); |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | if (currentNode.getChildren().size() == 0) return; |
---|
| 412 | |
---|
| 413 | // keep searching |
---|
| 414 | switch (m_searchPath) { |
---|
| 415 | case SEARCHPATH_ALL: |
---|
| 416 | goDownAllPathsSingle(currentNode, posInstances, negInstances); |
---|
| 417 | break; |
---|
| 418 | case SEARCHPATH_HEAVIEST: |
---|
| 419 | goDownHeaviestPathSingle(currentNode, posInstances, negInstances); |
---|
| 420 | break; |
---|
| 421 | case SEARCHPATH_ZPURE: |
---|
| 422 | goDownZpurePathSingle(currentNode, posInstances, negInstances); |
---|
| 423 | break; |
---|
| 424 | case SEARCHPATH_RANDOM: |
---|
| 425 | goDownRandomPathSingle(currentNode, posInstances, negInstances); |
---|
| 426 | break; |
---|
| 427 | } |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | /** |
---|
| 431 | * Continues single (two-class optimized) search by investigating every node in the |
---|
| 432 | * subtree under currentNode. |
---|
| 433 | * |
---|
| 434 | * @param currentNode the root of the subtree to be searched |
---|
| 435 | * @param posInstances the positive-class instances that apply at this node |
---|
| 436 | * @param negInstances the negative-class instances that apply at this node |
---|
| 437 | * @exception Exception if search fails |
---|
| 438 | */ |
---|
| 439 | private void goDownAllPathsSingle(PredictionNode currentNode, |
---|
| 440 | Instances posInstances, Instances negInstances) |
---|
| 441 | throws Exception { |
---|
| 442 | |
---|
| 443 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 444 | Splitter split = (Splitter) e.nextElement(); |
---|
| 445 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
| 446 | searchForBestTestSingle(split.getChildForBranch(i), |
---|
| 447 | split.instancesDownBranch(i, posInstances), |
---|
| 448 | split.instancesDownBranch(i, negInstances)); |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | |
---|
| 452 | /** |
---|
| 453 | * Continues single (two-class optimized) search by investigating only the path |
---|
| 454 | * with the most heavily weighted instances. |
---|
| 455 | * |
---|
| 456 | * @param currentNode the root of the subtree to be searched |
---|
| 457 | * @param posInstances the positive-class instances that apply at this node |
---|
| 458 | * @param negInstances the negative-class instances that apply at this node |
---|
| 459 | * @exception Exception if search fails |
---|
| 460 | */ |
---|
| 461 | private void goDownHeaviestPathSingle(PredictionNode currentNode, |
---|
| 462 | Instances posInstances, Instances negInstances) |
---|
| 463 | throws Exception { |
---|
| 464 | |
---|
| 465 | Splitter heaviestSplit = null; |
---|
| 466 | int heaviestBranch = 0; |
---|
| 467 | double largestWeight = 0.0; |
---|
| 468 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 469 | Splitter split = (Splitter) e.nextElement(); |
---|
| 470 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
| 471 | double weight = |
---|
| 472 | split.instancesDownBranch(i, posInstances).sumOfWeights() + |
---|
| 473 | split.instancesDownBranch(i, negInstances).sumOfWeights(); |
---|
| 474 | if (weight > largestWeight) { |
---|
| 475 | heaviestSplit = split; |
---|
| 476 | heaviestBranch = i; |
---|
| 477 | largestWeight = weight; |
---|
| 478 | } |
---|
| 479 | } |
---|
| 480 | } |
---|
| 481 | if (heaviestSplit != null) |
---|
| 482 | searchForBestTestSingle(heaviestSplit.getChildForBranch(heaviestBranch), |
---|
| 483 | heaviestSplit.instancesDownBranch(heaviestBranch, |
---|
| 484 | posInstances), |
---|
| 485 | heaviestSplit.instancesDownBranch(heaviestBranch, |
---|
| 486 | negInstances)); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | /** |
---|
| 490 | * Continues single (two-class optimized) search by investigating only the path |
---|
| 491 | * with the best Z-pure value at each branch. |
---|
| 492 | * |
---|
| 493 | * @param currentNode the root of the subtree to be searched |
---|
| 494 | * @param posInstances the positive-class instances that apply at this node |
---|
| 495 | * @param negInstances the negative-class instances that apply at this node |
---|
| 496 | * @exception Exception if search fails |
---|
| 497 | */ |
---|
| 498 | private void goDownZpurePathSingle(PredictionNode currentNode, |
---|
| 499 | Instances posInstances, Instances negInstances) |
---|
| 500 | throws Exception { |
---|
| 501 | |
---|
| 502 | double lowestZpure = m_search_smallestZ; // do z-pure cutoff |
---|
| 503 | PredictionNode bestPath = null; |
---|
| 504 | Instances bestPosSplit = null, bestNegSplit = null; |
---|
| 505 | |
---|
| 506 | // search for branch with lowest Z-pure |
---|
| 507 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 508 | Splitter split = (Splitter) e.nextElement(); |
---|
| 509 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
| 510 | Instances posSplit = split.instancesDownBranch(i, posInstances); |
---|
| 511 | Instances negSplit = split.instancesDownBranch(i, negInstances); |
---|
| 512 | double newZpure = calcZpure(posSplit, negSplit); |
---|
| 513 | if (newZpure < lowestZpure) { |
---|
| 514 | lowestZpure = newZpure; |
---|
| 515 | bestPath = split.getChildForBranch(i); |
---|
| 516 | bestPosSplit = posSplit; |
---|
| 517 | bestNegSplit = negSplit; |
---|
| 518 | } |
---|
| 519 | } |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | if (bestPath != null) |
---|
| 523 | searchForBestTestSingle(bestPath, bestPosSplit, bestNegSplit); |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Continues single (two-class optimized) search by investigating a random path. |
---|
| 528 | * |
---|
| 529 | * @param currentNode the root of the subtree to be searched |
---|
| 530 | * @param posInstances the positive-class instances that apply at this node |
---|
| 531 | * @param negInstances the negative-class instances that apply at this node |
---|
| 532 | * @exception Exception if search fails |
---|
| 533 | */ |
---|
| 534 | private void goDownRandomPathSingle(PredictionNode currentNode, |
---|
| 535 | Instances posInstances, Instances negInstances) |
---|
| 536 | throws Exception { |
---|
| 537 | |
---|
| 538 | FastVector children = currentNode.getChildren(); |
---|
| 539 | Splitter split = (Splitter) children.elementAt(getRandom(children.size())); |
---|
| 540 | int branch = getRandom(split.getNumOfBranches()); |
---|
| 541 | searchForBestTestSingle(split.getChildForBranch(branch), |
---|
| 542 | split.instancesDownBranch(branch, posInstances), |
---|
| 543 | split.instancesDownBranch(branch, negInstances)); |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | /** |
---|
| 547 | * Investigates the option of introducing a nominal split under currentNode. If it |
---|
| 548 | * finds a split that has a Z-value lower than has already been found it will |
---|
| 549 | * update the search information to record this as the best option so far. |
---|
| 550 | * |
---|
| 551 | * @param attIndex index of a nominal attribute to create a split from |
---|
| 552 | * @param currentNode the parent under which a split is to be considered |
---|
| 553 | * @param posInstances the positive-class instances that apply at this node |
---|
| 554 | * @param negInstances the negative-class instances that apply at this node |
---|
| 555 | */ |
---|
| 556 | private void evaluateNominalSplitSingle(int attIndex, PredictionNode currentNode, |
---|
| 557 | Instances posInstances, Instances negInstances) |
---|
| 558 | { |
---|
| 559 | |
---|
| 560 | double[] indexAndZ = findLowestZNominalSplit(posInstances, negInstances, attIndex); |
---|
| 561 | |
---|
| 562 | if (indexAndZ[1] < m_search_smallestZ) { |
---|
| 563 | m_search_smallestZ = indexAndZ[1]; |
---|
| 564 | m_search_bestInsertionNode = currentNode; |
---|
| 565 | m_search_bestSplitter = new TwoWayNominalSplit(attIndex, (int) indexAndZ[0]); |
---|
| 566 | m_search_bestPathPosInstances = posInstances; |
---|
| 567 | m_search_bestPathNegInstances = negInstances; |
---|
| 568 | } |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | /** |
---|
| 572 | * Investigates the option of introducing a two-way numeric split under currentNode. |
---|
| 573 | * If it finds a split that has a Z-value lower than has already been found it will |
---|
| 574 | * update the search information to record this as the best option so far. |
---|
| 575 | * |
---|
| 576 | * @param attIndex index of a numeric attribute to create a split from |
---|
| 577 | * @param currentNode the parent under which a split is to be considered |
---|
| 578 | * @param posInstances the positive-class instances that apply at this node |
---|
| 579 | * @param negInstances the negative-class instances that apply at this node |
---|
| 580 | * @param allInstances all of the instances the apply at this node (pos+neg combined) |
---|
| 581 | * @throws Exception in case of an error |
---|
| 582 | */ |
---|
| 583 | private void evaluateNumericSplitSingle(int attIndex, PredictionNode currentNode, |
---|
| 584 | Instances posInstances, Instances negInstances, |
---|
| 585 | Instances allInstances) |
---|
| 586 | throws Exception { |
---|
| 587 | |
---|
| 588 | double[] splitAndZ = findLowestZNumericSplit(allInstances, attIndex); |
---|
| 589 | |
---|
| 590 | if (splitAndZ[1] < m_search_smallestZ) { |
---|
| 591 | m_search_smallestZ = splitAndZ[1]; |
---|
| 592 | m_search_bestInsertionNode = currentNode; |
---|
| 593 | m_search_bestSplitter = new TwoWayNumericSplit(attIndex, splitAndZ[0]); |
---|
| 594 | m_search_bestPathPosInstances = posInstances; |
---|
| 595 | m_search_bestPathNegInstances = negInstances; |
---|
| 596 | } |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | /** |
---|
| 600 | * Calculates the prediction value used for a particular set of instances. |
---|
| 601 | * |
---|
| 602 | * @param posInstances the positive-class instances |
---|
| 603 | * @param negInstances the negative-class instances |
---|
| 604 | * @return the prediction value |
---|
| 605 | */ |
---|
| 606 | private double calcPredictionValue(Instances posInstances, Instances negInstances) { |
---|
| 607 | |
---|
| 608 | return 0.5 * Math.log( (posInstances.sumOfWeights() + 1.0) |
---|
| 609 | / (negInstances.sumOfWeights() + 1.0) ); |
---|
| 610 | } |
---|
| 611 | |
---|
| 612 | /** |
---|
| 613 | * Calculates the Z-pure value for a particular set of instances. |
---|
| 614 | * |
---|
| 615 | * @param posInstances the positive-class instances |
---|
| 616 | * @param negInstances the negative-class instances |
---|
| 617 | * @return the Z-pure value |
---|
| 618 | */ |
---|
| 619 | private double calcZpure(Instances posInstances, Instances negInstances) { |
---|
| 620 | |
---|
| 621 | double posWeight = posInstances.sumOfWeights(); |
---|
| 622 | double negWeight = negInstances.sumOfWeights(); |
---|
| 623 | return (2.0 * (Math.sqrt(posWeight+1.0) + Math.sqrt(negWeight+1.0))) + |
---|
| 624 | (m_trainTotalWeight - (posWeight + negWeight)); |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | /** |
---|
| 628 | * Updates the weights of instances that are influenced by a new prediction value. |
---|
| 629 | * |
---|
| 630 | * @param posInstances positive-class instances to which the prediction value applies |
---|
| 631 | * @param negInstances negative-class instances to which the prediction value applies |
---|
| 632 | * @param predictionValue the new prediction value |
---|
| 633 | */ |
---|
| 634 | private void updateWeights(Instances posInstances, Instances negInstances, |
---|
| 635 | double predictionValue) { |
---|
| 636 | |
---|
| 637 | // do positives |
---|
| 638 | double weightMultiplier = Math.pow(Math.E, -predictionValue); |
---|
| 639 | for (Enumeration e = posInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
| 640 | Instance inst = (Instance) e.nextElement(); |
---|
| 641 | inst.setWeight(inst.weight() * weightMultiplier); |
---|
| 642 | } |
---|
| 643 | // do negatives |
---|
| 644 | weightMultiplier = Math.pow(Math.E, predictionValue); |
---|
| 645 | for (Enumeration e = negInstances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
| 646 | Instance inst = (Instance) e.nextElement(); |
---|
| 647 | inst.setWeight(inst.weight() * weightMultiplier); |
---|
| 648 | } |
---|
| 649 | } |
---|
| 650 | |
---|
| 651 | /** |
---|
| 652 | * Finds the nominal attribute value to split on that results in the lowest Z-value. |
---|
| 653 | * |
---|
| 654 | * @param posInstances the positive-class instances to split |
---|
| 655 | * @param negInstances the negative-class instances to split |
---|
| 656 | * @param attIndex the index of the nominal attribute to find a split for |
---|
| 657 | * @return a double array, index[0] contains the value to split on, index[1] contains |
---|
| 658 | * the Z-value of the split |
---|
| 659 | */ |
---|
| 660 | private double[] findLowestZNominalSplit(Instances posInstances, Instances negInstances, |
---|
| 661 | int attIndex) |
---|
| 662 | { |
---|
| 663 | |
---|
| 664 | double lowestZ = Double.MAX_VALUE; |
---|
| 665 | int bestIndex = 0; |
---|
| 666 | |
---|
| 667 | // set up arrays |
---|
| 668 | double[] posWeights = attributeValueWeights(posInstances, attIndex); |
---|
| 669 | double[] negWeights = attributeValueWeights(negInstances, attIndex); |
---|
| 670 | double posWeight = Utils.sum(posWeights); |
---|
| 671 | double negWeight = Utils.sum(negWeights); |
---|
| 672 | |
---|
| 673 | int maxIndex = posWeights.length; |
---|
| 674 | if (maxIndex == 2) maxIndex = 1; // avoid repeating due to 2-way symmetry |
---|
| 675 | |
---|
| 676 | for (int i = 0; i < maxIndex; i++) { |
---|
| 677 | // calculate Z |
---|
| 678 | double w1 = posWeights[i] + 1.0; |
---|
| 679 | double w2 = negWeights[i] + 1.0; |
---|
| 680 | double w3 = posWeight - w1 + 2.0; |
---|
| 681 | double w4 = negWeight - w2 + 2.0; |
---|
| 682 | double wRemainder = m_trainTotalWeight + 4.0 - (w1 + w2 + w3 + w4); |
---|
| 683 | double newZ = (2.0 * (Math.sqrt(w1 * w2) + Math.sqrt(w3 * w4))) + wRemainder; |
---|
| 684 | |
---|
| 685 | // record best option |
---|
| 686 | if (newZ < lowestZ) { |
---|
| 687 | lowestZ = newZ; |
---|
| 688 | bestIndex = i; |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | |
---|
| 692 | // return result |
---|
| 693 | double[] indexAndZ = new double[2]; |
---|
| 694 | indexAndZ[0] = (double) bestIndex; |
---|
| 695 | indexAndZ[1] = lowestZ; |
---|
| 696 | return indexAndZ; |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | /** |
---|
| 700 | * Simultanously sum the weights of all attribute values for all instances. |
---|
| 701 | * |
---|
| 702 | * @param instances the instances to get the weights from |
---|
| 703 | * @param attIndex index of the attribute to be evaluated |
---|
| 704 | * @return a double array containing the weight of each attribute value |
---|
| 705 | */ |
---|
| 706 | private double[] attributeValueWeights(Instances instances, int attIndex) |
---|
| 707 | { |
---|
| 708 | |
---|
| 709 | double[] weights = new double[instances.attribute(attIndex).numValues()]; |
---|
| 710 | for(int i = 0; i < weights.length; i++) weights[i] = 0.0; |
---|
| 711 | |
---|
| 712 | for (Enumeration e = instances.enumerateInstances(); e.hasMoreElements(); ) { |
---|
| 713 | Instance inst = (Instance) e.nextElement(); |
---|
| 714 | if (!inst.isMissing(attIndex)) weights[(int)inst.value(attIndex)] += inst.weight(); |
---|
| 715 | } |
---|
| 716 | return weights; |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | /** |
---|
| 720 | * Finds the numeric split-point that results in the lowest Z-value. |
---|
| 721 | * |
---|
| 722 | * @param instances the instances to find a split for |
---|
| 723 | * @param attIndex the index of the numeric attribute to find a split for |
---|
| 724 | * @return a double array, index[0] contains the split-point, index[1] contains the |
---|
| 725 | * Z-value of the split |
---|
| 726 | * @throws Exception in case of an error |
---|
| 727 | */ |
---|
| 728 | private double[] findLowestZNumericSplit(Instances instances, int attIndex) |
---|
| 729 | throws Exception { |
---|
| 730 | |
---|
| 731 | double splitPoint = 0.0; |
---|
| 732 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
| 733 | int numMissing = 0; |
---|
| 734 | double[][] distribution = new double[3][instances.numClasses()]; |
---|
| 735 | |
---|
| 736 | // compute counts for all the values |
---|
| 737 | for (int i = 0; i < instances.numInstances(); i++) { |
---|
| 738 | Instance inst = instances.instance(i); |
---|
| 739 | if (!inst.isMissing(attIndex)) { |
---|
| 740 | distribution[1][(int)inst.classValue()] += inst.weight(); |
---|
| 741 | } else { |
---|
| 742 | distribution[2][(int)inst.classValue()] += inst.weight(); |
---|
| 743 | numMissing++; |
---|
| 744 | } |
---|
| 745 | } |
---|
| 746 | |
---|
| 747 | // sort instances |
---|
| 748 | instances.sort(attIndex); |
---|
| 749 | |
---|
| 750 | // make split counts for each possible split and evaluate |
---|
| 751 | for (int i = 0; i < instances.numInstances() - (numMissing + 1); i++) { |
---|
| 752 | Instance inst = instances.instance(i); |
---|
| 753 | Instance instPlusOne = instances.instance(i + 1); |
---|
| 754 | distribution[0][(int)inst.classValue()] += inst.weight(); |
---|
| 755 | distribution[1][(int)inst.classValue()] -= inst.weight(); |
---|
| 756 | if (Utils.sm(inst.value(attIndex), instPlusOne.value(attIndex))) { |
---|
| 757 | currCutPoint = (inst.value(attIndex) + instPlusOne.value(attIndex)) / 2.0; |
---|
| 758 | currVal = conditionedZOnRows(distribution); |
---|
| 759 | if (currVal < bestVal) { |
---|
| 760 | splitPoint = currCutPoint; |
---|
| 761 | bestVal = currVal; |
---|
| 762 | } |
---|
| 763 | } |
---|
| 764 | } |
---|
| 765 | |
---|
| 766 | double[] splitAndZ = new double[2]; |
---|
| 767 | splitAndZ[0] = splitPoint; |
---|
| 768 | splitAndZ[1] = bestVal; |
---|
| 769 | return splitAndZ; |
---|
| 770 | } |
---|
| 771 | |
---|
| 772 | /** |
---|
| 773 | * Calculates the Z-value from the rows of a weight distribution array. |
---|
| 774 | * |
---|
| 775 | * @param distribution the weight distribution |
---|
| 776 | * @return the Z-value |
---|
| 777 | */ |
---|
| 778 | private double conditionedZOnRows(double [][] distribution) { |
---|
| 779 | |
---|
| 780 | double w1 = distribution[0][0] + 1.0; |
---|
| 781 | double w2 = distribution[0][1] + 1.0; |
---|
| 782 | double w3 = distribution[1][0] + 1.0; |
---|
| 783 | double w4 = distribution[1][1] + 1.0; |
---|
| 784 | double wRemainder = m_trainTotalWeight + 4.0 - (w1 + w2 + w3 + w4); |
---|
| 785 | return (2.0 * (Math.sqrt(w1 * w2) + Math.sqrt(w3 * w4))) + wRemainder; |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | /** |
---|
| 789 | * Returns the class probability distribution for an instance. |
---|
| 790 | * |
---|
| 791 | * @param instance the instance to be classified |
---|
| 792 | * @return the distribution the tree generates for the instance |
---|
| 793 | */ |
---|
| 794 | public double[] distributionForInstance(Instance instance) { |
---|
| 795 | |
---|
| 796 | double predVal = predictionValueForInstance(instance, m_root, 0.0); |
---|
| 797 | |
---|
| 798 | double[] distribution = new double[2]; |
---|
| 799 | distribution[0] = 1.0 / (1.0 + Math.pow(Math.E, predVal)); |
---|
| 800 | distribution[1] = 1.0 / (1.0 + Math.pow(Math.E, -predVal)); |
---|
| 801 | |
---|
| 802 | return distribution; |
---|
| 803 | } |
---|
| 804 | |
---|
| 805 | /** |
---|
| 806 | * Returns the class prediction value (vote) for an instance. |
---|
| 807 | * |
---|
| 808 | * @param inst the instance |
---|
| 809 | * @param currentNode the root of the tree to get the values from |
---|
| 810 | * @param currentValue the current value before adding the value contained in the |
---|
| 811 | * subtree |
---|
| 812 | * @return the class prediction value (vote) |
---|
| 813 | */ |
---|
| 814 | protected double predictionValueForInstance(Instance inst, PredictionNode currentNode, |
---|
| 815 | double currentValue) { |
---|
| 816 | |
---|
| 817 | currentValue += currentNode.getValue(); |
---|
| 818 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 819 | Splitter split = (Splitter) e.nextElement(); |
---|
| 820 | int branch = split.branchInstanceGoesDown(inst); |
---|
| 821 | if (branch >= 0) |
---|
| 822 | currentValue = predictionValueForInstance(inst, split.getChildForBranch(branch), |
---|
| 823 | currentValue); |
---|
| 824 | } |
---|
| 825 | return currentValue; |
---|
| 826 | } |
---|
| 827 | |
---|
| 828 | /** |
---|
| 829 | * Returns a description of the classifier. |
---|
| 830 | * |
---|
| 831 | * @return a string containing a description of the classifier |
---|
| 832 | */ |
---|
| 833 | public String toString() { |
---|
| 834 | |
---|
| 835 | if (m_root == null) |
---|
| 836 | return ("ADTree not built yet"); |
---|
| 837 | else { |
---|
| 838 | return ("Alternating decision tree:\n\n" + toString(m_root, 1) + |
---|
| 839 | "\nLegend: " + legend() + |
---|
| 840 | "\nTree size (total number of nodes): " + numOfAllNodes(m_root) + |
---|
| 841 | "\nLeaves (number of predictor nodes): " + numOfPredictionNodes(m_root) |
---|
| 842 | ); |
---|
| 843 | } |
---|
| 844 | } |
---|
| 845 | |
---|
| 846 | /** |
---|
| 847 | * Traverses the tree, forming a string that describes it. |
---|
| 848 | * |
---|
| 849 | * @param currentNode the current node under investigation |
---|
| 850 | * @param level the current level in the tree |
---|
| 851 | * @return the string describing the subtree |
---|
| 852 | */ |
---|
| 853 | protected String toString(PredictionNode currentNode, int level) { |
---|
| 854 | |
---|
| 855 | StringBuffer text = new StringBuffer(); |
---|
| 856 | |
---|
| 857 | text.append(": " + Utils.doubleToString(currentNode.getValue(),3)); |
---|
| 858 | |
---|
| 859 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 860 | Splitter split = (Splitter) e.nextElement(); |
---|
| 861 | |
---|
| 862 | for (int j=0; j<split.getNumOfBranches(); j++) { |
---|
| 863 | PredictionNode child = split.getChildForBranch(j); |
---|
| 864 | if (child != null) { |
---|
| 865 | text.append("\n"); |
---|
| 866 | for (int k = 0; k < level; k++) { |
---|
| 867 | text.append("| "); |
---|
| 868 | } |
---|
| 869 | text.append("(" + split.orderAdded + ")"); |
---|
| 870 | text.append(split.attributeString(m_trainInstances) + " " |
---|
| 871 | + split.comparisonString(j, m_trainInstances)); |
---|
| 872 | text.append(toString(child, level + 1)); |
---|
| 873 | } |
---|
| 874 | } |
---|
| 875 | } |
---|
| 876 | return text.toString(); |
---|
| 877 | } |
---|
| 878 | |
---|
| 879 | /** |
---|
| 880 | * Returns the type of graph this classifier |
---|
| 881 | * represents. |
---|
| 882 | * @return Drawable.TREE |
---|
| 883 | */ |
---|
| 884 | public int graphType() { |
---|
| 885 | return Drawable.TREE; |
---|
| 886 | } |
---|
| 887 | |
---|
| 888 | /** |
---|
| 889 | * Returns graph describing the tree. |
---|
| 890 | * |
---|
| 891 | * @return the graph of the tree in dotty format |
---|
| 892 | * @exception Exception if something goes wrong |
---|
| 893 | */ |
---|
| 894 | public String graph() throws Exception { |
---|
| 895 | |
---|
| 896 | StringBuffer text = new StringBuffer(); |
---|
| 897 | text.append("digraph ADTree {\n"); |
---|
| 898 | graphTraverse(m_root, text, 0, 0, m_trainInstances); |
---|
| 899 | return text.toString() +"}\n"; |
---|
| 900 | } |
---|
| 901 | |
---|
| 902 | /** |
---|
| 903 | * Traverses the tree, graphing each node. |
---|
| 904 | * |
---|
| 905 | * @param currentNode the currentNode under investigation |
---|
| 906 | * @param text the string built so far |
---|
| 907 | * @param splitOrder the order the parent splitter was added to the tree |
---|
| 908 | * @param predOrder the order this predictor was added to the split |
---|
| 909 | * @param instances the data to work on |
---|
| 910 | * @exception Exception if something goes wrong |
---|
| 911 | */ |
---|
| 912 | protected void graphTraverse(PredictionNode currentNode, StringBuffer text, |
---|
| 913 | int splitOrder, int predOrder, Instances instances) |
---|
| 914 | throws Exception { |
---|
| 915 | |
---|
| 916 | text.append("S" + splitOrder + "P" + predOrder + " [label=\""); |
---|
| 917 | text.append(Utils.doubleToString(currentNode.getValue(),3)); |
---|
| 918 | if (splitOrder == 0) // show legend in root |
---|
| 919 | text.append(" (" + legend() + ")"); |
---|
| 920 | text.append("\" shape=box style=filled"); |
---|
| 921 | if (instances.numInstances() > 0) text.append(" data=\n" + instances + "\n,\n"); |
---|
| 922 | text.append("]\n"); |
---|
| 923 | for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { |
---|
| 924 | Splitter split = (Splitter) e.nextElement(); |
---|
| 925 | text.append("S" + splitOrder + "P" + predOrder + "->" + "S" + split.orderAdded + |
---|
| 926 | " [style=dotted]\n"); |
---|
| 927 | text.append("S" + split.orderAdded + " [label=\"" + split.orderAdded + ": " + |
---|
| 928 | split.attributeString(m_trainInstances) + "\"]\n"); |
---|
| 929 | |
---|
| 930 | for (int i=0; i<split.getNumOfBranches(); i++) { |
---|
| 931 | PredictionNode child = split.getChildForBranch(i); |
---|
| 932 | if (child != null) { |
---|
| 933 | text.append("S" + split.orderAdded + "->" + "S" + split.orderAdded + "P" + i + |
---|
| 934 | " [label=\"" + split.comparisonString(i, m_trainInstances) + "\"]\n"); |
---|
| 935 | graphTraverse(child, text, split.orderAdded, i, |
---|
| 936 | split.instancesDownBranch(i, instances)); |
---|
| 937 | } |
---|
| 938 | } |
---|
| 939 | } |
---|
| 940 | } |
---|
| 941 | |
---|
| 942 | /** |
---|
| 943 | * Returns the legend of the tree, describing how results are to be interpreted. |
---|
| 944 | * |
---|
| 945 | * @return a string containing the legend of the classifier |
---|
| 946 | */ |
---|
| 947 | public String legend() { |
---|
| 948 | |
---|
| 949 | Attribute classAttribute = null; |
---|
| 950 | if (m_trainInstances == null) return ""; |
---|
| 951 | try {classAttribute = m_trainInstances.classAttribute();} catch (Exception x){}; |
---|
| 952 | return ("-ve = " + classAttribute.value(0) + |
---|
| 953 | ", +ve = " + classAttribute.value(1)); |
---|
| 954 | } |
---|
| 955 | |
---|
| 956 | /** |
---|
| 957 | * @return tip text for this property suitable for |
---|
| 958 | * displaying in the explorer/experimenter gui |
---|
| 959 | */ |
---|
| 960 | public String numOfBoostingIterationsTipText() { |
---|
| 961 | |
---|
| 962 | return "Sets the number of boosting iterations to perform. You will need to manually " |
---|
| 963 | + "tune this parameter to suit the dataset and the desired complexity/accuracy " |
---|
| 964 | + "tradeoff. More boosting iterations will result in larger (potentially more " |
---|
| 965 | + " accurate) trees, but will make learning slower. Each iteration will add 3 nodes " |
---|
| 966 | + "(1 split + 2 prediction) to the tree unless merging occurs."; |
---|
| 967 | } |
---|
| 968 | |
---|
| 969 | /** |
---|
| 970 | * Gets the number of boosting iterations. |
---|
| 971 | * |
---|
| 972 | * @return the number of boosting iterations |
---|
| 973 | */ |
---|
| 974 | public int getNumOfBoostingIterations() { |
---|
| 975 | |
---|
| 976 | return m_boostingIterations; |
---|
| 977 | } |
---|
| 978 | |
---|
| 979 | /** |
---|
| 980 | * Sets the number of boosting iterations. |
---|
| 981 | * |
---|
| 982 | * @param b the number of boosting iterations to use |
---|
| 983 | */ |
---|
| 984 | public void setNumOfBoostingIterations(int b) { |
---|
| 985 | |
---|
| 986 | m_boostingIterations = b; |
---|
| 987 | } |
---|
| 988 | |
---|
| 989 | /** |
---|
| 990 | * @return tip text for this property suitable for |
---|
| 991 | * displaying in the explorer/experimenter gui |
---|
| 992 | */ |
---|
| 993 | public String searchPathTipText() { |
---|
| 994 | |
---|
| 995 | return "Sets the type of search to perform when building the tree. The default option" |
---|
| 996 | + " (Expand all paths) will do an exhaustive search. The other search methods are" |
---|
| 997 | + " heuristic, so they are not guaranteed to find an optimal solution but they are" |
---|
| 998 | + " much faster. Expand the heaviest path: searches the path with the most heavily" |
---|
| 999 | + " weighted instances. Expand the best z-pure path: searches the path determined" |
---|
| 1000 | + " by the best z-pure estimate. Expand a random path: the fastest method, simply" |
---|
| 1001 | + " searches down a single random path on each iteration."; |
---|
| 1002 | } |
---|
| 1003 | |
---|
| 1004 | /** |
---|
| 1005 | * Gets the method of searching the tree for a new insertion. Will be one of |
---|
| 1006 | * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. |
---|
| 1007 | * |
---|
| 1008 | * @return the tree searching mode |
---|
| 1009 | */ |
---|
| 1010 | public SelectedTag getSearchPath() { |
---|
| 1011 | |
---|
| 1012 | return new SelectedTag(m_searchPath, TAGS_SEARCHPATH); |
---|
| 1013 | } |
---|
| 1014 | |
---|
| 1015 | /** |
---|
| 1016 | * Sets the method of searching the tree for a new insertion. Will be one of |
---|
| 1017 | * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. |
---|
| 1018 | * |
---|
| 1019 | * @param newMethod the new tree searching mode |
---|
| 1020 | */ |
---|
| 1021 | public void setSearchPath(SelectedTag newMethod) { |
---|
| 1022 | |
---|
| 1023 | if (newMethod.getTags() == TAGS_SEARCHPATH) { |
---|
| 1024 | m_searchPath = newMethod.getSelectedTag().getID(); |
---|
| 1025 | } |
---|
| 1026 | } |
---|
| 1027 | |
---|
| 1028 | /** |
---|
| 1029 | * @return tip text for this property suitable for |
---|
| 1030 | * displaying in the explorer/experimenter gui |
---|
| 1031 | */ |
---|
| 1032 | public String randomSeedTipText() { |
---|
| 1033 | |
---|
| 1034 | return "Sets the random seed to use for a random search."; |
---|
| 1035 | } |
---|
| 1036 | |
---|
| 1037 | /** |
---|
| 1038 | * Gets random seed for a random walk. |
---|
| 1039 | * |
---|
| 1040 | * @return the random seed |
---|
| 1041 | */ |
---|
| 1042 | public int getRandomSeed() { |
---|
| 1043 | |
---|
| 1044 | return m_randomSeed; |
---|
| 1045 | } |
---|
| 1046 | |
---|
| 1047 | /** |
---|
| 1048 | * Sets random seed for a random walk. |
---|
| 1049 | * |
---|
| 1050 | * @param seed the random seed |
---|
| 1051 | */ |
---|
| 1052 | public void setRandomSeed(int seed) { |
---|
| 1053 | |
---|
| 1054 | // the actual random object is created when the tree is initialized |
---|
| 1055 | m_randomSeed = seed; |
---|
| 1056 | } |
---|
| 1057 | |
---|
| 1058 | /** |
---|
| 1059 | * @return tip text for this property suitable for |
---|
| 1060 | * displaying in the explorer/experimenter gui |
---|
| 1061 | */ |
---|
| 1062 | public String saveInstanceDataTipText() { |
---|
| 1063 | |
---|
| 1064 | return "Sets whether the tree is to save instance data - the model will take up more" |
---|
| 1065 | + " memory if it does. If enabled you will be able to visualize the instances at" |
---|
| 1066 | + " the prediction nodes when visualizing the tree."; |
---|
| 1067 | } |
---|
| 1068 | |
---|
| 1069 | /** |
---|
| 1070 | * Gets whether the tree is to save instance data. |
---|
| 1071 | * |
---|
| 1072 | * @return the random seed |
---|
| 1073 | */ |
---|
| 1074 | public boolean getSaveInstanceData() { |
---|
| 1075 | |
---|
| 1076 | return m_saveInstanceData; |
---|
| 1077 | } |
---|
| 1078 | |
---|
| 1079 | /** |
---|
| 1080 | * Sets whether the tree is to save instance data. |
---|
| 1081 | * |
---|
| 1082 | * @param v true then the tree saves instance data |
---|
| 1083 | */ |
---|
| 1084 | public void setSaveInstanceData(boolean v) { |
---|
| 1085 | |
---|
| 1086 | m_saveInstanceData = v; |
---|
| 1087 | } |
---|
| 1088 | |
---|
| 1089 | /** |
---|
| 1090 | * Returns an enumeration describing the available options.. |
---|
| 1091 | * |
---|
| 1092 | * @return an enumeration of all the available options. |
---|
| 1093 | */ |
---|
| 1094 | public Enumeration listOptions() { |
---|
| 1095 | |
---|
| 1096 | Vector newVector = new Vector(3); |
---|
| 1097 | newVector.addElement(new Option( |
---|
| 1098 | "\tNumber of boosting iterations.\n" |
---|
| 1099 | +"\t(Default = 10)", |
---|
| 1100 | "B", 1,"-B <number of boosting iterations>")); |
---|
| 1101 | newVector.addElement(new Option( |
---|
| 1102 | "\tExpand nodes: -3(all), -2(weight), -1(z_pure), " |
---|
| 1103 | +">=0 seed for random walk\n" |
---|
| 1104 | +"\t(Default = -3)", |
---|
| 1105 | "E", 1,"-E <-3|-2|-1|>=0>")); |
---|
| 1106 | newVector.addElement(new Option( |
---|
| 1107 | "\tSave the instance data with the model", |
---|
| 1108 | "D", 0,"-D")); |
---|
| 1109 | return newVector.elements(); |
---|
| 1110 | } |
---|
| 1111 | |
---|
| 1112 | /** |
---|
| 1113 | * Parses a given list of options. Valid options are:<p> |
---|
| 1114 | * |
---|
| 1115 | * -B num <br> |
---|
| 1116 | * Set the number of boosting iterations |
---|
| 1117 | * (default 10) <p> |
---|
| 1118 | * |
---|
| 1119 | * -E num <br> |
---|
| 1120 | * Set the nodes to expand: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk |
---|
| 1121 | * (default -3) <p> |
---|
| 1122 | * |
---|
| 1123 | * -D <br> |
---|
| 1124 | * Save the instance data with the model <p> |
---|
| 1125 | * |
---|
| 1126 | * @param options the list of options as an array of strings |
---|
| 1127 | * @exception Exception if an option is not supported |
---|
| 1128 | */ |
---|
| 1129 | public void setOptions(String[] options) throws Exception { |
---|
| 1130 | |
---|
| 1131 | String bString = Utils.getOption('B', options); |
---|
| 1132 | if (bString.length() != 0) setNumOfBoostingIterations(Integer.parseInt(bString)); |
---|
| 1133 | |
---|
| 1134 | String eString = Utils.getOption('E', options); |
---|
| 1135 | if (eString.length() != 0) { |
---|
| 1136 | int value = Integer.parseInt(eString); |
---|
| 1137 | if (value >= 0) { |
---|
| 1138 | setSearchPath(new SelectedTag(SEARCHPATH_RANDOM, TAGS_SEARCHPATH)); |
---|
| 1139 | setRandomSeed(value); |
---|
| 1140 | } else setSearchPath(new SelectedTag(value + 3, TAGS_SEARCHPATH)); |
---|
| 1141 | } |
---|
| 1142 | |
---|
| 1143 | setSaveInstanceData(Utils.getFlag('D', options)); |
---|
| 1144 | |
---|
| 1145 | Utils.checkForRemainingOptions(options); |
---|
| 1146 | } |
---|
| 1147 | |
---|
| 1148 | /** |
---|
| 1149 | * Gets the current settings of ADTree. |
---|
| 1150 | * |
---|
| 1151 | * @return an array of strings suitable for passing to setOptions() |
---|
| 1152 | */ |
---|
| 1153 | public String[] getOptions() { |
---|
| 1154 | |
---|
| 1155 | String[] options = new String[6]; |
---|
| 1156 | int current = 0; |
---|
| 1157 | options[current++] = "-B"; options[current++] = "" + getNumOfBoostingIterations(); |
---|
| 1158 | options[current++] = "-E"; options[current++] = "" + |
---|
| 1159 | (m_searchPath == SEARCHPATH_RANDOM ? |
---|
| 1160 | m_randomSeed : m_searchPath - 3); |
---|
| 1161 | if (getSaveInstanceData()) options[current++] = "-D"; |
---|
| 1162 | while (current < options.length) options[current++] = ""; |
---|
| 1163 | return options; |
---|
| 1164 | } |
---|
| 1165 | |
---|
| 1166 | /** |
---|
| 1167 | * Calls measure function for tree size - the total number of nodes. |
---|
| 1168 | * |
---|
| 1169 | * @return the tree size |
---|
| 1170 | */ |
---|
| 1171 | public double measureTreeSize() { |
---|
| 1172 | |
---|
| 1173 | return numOfAllNodes(m_root); |
---|
| 1174 | } |
---|
| 1175 | |
---|
| 1176 | /** |
---|
| 1177 | * Calls measure function for leaf size - the number of prediction nodes. |
---|
| 1178 | * |
---|
| 1179 | * @return the leaf size |
---|
| 1180 | */ |
---|
| 1181 | public double measureNumLeaves() { |
---|
| 1182 | |
---|
| 1183 | return numOfPredictionNodes(m_root); |
---|
| 1184 | } |
---|
| 1185 | |
---|
| 1186 | /** |
---|
| 1187 | * Calls measure function for prediction leaf size - the number of |
---|
| 1188 | * prediction nodes without children. |
---|
| 1189 | * |
---|
| 1190 | * @return the leaf size |
---|
| 1191 | */ |
---|
| 1192 | public double measureNumPredictionLeaves() { |
---|
| 1193 | |
---|
| 1194 | return numOfPredictionLeafNodes(m_root); |
---|
| 1195 | } |
---|
| 1196 | |
---|
| 1197 | /** |
---|
| 1198 | * Returns the number of nodes expanded. |
---|
| 1199 | * |
---|
| 1200 | * @return the number of nodes expanded during search |
---|
| 1201 | */ |
---|
| 1202 | public double measureNodesExpanded() { |
---|
| 1203 | |
---|
| 1204 | return m_nodesExpanded; |
---|
| 1205 | } |
---|
| 1206 | |
---|
| 1207 | /** |
---|
| 1208 | * Returns the number of examples "counted". |
---|
| 1209 | * |
---|
| 1210 | * @return the number of nodes processed during search |
---|
| 1211 | */ |
---|
| 1212 | |
---|
| 1213 | public double measureExamplesProcessed() { |
---|
| 1214 | |
---|
| 1215 | return m_examplesCounted; |
---|
| 1216 | } |
---|
| 1217 | |
---|
| 1218 | /** |
---|
| 1219 | * Returns an enumeration of the additional measure names. |
---|
| 1220 | * |
---|
| 1221 | * @return an enumeration of the measure names |
---|
| 1222 | */ |
---|
| 1223 | public Enumeration enumerateMeasures() { |
---|
| 1224 | |
---|
| 1225 | Vector newVector = new Vector(4); |
---|
| 1226 | newVector.addElement("measureTreeSize"); |
---|
| 1227 | newVector.addElement("measureNumLeaves"); |
---|
| 1228 | newVector.addElement("measureNumPredictionLeaves"); |
---|
| 1229 | newVector.addElement("measureNodesExpanded"); |
---|
| 1230 | newVector.addElement("measureExamplesProcessed"); |
---|
| 1231 | return newVector.elements(); |
---|
| 1232 | } |
---|
| 1233 | |
---|
| 1234 | /** |
---|
| 1235 | * Returns the value of the named measure. |
---|
| 1236 | * |
---|
| 1237 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 1238 | * @return the value of the named measure |
---|
| 1239 | * @exception IllegalArgumentException if the named measure is not supported |
---|
| 1240 | */ |
---|
| 1241 | public double getMeasure(String additionalMeasureName) { |
---|
| 1242 | |
---|
| 1243 | if (additionalMeasureName.equalsIgnoreCase("measureTreeSize")) { |
---|
| 1244 | return measureTreeSize(); |
---|
| 1245 | } |
---|
| 1246 | else if (additionalMeasureName.equalsIgnoreCase("measureNumLeaves")) { |
---|
| 1247 | return measureNumLeaves(); |
---|
| 1248 | } |
---|
| 1249 | else if (additionalMeasureName.equalsIgnoreCase("measureNumPredictionLeaves")) { |
---|
| 1250 | return measureNumPredictionLeaves(); |
---|
| 1251 | } |
---|
| 1252 | else if (additionalMeasureName.equalsIgnoreCase("measureNodesExpanded")) { |
---|
| 1253 | return measureNodesExpanded(); |
---|
| 1254 | } |
---|
| 1255 | else if (additionalMeasureName.equalsIgnoreCase("measureExamplesProcessed")) { |
---|
| 1256 | return measureExamplesProcessed(); |
---|
| 1257 | } |
---|
| 1258 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
| 1259 | + " not supported (ADTree)"); |
---|
| 1260 | } |
---|
| 1261 | } |
---|
| 1262 | |
---|
| 1263 | /** |
---|
| 1264 | * Returns the total number of nodes in a tree. |
---|
| 1265 | * |
---|
| 1266 | * @param root the root of the tree being measured |
---|
| 1267 | * @return tree size in number of splitter + prediction nodes |
---|
| 1268 | */ |
---|
| 1269 | protected int numOfAllNodes(PredictionNode root) { |
---|
| 1270 | |
---|
| 1271 | int numSoFar = 0; |
---|
| 1272 | if (root != null) { |
---|
| 1273 | numSoFar++; |
---|
| 1274 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
| 1275 | numSoFar++; |
---|
| 1276 | Splitter split = (Splitter) e.nextElement(); |
---|
| 1277 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
| 1278 | numSoFar += numOfAllNodes(split.getChildForBranch(i)); |
---|
| 1279 | } |
---|
| 1280 | } |
---|
| 1281 | return numSoFar; |
---|
| 1282 | } |
---|
| 1283 | |
---|
| 1284 | /** |
---|
| 1285 | * Returns the number of prediction nodes in a tree. |
---|
| 1286 | * |
---|
| 1287 | * @param root the root of the tree being measured |
---|
| 1288 | * @return tree size in number of prediction nodes |
---|
| 1289 | */ |
---|
| 1290 | protected int numOfPredictionNodes(PredictionNode root) { |
---|
| 1291 | |
---|
| 1292 | int numSoFar = 0; |
---|
| 1293 | if (root != null) { |
---|
| 1294 | numSoFar++; |
---|
| 1295 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
| 1296 | Splitter split = (Splitter) e.nextElement(); |
---|
| 1297 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
| 1298 | numSoFar += numOfPredictionNodes(split.getChildForBranch(i)); |
---|
| 1299 | } |
---|
| 1300 | } |
---|
| 1301 | return numSoFar; |
---|
| 1302 | } |
---|
| 1303 | |
---|
| 1304 | /** |
---|
| 1305 | * Returns the number of leaf nodes in a tree - prediction nodes without |
---|
| 1306 | * children. |
---|
| 1307 | * |
---|
| 1308 | * @param root the root of the tree being measured |
---|
| 1309 | * @return tree leaf size in number of prediction nodes |
---|
| 1310 | */ |
---|
| 1311 | protected int numOfPredictionLeafNodes(PredictionNode root) { |
---|
| 1312 | |
---|
| 1313 | int numSoFar = 0; |
---|
| 1314 | if (root.getChildren().size() > 0) { |
---|
| 1315 | for (Enumeration e = root.children(); e.hasMoreElements(); ) { |
---|
| 1316 | Splitter split = (Splitter) e.nextElement(); |
---|
| 1317 | for (int i=0; i<split.getNumOfBranches(); i++) |
---|
| 1318 | numSoFar += numOfPredictionLeafNodes(split.getChildForBranch(i)); |
---|
| 1319 | } |
---|
| 1320 | } else numSoFar = 1; |
---|
| 1321 | return numSoFar; |
---|
| 1322 | } |
---|
| 1323 | |
---|
| 1324 | /** |
---|
| 1325 | * Gets the next random value. |
---|
| 1326 | * |
---|
| 1327 | * @param max the maximum value (+1) to be returned |
---|
| 1328 | * @return the next random value (between 0 and max-1) |
---|
| 1329 | */ |
---|
| 1330 | protected int getRandom(int max) { |
---|
| 1331 | |
---|
| 1332 | return m_random.nextInt(max); |
---|
| 1333 | } |
---|
| 1334 | |
---|
| 1335 | /** |
---|
| 1336 | * Returns the next number in the order that splitter nodes have been added to |
---|
| 1337 | * the tree, and records that a new splitter has been added. |
---|
| 1338 | * |
---|
| 1339 | * @return the next number in the order |
---|
| 1340 | */ |
---|
| 1341 | public int nextSplitAddedOrder() { |
---|
| 1342 | |
---|
| 1343 | return ++m_lastAddedSplitNum; |
---|
| 1344 | } |
---|
| 1345 | |
---|
| 1346 | /** |
---|
| 1347 | * Returns default capabilities of the classifier. |
---|
| 1348 | * |
---|
| 1349 | * @return the capabilities of this classifier |
---|
| 1350 | */ |
---|
| 1351 | public Capabilities getCapabilities() { |
---|
| 1352 | Capabilities result = super.getCapabilities(); |
---|
| 1353 | result.disableAll(); |
---|
| 1354 | |
---|
| 1355 | // attributes |
---|
| 1356 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 1357 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 1358 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 1359 | result.enable(Capability.MISSING_VALUES); |
---|
| 1360 | |
---|
| 1361 | // class |
---|
| 1362 | result.enable(Capability.BINARY_CLASS); |
---|
| 1363 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 1364 | |
---|
| 1365 | return result; |
---|
| 1366 | } |
---|
| 1367 | |
---|
| 1368 | /** |
---|
| 1369 | * Builds a classifier for a set of instances. |
---|
| 1370 | * |
---|
| 1371 | * @param instances the instances to train the classifier with |
---|
| 1372 | * @exception Exception if something goes wrong |
---|
| 1373 | */ |
---|
| 1374 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 1375 | |
---|
| 1376 | // can classifier handle the data? |
---|
| 1377 | getCapabilities().testWithFail(instances); |
---|
| 1378 | |
---|
| 1379 | // remove instances with missing class |
---|
| 1380 | instances = new Instances(instances); |
---|
| 1381 | instances.deleteWithMissingClass(); |
---|
| 1382 | |
---|
| 1383 | // set up the tree |
---|
| 1384 | initClassifier(instances); |
---|
| 1385 | |
---|
| 1386 | // build the tree |
---|
| 1387 | for (int T = 0; T < m_boostingIterations; T++) boost(); |
---|
| 1388 | |
---|
| 1389 | // clean up if desired |
---|
| 1390 | if (!m_saveInstanceData) done(); |
---|
| 1391 | } |
---|
| 1392 | |
---|
| 1393 | /** |
---|
| 1394 | * Frees memory that is no longer needed for a final model - will no longer be able |
---|
| 1395 | * to increment the classifier after calling this. |
---|
| 1396 | * |
---|
| 1397 | */ |
---|
| 1398 | public void done() { |
---|
| 1399 | |
---|
| 1400 | m_trainInstances = new Instances(m_trainInstances, 0); |
---|
| 1401 | m_random = null; |
---|
| 1402 | m_numericAttIndices = null; |
---|
| 1403 | m_nominalAttIndices = null; |
---|
| 1404 | m_posTrainInstances = null; |
---|
| 1405 | m_negTrainInstances = null; |
---|
| 1406 | } |
---|
| 1407 | |
---|
| 1408 | /** |
---|
| 1409 | * Creates a clone that is identical to the current tree, but is independent. |
---|
| 1410 | * Deep copies the essential elements such as the tree nodes, and the instances |
---|
| 1411 | * (because the weights change.) Reference copies several elements such as the |
---|
| 1412 | * potential splitter sets, assuming that such elements should never differ between |
---|
| 1413 | * clones. |
---|
| 1414 | * |
---|
| 1415 | * @return the clone |
---|
| 1416 | */ |
---|
| 1417 | public Object clone() { |
---|
| 1418 | |
---|
| 1419 | ADTree clone = new ADTree(); |
---|
| 1420 | |
---|
| 1421 | if (m_root != null) { // check for initialization first |
---|
| 1422 | clone.m_root = (PredictionNode) m_root.clone(); // deep copy the tree |
---|
| 1423 | |
---|
| 1424 | clone.m_trainInstances = new Instances(m_trainInstances); // copy training instances |
---|
| 1425 | |
---|
| 1426 | // deep copy the random object |
---|
| 1427 | if (m_random != null) { |
---|
| 1428 | SerializedObject randomSerial = null; |
---|
| 1429 | try { |
---|
| 1430 | randomSerial = new SerializedObject(m_random); |
---|
| 1431 | } catch (Exception ignored) {} // we know that Random is serializable |
---|
| 1432 | clone.m_random = (Random) randomSerial.getObject(); |
---|
| 1433 | } |
---|
| 1434 | |
---|
| 1435 | clone.m_lastAddedSplitNum = m_lastAddedSplitNum; |
---|
| 1436 | clone.m_numericAttIndices = m_numericAttIndices; |
---|
| 1437 | clone.m_nominalAttIndices = m_nominalAttIndices; |
---|
| 1438 | clone.m_trainTotalWeight = m_trainTotalWeight; |
---|
| 1439 | |
---|
| 1440 | // reconstruct pos/negTrainInstances references |
---|
| 1441 | if (m_posTrainInstances != null) { |
---|
| 1442 | clone.m_posTrainInstances = |
---|
| 1443 | new ReferenceInstances(m_trainInstances, m_posTrainInstances.numInstances()); |
---|
| 1444 | clone.m_negTrainInstances = |
---|
| 1445 | new ReferenceInstances(m_trainInstances, m_negTrainInstances.numInstances()); |
---|
| 1446 | for (Enumeration e = clone.m_trainInstances.enumerateInstances(); |
---|
| 1447 | e.hasMoreElements(); ) { |
---|
| 1448 | Instance inst = (Instance) e.nextElement(); |
---|
| 1449 | try { // ignore classValue() exception |
---|
| 1450 | if ((int) inst.classValue() == 0) |
---|
| 1451 | clone.m_negTrainInstances.addReference(inst); // belongs in negative class |
---|
| 1452 | else |
---|
| 1453 | clone.m_posTrainInstances.addReference(inst); // belongs in positive class |
---|
| 1454 | } catch (Exception ignored) {} |
---|
| 1455 | } |
---|
| 1456 | } |
---|
| 1457 | } |
---|
| 1458 | clone.m_nodesExpanded = m_nodesExpanded; |
---|
| 1459 | clone.m_examplesCounted = m_examplesCounted; |
---|
| 1460 | clone.m_boostingIterations = m_boostingIterations; |
---|
| 1461 | clone.m_searchPath = m_searchPath; |
---|
| 1462 | clone.m_randomSeed = m_randomSeed; |
---|
| 1463 | |
---|
| 1464 | return clone; |
---|
| 1465 | } |
---|
| 1466 | |
---|
| 1467 | /** |
---|
| 1468 | * Merges two trees together. Modifies the tree being acted on, leaving tree passed |
---|
| 1469 | * as a parameter untouched (cloned). Does not check to see whether training instances |
---|
| 1470 | * are compatible - strange things could occur if they are not. |
---|
| 1471 | * |
---|
| 1472 | * @param mergeWith the tree to merge with |
---|
| 1473 | * @exception Exception if merge could not be performed |
---|
| 1474 | */ |
---|
| 1475 | public void merge(ADTree mergeWith) throws Exception { |
---|
| 1476 | |
---|
| 1477 | if (m_root == null || mergeWith.m_root == null) |
---|
| 1478 | throw new Exception("Trying to merge an uninitialized tree"); |
---|
| 1479 | m_root.merge(mergeWith.m_root, this); |
---|
| 1480 | } |
---|
| 1481 | |
---|
| 1482 | /** |
---|
| 1483 | * Returns the revision string. |
---|
| 1484 | * |
---|
| 1485 | * @return the revision |
---|
| 1486 | */ |
---|
| 1487 | public String getRevision() { |
---|
| 1488 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1489 | } |
---|
| 1490 | |
---|
| 1491 | /** |
---|
| 1492 | * Main method for testing this class. |
---|
| 1493 | * |
---|
| 1494 | * @param argv the options |
---|
| 1495 | */ |
---|
| 1496 | public static void main(String [] argv) { |
---|
| 1497 | runClassifier(new ADTree(), argv); |
---|
| 1498 | } |
---|
| 1499 | } |
---|