1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MakeDecList.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.rules.part; |
---|
24 | |
---|
25 | import weka.classifiers.trees.j48.ModelSelection; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.CapabilitiesHandler; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.RevisionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.Capabilities.Capability; |
---|
34 | |
---|
35 | import java.io.Serializable; |
---|
36 | import java.util.Enumeration; |
---|
37 | import java.util.Random; |
---|
38 | import java.util.Vector; |
---|
39 | |
---|
40 | /** |
---|
41 | * Class for handling a decision list. |
---|
42 | * |
---|
43 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
44 | * @version $Revision: 5483 $ |
---|
45 | */ |
---|
46 | public class MakeDecList |
---|
47 | implements Serializable, CapabilitiesHandler, RevisionHandler { |
---|
48 | |
---|
49 | /** for serialization */ |
---|
50 | private static final long serialVersionUID = -1427481323245079123L; |
---|
51 | |
---|
52 | /** Vector storing the rules. */ |
---|
53 | private Vector theRules; |
---|
54 | |
---|
55 | /** The confidence for C45-type pruning. */ |
---|
56 | private double CF = 0.25f; |
---|
57 | |
---|
58 | /** Minimum number of objects */ |
---|
59 | private int minNumObj; |
---|
60 | |
---|
61 | /** The model selection method. */ |
---|
62 | private ModelSelection toSelectModeL; |
---|
63 | |
---|
64 | /** How many subsets of equal size? One used for pruning, the rest for training. */ |
---|
65 | private int numSetS = 3; |
---|
66 | |
---|
67 | /** Use reduced error pruning? */ |
---|
68 | private boolean reducedErrorPruning = false; |
---|
69 | |
---|
70 | /** Generated unpruned list? */ |
---|
71 | private boolean unpruned = false; |
---|
72 | |
---|
73 | /** The seed for random number generation. */ |
---|
74 | private int m_seed = 1; |
---|
75 | |
---|
76 | /** |
---|
77 | * Constructor for unpruned dec list. |
---|
78 | */ |
---|
79 | public MakeDecList(ModelSelection toSelectLocModel, |
---|
80 | int minNum){ |
---|
81 | |
---|
82 | toSelectModeL = toSelectLocModel; |
---|
83 | reducedErrorPruning = false; |
---|
84 | unpruned = true; |
---|
85 | minNumObj = minNum; |
---|
86 | } |
---|
87 | |
---|
88 | /** |
---|
89 | * Constructor for dec list pruned using C4.5 pruning. |
---|
90 | */ |
---|
91 | public MakeDecList(ModelSelection toSelectLocModel, double cf, |
---|
92 | int minNum){ |
---|
93 | |
---|
94 | toSelectModeL = toSelectLocModel; |
---|
95 | CF = cf; |
---|
96 | reducedErrorPruning = false; |
---|
97 | unpruned = false; |
---|
98 | minNumObj = minNum; |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * Constructor for dec list pruned using hold-out pruning. |
---|
103 | */ |
---|
104 | public MakeDecList(ModelSelection toSelectLocModel, int num, |
---|
105 | int minNum, int seed){ |
---|
106 | |
---|
107 | toSelectModeL = toSelectLocModel; |
---|
108 | numSetS = num; |
---|
109 | reducedErrorPruning = true; |
---|
110 | unpruned = false; |
---|
111 | minNumObj = minNum; |
---|
112 | m_seed = seed; |
---|
113 | } |
---|
114 | |
---|
115 | /** |
---|
116 | * Returns default capabilities of the classifier. |
---|
117 | * |
---|
118 | * @return the capabilities of this classifier |
---|
119 | */ |
---|
120 | public Capabilities getCapabilities() { |
---|
121 | Capabilities result = new Capabilities(this); |
---|
122 | result.disableAll(); |
---|
123 | |
---|
124 | // attributes |
---|
125 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
126 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
127 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
128 | result.enable(Capability.MISSING_VALUES); |
---|
129 | |
---|
130 | // class |
---|
131 | result.enable(Capability.NOMINAL_CLASS); |
---|
132 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
133 | |
---|
134 | return result; |
---|
135 | } |
---|
136 | |
---|
137 | /** |
---|
138 | * Builds dec list. |
---|
139 | * |
---|
140 | * @exception Exception if dec list can't be built successfully |
---|
141 | */ |
---|
142 | public void buildClassifier(Instances data) throws Exception { |
---|
143 | |
---|
144 | // can classifier handle the data? |
---|
145 | getCapabilities().testWithFail(data); |
---|
146 | |
---|
147 | // remove instances with missing class |
---|
148 | data = new Instances(data); |
---|
149 | data.deleteWithMissingClass(); |
---|
150 | |
---|
151 | ClassifierDecList currentRule; |
---|
152 | double currentWeight; |
---|
153 | Instances oldGrowData, newGrowData, oldPruneData, |
---|
154 | newPruneData; |
---|
155 | int numRules = 0; |
---|
156 | |
---|
157 | theRules = new Vector(); |
---|
158 | if ((reducedErrorPruning) && !(unpruned)){ |
---|
159 | Random random = new Random(m_seed); |
---|
160 | data.randomize(random); |
---|
161 | data.stratify(numSetS); |
---|
162 | oldGrowData = data.trainCV(numSetS, numSetS - 1, random); |
---|
163 | oldPruneData = data.testCV(numSetS, numSetS - 1); |
---|
164 | } else { |
---|
165 | oldGrowData = data; |
---|
166 | oldPruneData = null; |
---|
167 | } |
---|
168 | |
---|
169 | while (Utils.gr(oldGrowData.numInstances(),0)){ |
---|
170 | |
---|
171 | // Create rule |
---|
172 | if (unpruned) { |
---|
173 | currentRule = new ClassifierDecList(toSelectModeL, |
---|
174 | minNumObj); |
---|
175 | ((ClassifierDecList)currentRule).buildRule(oldGrowData); |
---|
176 | } else if (reducedErrorPruning) { |
---|
177 | currentRule = new PruneableDecList(toSelectModeL, |
---|
178 | minNumObj); |
---|
179 | ((PruneableDecList)currentRule).buildRule(oldGrowData, |
---|
180 | oldPruneData); |
---|
181 | } else { |
---|
182 | currentRule = new C45PruneableDecList(toSelectModeL, CF, |
---|
183 | minNumObj); |
---|
184 | ((C45PruneableDecList)currentRule).buildRule(oldGrowData); |
---|
185 | } |
---|
186 | numRules++; |
---|
187 | |
---|
188 | // Remove instances from growing data |
---|
189 | newGrowData = new Instances(oldGrowData, |
---|
190 | oldGrowData.numInstances()); |
---|
191 | Enumeration enu = oldGrowData.enumerateInstances(); |
---|
192 | while (enu.hasMoreElements()) { |
---|
193 | Instance instance = (Instance) enu.nextElement(); |
---|
194 | currentWeight = currentRule.weight(instance); |
---|
195 | if (Utils.sm(currentWeight,1)) { |
---|
196 | instance.setWeight(instance.weight()*(1-currentWeight)); |
---|
197 | newGrowData.add(instance); |
---|
198 | } |
---|
199 | } |
---|
200 | newGrowData.compactify(); |
---|
201 | oldGrowData = newGrowData; |
---|
202 | |
---|
203 | // Remove instances from pruning data |
---|
204 | if ((reducedErrorPruning) && !(unpruned)) { |
---|
205 | newPruneData = new Instances(oldPruneData, |
---|
206 | oldPruneData.numInstances()); |
---|
207 | enu = oldPruneData.enumerateInstances(); |
---|
208 | while (enu.hasMoreElements()) { |
---|
209 | Instance instance = (Instance) enu.nextElement(); |
---|
210 | currentWeight = currentRule.weight(instance); |
---|
211 | if (Utils.sm(currentWeight,1)) { |
---|
212 | instance.setWeight(instance.weight()*(1-currentWeight)); |
---|
213 | newPruneData.add(instance); |
---|
214 | } |
---|
215 | } |
---|
216 | newPruneData.compactify(); |
---|
217 | oldPruneData = newPruneData; |
---|
218 | } |
---|
219 | theRules.addElement(currentRule); |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * Outputs the classifier into a string. |
---|
225 | */ |
---|
226 | public String toString(){ |
---|
227 | |
---|
228 | StringBuffer text = new StringBuffer(); |
---|
229 | |
---|
230 | for (int i=0;i<theRules.size();i++) |
---|
231 | text.append((ClassifierDecList)theRules.elementAt(i)+"\n"); |
---|
232 | text.append("Number of Rules : \t"+theRules.size()+"\n"); |
---|
233 | |
---|
234 | return text.toString(); |
---|
235 | } |
---|
236 | |
---|
237 | /** |
---|
238 | * Classifies an instance. |
---|
239 | * |
---|
240 | * @exception Exception if instance can't be classified |
---|
241 | */ |
---|
242 | public double classifyInstance(Instance instance) |
---|
243 | throws Exception { |
---|
244 | |
---|
245 | double maxProb = -1; |
---|
246 | double [] sumProbs; |
---|
247 | int maxIndex = 0; |
---|
248 | |
---|
249 | sumProbs = distributionForInstance(instance); |
---|
250 | for (int j = 0; j < sumProbs.length; j++) { |
---|
251 | if (Utils.gr(sumProbs[j],maxProb)){ |
---|
252 | maxIndex = j; |
---|
253 | maxProb = sumProbs[j]; |
---|
254 | } |
---|
255 | } |
---|
256 | |
---|
257 | return (double)maxIndex; |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Returns the class distribution for an instance. |
---|
262 | * |
---|
263 | * @exception Exception if distribution can't be computed |
---|
264 | */ |
---|
265 | public double[] distributionForInstance(Instance instance) |
---|
266 | throws Exception { |
---|
267 | |
---|
268 | double [] currentProbs = null; |
---|
269 | double [] sumProbs; |
---|
270 | double currentWeight, weight = 1; |
---|
271 | int i,j; |
---|
272 | |
---|
273 | // Get probabilities. |
---|
274 | sumProbs = new double [instance.numClasses()]; |
---|
275 | i = 0; |
---|
276 | while (Utils.gr(weight,0)){ |
---|
277 | currentWeight = |
---|
278 | ((ClassifierDecList)theRules.elementAt(i)).weight(instance); |
---|
279 | if (Utils.gr(currentWeight,0)) { |
---|
280 | currentProbs = ((ClassifierDecList)theRules.elementAt(i)). |
---|
281 | distributionForInstance(instance); |
---|
282 | for (j = 0; j < sumProbs.length; j++) |
---|
283 | sumProbs[j] += weight*currentProbs[j]; |
---|
284 | weight = weight*(1-currentWeight); |
---|
285 | } |
---|
286 | i++; |
---|
287 | } |
---|
288 | |
---|
289 | return sumProbs; |
---|
290 | } |
---|
291 | |
---|
292 | /** |
---|
293 | * Outputs the number of rules in the classifier. |
---|
294 | */ |
---|
295 | public int numRules(){ |
---|
296 | |
---|
297 | return theRules.size(); |
---|
298 | } |
---|
299 | |
---|
300 | /** |
---|
301 | * Returns the revision string. |
---|
302 | * |
---|
303 | * @return the revision |
---|
304 | */ |
---|
305 | public String getRevision() { |
---|
306 | return RevisionUtils.extract("$Revision: 5483 $"); |
---|
307 | } |
---|
308 | } |
---|