/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ZeroR.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.rules; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.classifiers.Sourcable; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.Instance; import weka.core.Instances; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import java.util.Enumeration; /** * Class for building and using a 0-R classifier. Predicts the mean (for a numeric class) or the mode (for a nominal class). *
* * Valid options are: * *-D * If set, classifier is run in debug mode and * may output additional info to the console* * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 5928 $ */ public class ZeroR extends AbstractClassifier implements WeightedInstancesHandler, Sourcable { /** for serialization */ static final long serialVersionUID = 48055541465867954L; /** The class value 0R predicts. */ private double m_ClassValue; /** The number of instances in each class (null if class numeric). */ private double [] m_Counts; /** The class attribute. */ private Attribute m_Class; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a 0-R classifier. Predicts the mean " + "(for a numeric class) or the mode (for a nominal class)."; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.STRING_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); double sumOfWeights = 0; m_Class = instances.classAttribute(); m_ClassValue = 0; switch (instances.classAttribute().type()) { case Attribute.NUMERIC: m_Counts = null; break; case Attribute.NOMINAL: m_Counts = new double [instances.numClasses()]; for (int i = 0; i < m_Counts.length; i++) { m_Counts[i] = 1; } sumOfWeights = instances.numClasses(); break; } Enumeration enu = instances.enumerateInstances(); while (enu.hasMoreElements()) { Instance instance = (Instance) enu.nextElement(); if (!instance.classIsMissing()) { if (instances.classAttribute().isNominal()) { m_Counts[(int)instance.classValue()] += instance.weight(); } else { m_ClassValue += instance.weight() * instance.classValue(); } sumOfWeights += instance.weight(); } } if (instances.classAttribute().isNumeric()) { if (Utils.gr(sumOfWeights, 0)) { m_ClassValue /= sumOfWeights; } } else { m_ClassValue = Utils.maxIndex(m_Counts); Utils.normalize(m_Counts, sumOfWeights); } } /** * Classifies a given instance. * * @param instance the instance to be classified * @return index of the predicted class */ public double classifyInstance(Instance instance) { return m_ClassValue; } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if class is numeric */ public double [] distributionForInstance(Instance instance) throws Exception { if (m_Counts == null) { double[] result = new double[1]; result[0] = m_ClassValue; return result; } else { return (double []) m_Counts.clone(); } } /** * Returns a string that describes the classifier as source. The * classifier will be contained in a class with the given name (there may * be auxiliary classes), * and will contain a method with the signature: *
* public static double classify(Object[] i);
*
* where the array i
contains elements that are either
* Double, String, with missing values represented as null. The generated
* code is public domain and comes with no warranty.
*
* @param className the name that should be given to the source class.
* @return the object source described by a string
* @throws Exception if the souce can't be computed
*/
public String toSource(String className) throws Exception {
StringBuffer result;
result = new StringBuffer();
result.append("class " + className + " {\n");
result.append(" public static double classify(Object[] i) {\n");
if (m_Counts != null)
result.append(" // always predicts label '" + m_Class.value((int) m_ClassValue) + "'\n");
result.append(" return " + m_ClassValue + ";\n");
result.append(" }\n");
result.append("}\n");
return result.toString();
}
/**
* Returns a description of the classifier.
*
* @return a description of the classifier as a string.
*/
public String toString() {
if (m_Class == null) {
return "ZeroR: No model built yet.";
}
if (m_Counts == null) {
return "ZeroR predicts class value: " + m_ClassValue;
} else {
return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue);
}
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5928 $");
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
runClassifier(new ZeroR(), argv);
}
}