[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * NNge.java |
---|
| 19 | * Copyright (C) 2002 Brent Martin |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.rules; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.UpdateableClassifier; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.TechnicalInformation; |
---|
| 35 | import weka.core.TechnicalInformationHandler; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | import weka.core.TechnicalInformation.Field; |
---|
| 39 | import weka.core.TechnicalInformation.Type; |
---|
| 40 | |
---|
| 41 | import java.util.Enumeration; |
---|
| 42 | import java.util.LinkedList; |
---|
| 43 | import java.util.Vector; |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | /** |
---|
| 47 | <!-- globalinfo-start --> |
---|
| 48 | * Nearest-neighbor-like algorithm using non-nested generalized exemplars (which are hyperrectangles that can be viewed as if-then rules). For more information, see <br/> |
---|
| 49 | * <br/> |
---|
| 50 | * Brent Martin (1995). Instance-Based learning: Nearest Neighbor With Generalization. Hamilton, New Zealand.<br/> |
---|
| 51 | * <br/> |
---|
| 52 | * Sylvain Roy (2002). Nearest Neighbor With Generalization. Christchurch, New Zealand. |
---|
| 53 | * <p/> |
---|
| 54 | <!-- globalinfo-end --> |
---|
| 55 | * |
---|
| 56 | <!-- technical-bibtex-start --> |
---|
| 57 | * BibTeX: |
---|
| 58 | * <pre> |
---|
| 59 | * @mastersthesis{Martin1995, |
---|
| 60 | * address = {Hamilton, New Zealand}, |
---|
| 61 | * author = {Brent Martin}, |
---|
| 62 | * school = {University of Waikato}, |
---|
| 63 | * title = {Instance-Based learning: Nearest Neighbor With Generalization}, |
---|
| 64 | * year = {1995} |
---|
| 65 | * } |
---|
| 66 | * |
---|
| 67 | * @unpublished{Roy2002, |
---|
| 68 | * address = {Christchurch, New Zealand}, |
---|
| 69 | * author = {Sylvain Roy}, |
---|
| 70 | * school = {University of Canterbury}, |
---|
| 71 | * title = {Nearest Neighbor With Generalization}, |
---|
| 72 | * year = {2002} |
---|
| 73 | * } |
---|
| 74 | * </pre> |
---|
| 75 | * <p/> |
---|
| 76 | <!-- technical-bibtex-end --> |
---|
| 77 | * |
---|
| 78 | <!-- options-start --> |
---|
| 79 | * Valid options are: <p/> |
---|
| 80 | * |
---|
| 81 | * <pre> -G <value> |
---|
| 82 | * Number of attempts of generalisation. |
---|
| 83 | * </pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -I <value> |
---|
| 86 | * Number of folder for computing the mutual information. |
---|
| 87 | * </pre> |
---|
| 88 | * |
---|
| 89 | <!-- options-end --> |
---|
| 90 | * |
---|
| 91 | * @author Brent Martin (bim20@cosc.canterbury.ac.nz) |
---|
| 92 | * @author Sylvain Roy (sro33@student.canterbury.ac.nz) |
---|
| 93 | * @version $Revision: 5956 $ |
---|
| 94 | */ |
---|
| 95 | public class NNge |
---|
| 96 | extends AbstractClassifier |
---|
| 97 | implements UpdateableClassifier, OptionHandler, TechnicalInformationHandler { |
---|
| 98 | |
---|
| 99 | /** for serialization */ |
---|
| 100 | static final long serialVersionUID = 4084742275553788972L; |
---|
| 101 | |
---|
| 102 | /** |
---|
| 103 | * Returns a string describing classifier |
---|
| 104 | * @return a description suitable for |
---|
| 105 | * displaying in the explorer/experimenter gui |
---|
| 106 | */ |
---|
| 107 | public String globalInfo() { |
---|
| 108 | |
---|
| 109 | return "Nearest-neighbor-like algorithm using non-nested generalized exemplars " |
---|
| 110 | + "(which are hyperrectangles that can be viewed as if-then rules). For more " |
---|
| 111 | + "information, see \n\n" |
---|
| 112 | + getTechnicalInformation().toString(); |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | /** |
---|
| 116 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 117 | * detailed information about the technical background of this class, |
---|
| 118 | * e.g., paper reference or book this class is based on. |
---|
| 119 | * |
---|
| 120 | * @return the technical information about this class |
---|
| 121 | */ |
---|
| 122 | public TechnicalInformation getTechnicalInformation() { |
---|
| 123 | TechnicalInformation result; |
---|
| 124 | TechnicalInformation additional; |
---|
| 125 | |
---|
| 126 | result = new TechnicalInformation(Type.MASTERSTHESIS); |
---|
| 127 | result.setValue(Field.AUTHOR, "Brent Martin"); |
---|
| 128 | result.setValue(Field.YEAR, "1995"); |
---|
| 129 | result.setValue(Field.TITLE, "Instance-Based learning: Nearest Neighbor With Generalization"); |
---|
| 130 | result.setValue(Field.SCHOOL, "University of Waikato"); |
---|
| 131 | result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); |
---|
| 132 | |
---|
| 133 | additional = result.add(Type.UNPUBLISHED); |
---|
| 134 | additional.setValue(Field.AUTHOR, "Sylvain Roy"); |
---|
| 135 | additional.setValue(Field.YEAR, "2002"); |
---|
| 136 | additional.setValue(Field.TITLE, "Nearest Neighbor With Generalization"); |
---|
| 137 | additional.setValue(Field.SCHOOL, "University of Canterbury"); |
---|
| 138 | additional.setValue(Field.ADDRESS, "Christchurch, New Zealand"); |
---|
| 139 | |
---|
| 140 | return result; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | /** |
---|
| 144 | * Implements Exemplar as used by NNge : parallel axis hyperrectangle. |
---|
| 145 | */ |
---|
| 146 | private class Exemplar |
---|
| 147 | extends Instances { |
---|
| 148 | |
---|
| 149 | /** for serialization */ |
---|
| 150 | static final long serialVersionUID = 3960180128928697216L; |
---|
| 151 | |
---|
| 152 | /** List of all the Exemplar */ |
---|
| 153 | private Exemplar previous = null; |
---|
| 154 | private Exemplar next = null; |
---|
| 155 | |
---|
| 156 | /** List of all the Exemplar with the same class */ |
---|
| 157 | private Exemplar previousWithClass = null; |
---|
| 158 | private Exemplar nextWithClass = null; |
---|
| 159 | |
---|
| 160 | /** The NNge which owns this Exemplar */ |
---|
| 161 | private NNge m_NNge; |
---|
| 162 | |
---|
| 163 | /** class of the Exemplar */ |
---|
| 164 | private double m_ClassValue; |
---|
| 165 | |
---|
| 166 | /** Number of correct prediction for this examplar */ |
---|
| 167 | private int m_PositiveCount = 1; |
---|
| 168 | |
---|
| 169 | /** Number of incorrect prediction for this examplar */ |
---|
| 170 | private int m_NegativeCount = 0; |
---|
| 171 | |
---|
| 172 | /** The max borders of the rectangle for numeric attributes */ |
---|
| 173 | private double[] m_MaxBorder; |
---|
| 174 | |
---|
| 175 | /** The min borders of the rectangle for numeric attributes */ |
---|
| 176 | private double[] m_MinBorder; |
---|
| 177 | |
---|
| 178 | /** The ranges of the hyperrectangle for nominal attributes */ |
---|
| 179 | private boolean[][] m_Range; |
---|
| 180 | |
---|
| 181 | /** the arrays used by preGeneralise */ |
---|
| 182 | private double[] m_PreMaxBorder = null; |
---|
| 183 | private double[] m_PreMinBorder = null; |
---|
| 184 | private boolean[][] m_PreRange = null; |
---|
| 185 | private Instance m_PreInst = null; |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Build a new empty Exemplar |
---|
| 190 | * |
---|
| 191 | * @param nnge the classifier which owns this Exemplar |
---|
| 192 | * @param inst the instances from which the header information is to be taken |
---|
| 193 | * @param size the capacity of the Exemplar |
---|
| 194 | * @param classV the class of the Exemplar |
---|
| 195 | */ |
---|
| 196 | private Exemplar (NNge nnge, Instances inst, int size, double classV){ |
---|
| 197 | |
---|
| 198 | super(inst, size); |
---|
| 199 | m_NNge = nnge; |
---|
| 200 | m_ClassValue = classV; |
---|
| 201 | m_MinBorder = new double[numAttributes()]; |
---|
| 202 | m_MaxBorder = new double[numAttributes()]; |
---|
| 203 | m_Range = new boolean[numAttributes()][]; |
---|
| 204 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 205 | if(attribute(i).isNumeric()){ |
---|
| 206 | m_MinBorder[i] = Double.POSITIVE_INFINITY; |
---|
| 207 | m_MaxBorder[i] = Double.NEGATIVE_INFINITY; |
---|
| 208 | m_Range[i] = null; |
---|
| 209 | } else { |
---|
| 210 | m_MinBorder[i] = Double.NaN; |
---|
| 211 | m_MaxBorder[i] = Double.NaN; |
---|
| 212 | m_Range[i] = new boolean[attribute(i).numValues() + 1]; |
---|
| 213 | for(int j = 0; j < attribute(i).numValues() + 1; j++){ |
---|
| 214 | m_Range[i][j] = false; |
---|
| 215 | } |
---|
| 216 | } |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | /** |
---|
| 222 | * Generalise the Exemplar with inst |
---|
| 223 | * |
---|
| 224 | * @param inst the new example used for the generalisation |
---|
| 225 | * @throws Exception if either the class of inst is not equal to the class of the Exemplar or inst misses a value. |
---|
| 226 | */ |
---|
| 227 | private void generalise(Instance inst) throws Exception { |
---|
| 228 | |
---|
| 229 | if(m_ClassValue != inst.classValue()) |
---|
| 230 | throw new Exception("Exemplar.generalise : Incompatible instance's class."); |
---|
| 231 | |
---|
| 232 | add(inst); |
---|
| 233 | |
---|
| 234 | /* extends each range in order to cover inst */ |
---|
| 235 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 236 | |
---|
| 237 | if(inst.isMissing(i)) |
---|
| 238 | throw new Exception("Exemplar.generalise : Generalisation with missing feature impossible."); |
---|
| 239 | |
---|
| 240 | if(i == classIndex()) |
---|
| 241 | continue; |
---|
| 242 | |
---|
| 243 | if(attribute(i).isNumeric()){ |
---|
| 244 | if(m_MaxBorder[i] < inst.value(i)) |
---|
| 245 | m_MaxBorder[i] = inst.value(i); |
---|
| 246 | if(inst.value(i) < m_MinBorder[i]) |
---|
| 247 | m_MinBorder[i] = inst.value(i); |
---|
| 248 | |
---|
| 249 | } else { |
---|
| 250 | m_Range[i][(int) inst.value(i)] = true; |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | /** |
---|
| 257 | * pre-generalise the Exemplar with inst |
---|
| 258 | * i.e. the boundaries of the Exemplar include inst but the Exemplar still doesn't 'own' inst. |
---|
| 259 | * To be complete, the generalisation must be validated with validateGeneralisation. |
---|
| 260 | * the generalisation can be canceled with cancelGeneralisation. |
---|
| 261 | * @param inst the new example used for the generalisation |
---|
| 262 | * @throws Exception if either the class of inst is not equal to the class of the Exemplar or inst misses a value. |
---|
| 263 | */ |
---|
| 264 | private void preGeneralise(Instance inst) throws Exception { |
---|
| 265 | |
---|
| 266 | if(m_ClassValue != inst.classValue()) |
---|
| 267 | throw new Exception("Exemplar.preGeneralise : Incompatible instance's class."); |
---|
| 268 | |
---|
| 269 | m_PreInst = inst; |
---|
| 270 | |
---|
| 271 | /* save the current state */ |
---|
| 272 | m_PreRange = new boolean[numAttributes()][]; |
---|
| 273 | m_PreMinBorder = new double[numAttributes()]; |
---|
| 274 | m_PreMaxBorder = new double[numAttributes()]; |
---|
| 275 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 276 | if(attribute(i).isNumeric()){ |
---|
| 277 | m_PreMinBorder[i] = m_MinBorder[i]; |
---|
| 278 | m_PreMaxBorder[i] = m_MaxBorder[i]; |
---|
| 279 | } else { |
---|
| 280 | m_PreRange[i] = new boolean[attribute(i).numValues() + 1]; |
---|
| 281 | for(int j = 0; j < attribute(i).numValues() + 1; j++){ |
---|
| 282 | m_PreRange[i][j] = m_Range[i][j]; |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /* perform the pre-generalisation */ |
---|
| 288 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 289 | if(inst.isMissing(i)) |
---|
| 290 | throw new Exception("Exemplar.preGeneralise : Generalisation with missing feature impossible."); |
---|
| 291 | if(i == classIndex()) |
---|
| 292 | continue; |
---|
| 293 | if(attribute(i).isNumeric()){ |
---|
| 294 | if(m_MaxBorder[i] < inst.value(i)) |
---|
| 295 | m_MaxBorder[i] = inst.value(i); |
---|
| 296 | if(inst.value(i) < m_MinBorder[i]) |
---|
| 297 | m_MinBorder[i] = inst.value(i); |
---|
| 298 | } else { |
---|
| 299 | m_Range[i][(int) inst.value(i)] = true; |
---|
| 300 | } |
---|
| 301 | } |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | /** |
---|
| 306 | * Validates a generalisation started with preGeneralise. |
---|
| 307 | * Watch out, preGeneralise must have been called before. |
---|
| 308 | * |
---|
| 309 | * @throws Exception is thrown if preGeneralise hasn't been called before |
---|
| 310 | */ |
---|
| 311 | private void validateGeneralisation() throws Exception { |
---|
| 312 | if(m_PreInst == null){ |
---|
| 313 | throw new Exception("Exemplar.validateGeneralisation : validateGeneralisation called without previous call to preGeneralise!"); |
---|
| 314 | } |
---|
| 315 | add(m_PreInst); |
---|
| 316 | m_PreRange = null; |
---|
| 317 | m_PreMinBorder = null; |
---|
| 318 | m_PreMaxBorder = null; |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | /** |
---|
| 323 | * Cancels a generalisation started with preGeneralise. |
---|
| 324 | * Watch out, preGeneralise must have been called before. |
---|
| 325 | * |
---|
| 326 | * @throws Exception is thrown if preGeneralise hasn't been called before |
---|
| 327 | */ |
---|
| 328 | private void cancelGeneralisation() throws Exception { |
---|
| 329 | if(m_PreInst == null){ |
---|
| 330 | throw new Exception("Exemplar.cancelGeneralisation : cancelGeneralisation called without previous call to preGeneralise!"); |
---|
| 331 | } |
---|
| 332 | m_PreInst = null; |
---|
| 333 | m_Range = m_PreRange; |
---|
| 334 | m_MinBorder = m_PreMinBorder; |
---|
| 335 | m_MaxBorder = m_PreMaxBorder; |
---|
| 336 | m_PreRange = null; |
---|
| 337 | m_PreMinBorder = null; |
---|
| 338 | m_PreMaxBorder = null; |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | |
---|
| 342 | /** |
---|
| 343 | * return true if inst is held by this Exemplar, false otherwise |
---|
| 344 | * |
---|
| 345 | * @param inst an Instance |
---|
| 346 | * @return true if inst is held by this hyperrectangle, false otherwise |
---|
| 347 | */ |
---|
| 348 | private boolean holds(Instance inst) { |
---|
| 349 | |
---|
| 350 | if(numInstances() == 0) |
---|
| 351 | return false; |
---|
| 352 | |
---|
| 353 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 354 | if(i != classIndex() && !holds(i, inst.value(i))) |
---|
| 355 | return false; |
---|
| 356 | } |
---|
| 357 | return true; |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | |
---|
| 361 | /** |
---|
| 362 | * return true if value is inside the Exemplar along the attrIndex attribute. |
---|
| 363 | * |
---|
| 364 | * @param attrIndex the index of an attribute |
---|
| 365 | * @param value a value along the attrIndexth attribute |
---|
| 366 | * @return true if value is inside the Exemplar along the attrIndex attribute. |
---|
| 367 | */ |
---|
| 368 | private boolean holds(int attrIndex, double value) { |
---|
| 369 | |
---|
| 370 | if (numAttributes() == 0) |
---|
| 371 | return false; |
---|
| 372 | |
---|
| 373 | if(attribute(attrIndex).isNumeric()) |
---|
| 374 | return(m_MinBorder[attrIndex] <= value && value <= m_MaxBorder[attrIndex]); |
---|
| 375 | else |
---|
| 376 | return m_Range[attrIndex][(int) value]; |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | /** |
---|
| 381 | * Check if the Examplar overlaps ex |
---|
| 382 | * |
---|
| 383 | * @param ex an Exemplar |
---|
| 384 | * @return true if ex is overlapped by the Exemplar |
---|
| 385 | * @throws Exception |
---|
| 386 | */ |
---|
| 387 | private boolean overlaps(Exemplar ex) { |
---|
| 388 | |
---|
| 389 | if(ex.isEmpty() || isEmpty()) |
---|
| 390 | return false; |
---|
| 391 | |
---|
| 392 | for (int i = 0; i < numAttributes(); i++){ |
---|
| 393 | |
---|
| 394 | if(i == classIndex()){ |
---|
| 395 | continue; |
---|
| 396 | } |
---|
| 397 | if (attribute(i).isNumeric() && |
---|
| 398 | (ex.m_MaxBorder[i] < m_MinBorder[i] || ex.m_MinBorder[i] > m_MaxBorder[i])){ |
---|
| 399 | return false; |
---|
| 400 | } |
---|
| 401 | if (attribute(i).isNominal()) { |
---|
| 402 | boolean in = false; |
---|
| 403 | for (int j = 0; j < attribute(i).numValues() + 1; j++){ |
---|
| 404 | if(m_Range[i][j] && ex.m_Range[i][j]){ |
---|
| 405 | in = true; |
---|
| 406 | break; |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | if(!in) return false; |
---|
| 410 | } |
---|
| 411 | } |
---|
| 412 | return true; |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | /** |
---|
| 417 | * Compute the distance between the projection of inst and this Exemplar along the attribute attrIndex. |
---|
| 418 | * If inst misses its value along the attribute, the function returns 0. |
---|
| 419 | * |
---|
| 420 | * @param inst an instance |
---|
| 421 | * @param attrIndex the index of the attribute |
---|
| 422 | * @return the distance between the projection of inst and this Exemplar along the attribute attrIndex. |
---|
| 423 | */ |
---|
| 424 | private double attrDistance(Instance inst, int attrIndex) { |
---|
| 425 | |
---|
| 426 | if(inst.isMissing(attrIndex)) |
---|
| 427 | return 0; |
---|
| 428 | |
---|
| 429 | /* numeric attribute */ |
---|
| 430 | if(attribute(attrIndex).isNumeric()){ |
---|
| 431 | |
---|
| 432 | double norm = m_NNge.m_MaxArray[attrIndex] - m_NNge.m_MinArray[attrIndex]; |
---|
| 433 | if(norm <= 0) |
---|
| 434 | norm = 1; |
---|
| 435 | |
---|
| 436 | if (m_MaxBorder[attrIndex] < inst.value(attrIndex)) { |
---|
| 437 | return (inst.value(attrIndex) - m_MaxBorder[attrIndex]) / norm; |
---|
| 438 | } else if (inst.value(attrIndex) < m_MinBorder[attrIndex]) { |
---|
| 439 | return (m_MinBorder[attrIndex] - inst.value(attrIndex)) / norm; |
---|
| 440 | } else { |
---|
| 441 | return 0; |
---|
| 442 | } |
---|
| 443 | |
---|
| 444 | /* nominal attribute */ |
---|
| 445 | } else { |
---|
| 446 | if(holds(attrIndex, inst.value(attrIndex))){ |
---|
| 447 | return 0; |
---|
| 448 | } else { |
---|
| 449 | return 1; |
---|
| 450 | } |
---|
| 451 | } |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | |
---|
| 455 | /** |
---|
| 456 | * Returns the square of the distance between inst and the Exemplar. |
---|
| 457 | * |
---|
| 458 | * @param inst an instance |
---|
| 459 | * @return the squared distance between inst and the Exemplar. |
---|
| 460 | */ |
---|
| 461 | private double squaredDistance(Instance inst) { |
---|
| 462 | |
---|
| 463 | double sum = 0, term; |
---|
| 464 | int numNotMissingAttr = 0; |
---|
| 465 | for(int i = 0; i < inst.numAttributes(); i++){ |
---|
| 466 | |
---|
| 467 | if(i == classIndex()) |
---|
| 468 | continue; |
---|
| 469 | |
---|
| 470 | term = m_NNge.attrWeight(i) * attrDistance(inst, i); |
---|
| 471 | term = term * term; |
---|
| 472 | sum += term; |
---|
| 473 | |
---|
| 474 | if (!inst.isMissing(i)) |
---|
| 475 | numNotMissingAttr++; |
---|
| 476 | |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | if(numNotMissingAttr == 0){ |
---|
| 480 | return 0; |
---|
| 481 | } else { |
---|
| 482 | return sum / (double) (numNotMissingAttr * numNotMissingAttr); |
---|
| 483 | } |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | /** |
---|
| 488 | * Return the weight of the Examplar |
---|
| 489 | * |
---|
| 490 | * @return the weight of the Examplar. |
---|
| 491 | */ |
---|
| 492 | private double weight(){ |
---|
| 493 | return ((double) (m_PositiveCount + m_NegativeCount)) / ((double) m_PositiveCount); |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | |
---|
| 497 | /** |
---|
| 498 | * Return the class of the Exemplar |
---|
| 499 | * |
---|
| 500 | * @return the class of this exemplar as a double (weka format) |
---|
| 501 | */ |
---|
| 502 | private double classValue(){ |
---|
| 503 | return m_ClassValue; |
---|
| 504 | } |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | /** |
---|
| 508 | * Returns the value of the inf border of the Exemplar. |
---|
| 509 | * |
---|
| 510 | * @param attrIndex the index of the attribute |
---|
| 511 | * @return the value of the inf border for this attribute |
---|
| 512 | * @throws Exception is thrown either if the attribute is nominal or if the Exemplar is empty |
---|
| 513 | */ |
---|
| 514 | private double getMinBorder(int attrIndex) throws Exception { |
---|
| 515 | if(!attribute(attrIndex).isNumeric()) |
---|
| 516 | throw new Exception("Exception.getMinBorder : not numeric attribute !"); |
---|
| 517 | if(numInstances() == 0) |
---|
| 518 | throw new Exception("Exception.getMinBorder : empty Exemplar !"); |
---|
| 519 | return m_MinBorder[attrIndex]; |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | |
---|
| 523 | /** |
---|
| 524 | * Returns the value of the sup border of the hyperrectangle |
---|
| 525 | * Returns NaN if the HyperRectangle doesn't have any border for this attribute |
---|
| 526 | * |
---|
| 527 | * @param attrIndex the index of the attribute |
---|
| 528 | * @return the value of the sup border for this attribute |
---|
| 529 | * @throws Exception is thrown either if the attribute is nominal or if the Exemplar is empty |
---|
| 530 | */ |
---|
| 531 | private double getMaxBorder(int attrIndex) throws Exception { |
---|
| 532 | if(!attribute(attrIndex).isNumeric()) |
---|
| 533 | throw new Exception("Exception.getMaxBorder : not numeric attribute !"); |
---|
| 534 | if(numInstances() == 0) |
---|
| 535 | throw new Exception("Exception.getMaxBorder : empty Exemplar !"); |
---|
| 536 | return m_MaxBorder[attrIndex]; |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | |
---|
| 540 | /** |
---|
| 541 | * Returns the number of positive classifications |
---|
| 542 | * |
---|
| 543 | * @return the number of positive classifications |
---|
| 544 | */ |
---|
| 545 | private int getPositiveCount(){ |
---|
| 546 | return m_PositiveCount; |
---|
| 547 | } |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | /** |
---|
| 551 | * Returns the number of negative classifications |
---|
| 552 | * |
---|
| 553 | * @return the number of negative classifications |
---|
| 554 | */ |
---|
| 555 | private int getNegativeCount(){ |
---|
| 556 | return m_NegativeCount; |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | |
---|
| 560 | /** |
---|
| 561 | * Set the number of positive classifications |
---|
| 562 | * |
---|
| 563 | * @param value an integer value (greater than 0 is wise...) |
---|
| 564 | */ |
---|
| 565 | private void setPositiveCount(int value) { |
---|
| 566 | m_PositiveCount = value; |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | |
---|
| 570 | /** |
---|
| 571 | * Set the number of negative classifications |
---|
| 572 | * |
---|
| 573 | * @param value an integer value |
---|
| 574 | */ |
---|
| 575 | private void setNegativeCount(int value) { |
---|
| 576 | m_NegativeCount = value; |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | /** |
---|
| 581 | * Increment the number of positive Classifications |
---|
| 582 | */ |
---|
| 583 | private void incrPositiveCount(){ |
---|
| 584 | m_PositiveCount++; |
---|
| 585 | } |
---|
| 586 | |
---|
| 587 | |
---|
| 588 | /** |
---|
| 589 | * Increment the number of negative Classifications |
---|
| 590 | */ |
---|
| 591 | private void incrNegativeCount(){ |
---|
| 592 | m_NegativeCount++; |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | /** |
---|
| 597 | * Returns true if the Exemplar is empty (i.e. doesn't yield any Instance) |
---|
| 598 | * |
---|
| 599 | * @return true if the Exemplar is empty, false otherwise |
---|
| 600 | */ |
---|
| 601 | public boolean isEmpty(){ |
---|
| 602 | return (numInstances() == 0); |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | |
---|
| 606 | /** |
---|
| 607 | * Returns a description of this Exemplar |
---|
| 608 | * |
---|
| 609 | * @return A string that describes this Exemplar |
---|
| 610 | */ |
---|
| 611 | private String toString2(){ |
---|
| 612 | String s; |
---|
| 613 | Enumeration enu = null; |
---|
| 614 | s = "Exemplar["; |
---|
| 615 | if (numInstances() == 0) { |
---|
| 616 | return s + "Empty]"; |
---|
| 617 | } |
---|
| 618 | s += "{"; |
---|
| 619 | enu = enumerateInstances(); |
---|
| 620 | while(enu.hasMoreElements()){ |
---|
| 621 | s = s + "<" + enu.nextElement().toString() + "> "; |
---|
| 622 | } |
---|
| 623 | s = s.substring(0, s.length()-1); |
---|
| 624 | s = s + "} {" + toRules() + "} p=" + m_PositiveCount + " n=" + m_NegativeCount + "]"; |
---|
| 625 | return s; |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | |
---|
| 629 | /** |
---|
| 630 | * Returns a string of the rules induced by this examplar |
---|
| 631 | * |
---|
| 632 | * @return a string of the rules induced by this examplar |
---|
| 633 | */ |
---|
| 634 | private String toRules(){ |
---|
| 635 | |
---|
| 636 | if (numInstances() == 0) |
---|
| 637 | return "No Rules (Empty Exemplar)"; |
---|
| 638 | |
---|
| 639 | String s = "", sep = ""; |
---|
| 640 | |
---|
| 641 | for(int i = 0; i < numAttributes(); i++){ |
---|
| 642 | |
---|
| 643 | if(i == classIndex()) |
---|
| 644 | continue; |
---|
| 645 | |
---|
| 646 | if(attribute(i).isNumeric()){ |
---|
| 647 | if(m_MaxBorder[i] != m_MinBorder[i]){ |
---|
| 648 | s += sep + m_MinBorder[i] + "<=" + attribute(i).name() + "<=" + m_MaxBorder[i]; |
---|
| 649 | } else { |
---|
| 650 | s += sep + attribute(i).name() + "=" + m_MaxBorder[i]; |
---|
| 651 | } |
---|
| 652 | sep = " ^ "; |
---|
| 653 | |
---|
| 654 | } else { |
---|
| 655 | s += sep + attribute(i).name() + " in {"; |
---|
| 656 | String virg = ""; |
---|
| 657 | for(int j = 0; j < attribute(i).numValues() + 1; j++){ |
---|
| 658 | if(m_Range[i][j]){ |
---|
| 659 | s+= virg; |
---|
| 660 | if(j == attribute(i).numValues()) |
---|
| 661 | s += "?"; |
---|
| 662 | else |
---|
| 663 | s += attribute(i).value(j); |
---|
| 664 | virg = ","; |
---|
| 665 | } |
---|
| 666 | } |
---|
| 667 | s+="}"; |
---|
| 668 | sep = " ^ "; |
---|
| 669 | } |
---|
| 670 | } |
---|
| 671 | s += " ("+numInstances() +")"; |
---|
| 672 | return s; |
---|
| 673 | } |
---|
| 674 | |
---|
| 675 | /** |
---|
| 676 | * Returns the revision string. |
---|
| 677 | * |
---|
| 678 | * @return the revision |
---|
| 679 | */ |
---|
| 680 | public String getRevision() { |
---|
| 681 | return RevisionUtils.extract("$Revision: 5956 $"); |
---|
| 682 | } |
---|
| 683 | } |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | |
---|
| 687 | /** An empty instances to keep the headers, the classIndex, etc... */ |
---|
| 688 | private Instances m_Train; |
---|
| 689 | |
---|
| 690 | /** The list of Exemplars */ |
---|
| 691 | private Exemplar m_Exemplars; |
---|
| 692 | |
---|
| 693 | /** The lists of Exemplars by class */ |
---|
| 694 | private Exemplar m_ExemplarsByClass[]; |
---|
| 695 | |
---|
| 696 | /** The minimum values for numeric attributes. */ |
---|
| 697 | double [] m_MinArray; |
---|
| 698 | |
---|
| 699 | /** The maximum values for numeric attributes. */ |
---|
| 700 | double [] m_MaxArray; |
---|
| 701 | |
---|
| 702 | /** The number of try for generalisation */ |
---|
| 703 | private int m_NumAttemptsOfGene = 5; |
---|
| 704 | |
---|
| 705 | /** The number of folder for the Mutual Information */ |
---|
| 706 | private int m_NumFoldersMI = 5; |
---|
| 707 | |
---|
| 708 | /** Values to use for missing value */ |
---|
| 709 | private double [] m_MissingVector; |
---|
| 710 | |
---|
| 711 | /** MUTUAL INFORMATION'S DATAS */ |
---|
| 712 | /* numeric attributes */ |
---|
| 713 | private int [][][] m_MI_NumAttrClassInter; |
---|
| 714 | private int [][] m_MI_NumAttrInter; |
---|
| 715 | private double [] m_MI_MaxArray; |
---|
| 716 | private double [] m_MI_MinArray; |
---|
| 717 | /* nominal attributes */ |
---|
| 718 | private int [][][] m_MI_NumAttrClassValue; |
---|
| 719 | private int [][] m_MI_NumAttrValue; |
---|
| 720 | /* both */ |
---|
| 721 | private int [] m_MI_NumClass; |
---|
| 722 | private int m_MI_NumInst; |
---|
| 723 | private double [] m_MI; |
---|
| 724 | |
---|
| 725 | |
---|
| 726 | |
---|
| 727 | /** MAIN FUNCTIONS OF THE CLASSIFIER */ |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | /** |
---|
| 731 | * Returns default capabilities of the classifier. |
---|
| 732 | * |
---|
| 733 | * @return the capabilities of this classifier |
---|
| 734 | */ |
---|
| 735 | public Capabilities getCapabilities() { |
---|
| 736 | Capabilities result = super.getCapabilities(); |
---|
| 737 | result.disableAll(); |
---|
| 738 | |
---|
| 739 | // attributes |
---|
| 740 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 741 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 742 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 743 | result.enable(Capability.MISSING_VALUES); |
---|
| 744 | |
---|
| 745 | // class |
---|
| 746 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 747 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 748 | |
---|
| 749 | // instances |
---|
| 750 | result.setMinimumNumberInstances(0); |
---|
| 751 | |
---|
| 752 | return result; |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /** |
---|
| 756 | * Generates a classifier. Must initialize all fields of the classifier |
---|
| 757 | * that are not being set via options (ie. multiple calls of buildClassifier |
---|
| 758 | * must always lead to the same result). Must not change the dataset |
---|
| 759 | * in any way. |
---|
| 760 | * |
---|
| 761 | * @param data set of instances serving as training data |
---|
| 762 | * @throws Exception if the classifier has not been |
---|
| 763 | * generated successfully |
---|
| 764 | */ |
---|
| 765 | public void buildClassifier(Instances data) throws Exception { |
---|
| 766 | |
---|
| 767 | // can classifier handle the data? |
---|
| 768 | getCapabilities().testWithFail(data); |
---|
| 769 | |
---|
| 770 | // remove instances with missing class |
---|
| 771 | data = new Instances(data); |
---|
| 772 | data.deleteWithMissingClass(); |
---|
| 773 | |
---|
| 774 | /* initialize the classifier */ |
---|
| 775 | |
---|
| 776 | m_Train = new Instances(data, 0); |
---|
| 777 | m_Exemplars = null; |
---|
| 778 | m_ExemplarsByClass = new Exemplar[m_Train.numClasses()]; |
---|
| 779 | for(int i = 0; i < m_Train.numClasses(); i++){ |
---|
| 780 | m_ExemplarsByClass[i] = null; |
---|
| 781 | } |
---|
| 782 | m_MaxArray = new double[m_Train.numAttributes()]; |
---|
| 783 | m_MinArray = new double[m_Train.numAttributes()]; |
---|
| 784 | for(int i = 0; i < m_Train.numAttributes(); i++){ |
---|
| 785 | m_MinArray[i] = Double.POSITIVE_INFINITY; |
---|
| 786 | m_MaxArray[i] = Double.NEGATIVE_INFINITY; |
---|
| 787 | } |
---|
| 788 | |
---|
| 789 | m_MI_MinArray = new double [data.numAttributes()]; |
---|
| 790 | m_MI_MaxArray = new double [data.numAttributes()]; |
---|
| 791 | m_MI_NumAttrClassInter = new int[data.numAttributes()][][]; |
---|
| 792 | m_MI_NumAttrInter = new int[data.numAttributes()][]; |
---|
| 793 | m_MI_NumAttrClassValue = new int[data.numAttributes()][][]; |
---|
| 794 | m_MI_NumAttrValue = new int[data.numAttributes()][]; |
---|
| 795 | m_MI_NumClass = new int[data.numClasses()]; |
---|
| 796 | m_MI = new double[data.numAttributes()]; |
---|
| 797 | m_MI_NumInst = 0; |
---|
| 798 | for(int cclass = 0; cclass < data.numClasses(); cclass++) |
---|
| 799 | m_MI_NumClass[cclass] = 0; |
---|
| 800 | for (int attrIndex = 0; attrIndex < data.numAttributes(); attrIndex++) { |
---|
| 801 | |
---|
| 802 | if(attrIndex == data.classIndex()) |
---|
| 803 | continue; |
---|
| 804 | |
---|
| 805 | m_MI_MaxArray[attrIndex] = m_MI_MinArray[attrIndex] = Double.NaN; |
---|
| 806 | m_MI[attrIndex] = Double.NaN; |
---|
| 807 | |
---|
| 808 | if(data.attribute(attrIndex).isNumeric()){ |
---|
| 809 | m_MI_NumAttrInter[attrIndex] = new int[m_NumFoldersMI]; |
---|
| 810 | for(int inter = 0; inter < m_NumFoldersMI; inter++){ |
---|
| 811 | m_MI_NumAttrInter[attrIndex][inter] = 0; |
---|
| 812 | } |
---|
| 813 | } else { |
---|
| 814 | m_MI_NumAttrValue[attrIndex] = new int[data.attribute(attrIndex).numValues() + 1]; |
---|
| 815 | for(int attrValue = 0; attrValue < data.attribute(attrIndex).numValues() + 1; attrValue++){ |
---|
| 816 | m_MI_NumAttrValue[attrIndex][attrValue] = 0; |
---|
| 817 | } |
---|
| 818 | } |
---|
| 819 | |
---|
| 820 | m_MI_NumAttrClassInter[attrIndex] = new int[data.numClasses()][]; |
---|
| 821 | m_MI_NumAttrClassValue[attrIndex] = new int[data.numClasses()][]; |
---|
| 822 | |
---|
| 823 | for(int cclass = 0; cclass < data.numClasses(); cclass++){ |
---|
| 824 | if(data.attribute(attrIndex).isNumeric()){ |
---|
| 825 | m_MI_NumAttrClassInter[attrIndex][cclass] = new int[m_NumFoldersMI]; |
---|
| 826 | for(int inter = 0; inter < m_NumFoldersMI; inter++){ |
---|
| 827 | m_MI_NumAttrClassInter[attrIndex][cclass][inter] = 0; |
---|
| 828 | } |
---|
| 829 | } else if(data.attribute(attrIndex).isNominal()){ |
---|
| 830 | m_MI_NumAttrClassValue[attrIndex][cclass] = new int[data.attribute(attrIndex).numValues() + 1]; |
---|
| 831 | for(int attrValue = 0; attrValue < data.attribute(attrIndex).numValues() + 1; attrValue++){ |
---|
| 832 | m_MI_NumAttrClassValue[attrIndex][cclass][attrValue] = 0; |
---|
| 833 | } |
---|
| 834 | } |
---|
| 835 | } |
---|
| 836 | } |
---|
| 837 | m_MissingVector = new double[data.numAttributes()]; |
---|
| 838 | for(int i = 0; i < data.numAttributes(); i++){ |
---|
| 839 | if(i == data.classIndex()){ |
---|
| 840 | m_MissingVector[i] = Double.NaN; |
---|
| 841 | } else { |
---|
| 842 | m_MissingVector[i] = data.attribute(i).numValues(); |
---|
| 843 | } |
---|
| 844 | } |
---|
| 845 | |
---|
| 846 | /* update the classifier with data */ |
---|
| 847 | Enumeration enu = data.enumerateInstances(); |
---|
| 848 | while(enu.hasMoreElements()){ |
---|
| 849 | update((Instance) enu.nextElement()); |
---|
| 850 | } |
---|
| 851 | } |
---|
| 852 | |
---|
| 853 | |
---|
| 854 | /** |
---|
| 855 | * Classifies a given instance. |
---|
| 856 | * |
---|
| 857 | * @param instance the instance to be classified |
---|
| 858 | * @return index of the predicted class as a double |
---|
| 859 | * @throws Exception if instance could not be classified |
---|
| 860 | * successfully |
---|
| 861 | */ |
---|
| 862 | public double classifyInstance(Instance instance) throws Exception { |
---|
| 863 | |
---|
| 864 | /* check the instance */ |
---|
| 865 | if (m_Train.equalHeaders(instance.dataset()) == false){ |
---|
| 866 | throw new Exception("NNge.classifyInstance : Incompatible instance types !\n" + m_Train.equalHeadersMsg(instance.dataset())); |
---|
| 867 | } |
---|
| 868 | |
---|
| 869 | Exemplar matched = nearestExemplar(instance); |
---|
| 870 | if(matched == null){ |
---|
| 871 | throw new Exception("NNge.classifyInstance : NNge hasn't been trained !"); |
---|
| 872 | } |
---|
| 873 | return matched.classValue(); |
---|
| 874 | } |
---|
| 875 | |
---|
| 876 | |
---|
| 877 | /** |
---|
| 878 | * Updates the classifier using the given instance. |
---|
| 879 | * |
---|
| 880 | * @param instance the instance to include |
---|
| 881 | * @throws Exception if instance could not be incorporated |
---|
| 882 | * successfully |
---|
| 883 | */ |
---|
| 884 | public void updateClassifier(Instance instance) throws Exception { |
---|
| 885 | |
---|
| 886 | if (m_Train.equalHeaders(instance.dataset()) == false) { |
---|
| 887 | throw new Exception("Incompatible instance types\n" + m_Train.equalHeadersMsg(instance.dataset())); |
---|
| 888 | } |
---|
| 889 | update(instance); |
---|
| 890 | } |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | |
---|
| 894 | /** HIGH LEVEL SUB-FUNCTIONS */ |
---|
| 895 | |
---|
| 896 | |
---|
| 897 | |
---|
| 898 | /** |
---|
| 899 | * Performs the update of the classifier |
---|
| 900 | * |
---|
| 901 | * @param instance the new instance |
---|
| 902 | * @throws Exception if the update fails |
---|
| 903 | */ |
---|
| 904 | private void update(Instance instance) throws Exception { |
---|
| 905 | |
---|
| 906 | if (instance.classIsMissing()) { |
---|
| 907 | return; |
---|
| 908 | } |
---|
| 909 | |
---|
| 910 | instance.replaceMissingValues(m_MissingVector); |
---|
| 911 | m_Train.add(instance); |
---|
| 912 | |
---|
| 913 | /* Update the minimum and maximum for all the attributes */ |
---|
| 914 | updateMinMax(instance); |
---|
| 915 | |
---|
| 916 | /* update the mutual information datas */ |
---|
| 917 | updateMI(instance); |
---|
| 918 | |
---|
| 919 | /* Nearest Exemplar */ |
---|
| 920 | Exemplar nearest = nearestExemplar(instance); |
---|
| 921 | |
---|
| 922 | /* Adjust */ |
---|
| 923 | if(nearest == null){ |
---|
| 924 | Exemplar newEx = new Exemplar(this, m_Train, 10, instance.classValue()); |
---|
| 925 | newEx.generalise(instance); |
---|
| 926 | initWeight(newEx); |
---|
| 927 | addExemplar(newEx); |
---|
| 928 | return; |
---|
| 929 | } |
---|
| 930 | adjust(instance, nearest); |
---|
| 931 | |
---|
| 932 | /* Generalise */ |
---|
| 933 | generalise(instance); |
---|
| 934 | } |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | /** |
---|
| 938 | * Returns the nearest Exemplar |
---|
| 939 | * |
---|
| 940 | * @param inst an Instance |
---|
| 941 | * @return the nearest Exemplar to inst, null if no exemplar are found. |
---|
| 942 | */ |
---|
| 943 | private Exemplar nearestExemplar(Instance inst){ |
---|
| 944 | |
---|
| 945 | if (m_Exemplars == null) |
---|
| 946 | return null; |
---|
| 947 | Exemplar cur = m_Exemplars, nearest = m_Exemplars; |
---|
| 948 | double dist, smallestDist = cur.squaredDistance(inst); |
---|
| 949 | while (cur.next != null){ |
---|
| 950 | cur = cur.next; |
---|
| 951 | dist = cur.squaredDistance(inst); |
---|
| 952 | if (dist < smallestDist){ |
---|
| 953 | smallestDist = dist; |
---|
| 954 | nearest = cur; |
---|
| 955 | } |
---|
| 956 | } |
---|
| 957 | return nearest; |
---|
| 958 | } |
---|
| 959 | |
---|
| 960 | |
---|
| 961 | /** |
---|
| 962 | * Returns the nearest Exemplar with class c |
---|
| 963 | * |
---|
| 964 | * @param inst an Instance |
---|
| 965 | * @param c the class of the Exemplar to return |
---|
| 966 | * @return the nearest Exemplar to inst with class c, null if no exemplar with class c are found. |
---|
| 967 | */ |
---|
| 968 | private Exemplar nearestExemplar(Instance inst, double c){ |
---|
| 969 | |
---|
| 970 | if (m_ExemplarsByClass[(int) c] == null) |
---|
| 971 | return null; |
---|
| 972 | Exemplar cur = m_ExemplarsByClass[(int) c], nearest = m_ExemplarsByClass[(int) c]; |
---|
| 973 | double dist, smallestDist = cur.squaredDistance(inst); |
---|
| 974 | while (cur.nextWithClass != null){ |
---|
| 975 | cur = cur.nextWithClass; |
---|
| 976 | dist = cur.squaredDistance(inst); |
---|
| 977 | if (dist < smallestDist){ |
---|
| 978 | smallestDist = dist; |
---|
| 979 | nearest = cur; |
---|
| 980 | } |
---|
| 981 | } |
---|
| 982 | return nearest; |
---|
| 983 | } |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | /** |
---|
| 987 | * Generalise an Exemplar (not necessarily predictedExemplar) to match instance. |
---|
| 988 | * predictedExemplar must be in NNge's lists |
---|
| 989 | * |
---|
| 990 | * @param newInst the new instance |
---|
| 991 | * @throws Exception in case of inconsitent situation |
---|
| 992 | */ |
---|
| 993 | private void generalise(Instance newInst) throws Exception { |
---|
| 994 | |
---|
| 995 | Exemplar first = m_ExemplarsByClass[(int) newInst.classValue()]; |
---|
| 996 | int n = 0; |
---|
| 997 | |
---|
| 998 | /* try to generalise with the n first exemplars */ |
---|
| 999 | while(n < m_NumAttemptsOfGene && first != null){ |
---|
| 1000 | |
---|
| 1001 | /* find the nearest one starting from first */ |
---|
| 1002 | Exemplar closest = first, cur = first; |
---|
| 1003 | double smallestDist = first.squaredDistance(newInst), dist; |
---|
| 1004 | while(cur.nextWithClass != null){ |
---|
| 1005 | cur = cur.nextWithClass; |
---|
| 1006 | dist = cur.squaredDistance(newInst); |
---|
| 1007 | if(dist < smallestDist){ |
---|
| 1008 | smallestDist = dist; |
---|
| 1009 | closest = cur; |
---|
| 1010 | } |
---|
| 1011 | } |
---|
| 1012 | |
---|
| 1013 | /* remove the Examplar from NNge's lists */ |
---|
| 1014 | if(closest == first) |
---|
| 1015 | first = first.nextWithClass; |
---|
| 1016 | removeExemplar(closest); |
---|
| 1017 | |
---|
| 1018 | /* try to generalise */ |
---|
| 1019 | closest.preGeneralise(newInst); |
---|
| 1020 | if(!detectOverlapping(closest)){ |
---|
| 1021 | closest.validateGeneralisation(); |
---|
| 1022 | addExemplar(closest); |
---|
| 1023 | return; |
---|
| 1024 | } |
---|
| 1025 | |
---|
| 1026 | /* it didn't work, put ungeneralised exemplar on the top of the lists */ |
---|
| 1027 | closest.cancelGeneralisation(); |
---|
| 1028 | addExemplar(closest); |
---|
| 1029 | |
---|
| 1030 | n++; |
---|
| 1031 | } |
---|
| 1032 | |
---|
| 1033 | /* generalisation failled : add newInst as a new Examplar */ |
---|
| 1034 | Exemplar newEx = new Exemplar(this, m_Train, 5, newInst.classValue()); |
---|
| 1035 | newEx.generalise(newInst); |
---|
| 1036 | initWeight(newEx); |
---|
| 1037 | addExemplar(newEx); |
---|
| 1038 | } |
---|
| 1039 | |
---|
| 1040 | |
---|
| 1041 | /** |
---|
| 1042 | * Adjust the NNge. |
---|
| 1043 | * |
---|
| 1044 | * @param newInst the instance to classify |
---|
| 1045 | * @param predictedExemplar the Exemplar that matches newInst |
---|
| 1046 | * @throws Exception in case of inconsistent situation |
---|
| 1047 | */ |
---|
| 1048 | private void adjust(Instance newInst, Exemplar predictedExemplar) throws Exception { |
---|
| 1049 | |
---|
| 1050 | /* correct prediction */ |
---|
| 1051 | if(newInst.classValue() == predictedExemplar.classValue()){ |
---|
| 1052 | predictedExemplar.incrPositiveCount(); |
---|
| 1053 | /* incorrect prediction */ |
---|
| 1054 | } else { |
---|
| 1055 | predictedExemplar.incrNegativeCount(); |
---|
| 1056 | |
---|
| 1057 | /* new instance falls inside */ |
---|
| 1058 | if(predictedExemplar.holds(newInst)){ |
---|
| 1059 | prune(predictedExemplar, newInst); |
---|
| 1060 | } |
---|
| 1061 | } |
---|
| 1062 | } |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | /** |
---|
| 1066 | * Prunes an Exemplar that matches an Instance |
---|
| 1067 | * |
---|
| 1068 | * @param predictedExemplar an Exemplar |
---|
| 1069 | * @param newInst an Instance matched by predictedExemplar |
---|
| 1070 | * @throws Exception in case of inconsistent situation. (shouldn't happen.) |
---|
| 1071 | */ |
---|
| 1072 | private void prune(Exemplar predictedExemplar, Instance newInst) throws Exception { |
---|
| 1073 | |
---|
| 1074 | /* remove the Exemplar */ |
---|
| 1075 | removeExemplar(predictedExemplar); |
---|
| 1076 | |
---|
| 1077 | /* look for the best nominal feature and the best numeric feature to cut */ |
---|
| 1078 | int numAttr = -1, nomAttr = -1; |
---|
| 1079 | double smallestDelta = Double.POSITIVE_INFINITY, delta; |
---|
| 1080 | int biggest_N_Nom = -1, biggest_N_Num = -1, n, m; |
---|
| 1081 | for(int i = 0; i < m_Train.numAttributes(); i++){ |
---|
| 1082 | |
---|
| 1083 | if(i == m_Train.classIndex()) |
---|
| 1084 | continue; |
---|
| 1085 | |
---|
| 1086 | /* numeric attribute */ |
---|
| 1087 | if(m_Train.attribute(i).isNumeric()){ |
---|
| 1088 | |
---|
| 1089 | /* compute the distance 'delta' to the closest boundary */ |
---|
| 1090 | double norm = m_MaxArray[i] - m_MinArray[i]; |
---|
| 1091 | if(norm != 0){ |
---|
| 1092 | delta = Math.min((predictedExemplar.getMaxBorder(i) - newInst.value(i)), |
---|
| 1093 | (newInst.value(i) - predictedExemplar.getMinBorder(i))) / norm; |
---|
| 1094 | } else { |
---|
| 1095 | delta = Double.POSITIVE_INFINITY; |
---|
| 1096 | } |
---|
| 1097 | |
---|
| 1098 | /* compute the size of the biggest Exemplar which would be created */ |
---|
| 1099 | n = m = 0; |
---|
| 1100 | Enumeration enu = predictedExemplar.enumerateInstances(); |
---|
| 1101 | while(enu.hasMoreElements()){ |
---|
| 1102 | Instance ins = (Instance) enu.nextElement(); |
---|
| 1103 | if(ins.value(i) < newInst.value(i)) |
---|
| 1104 | n++; |
---|
| 1105 | else if(ins.value(i) > newInst.value(i)) |
---|
| 1106 | m++; |
---|
| 1107 | } |
---|
| 1108 | n = Math.max(n, m); |
---|
| 1109 | |
---|
| 1110 | if(delta < smallestDelta){ |
---|
| 1111 | smallestDelta = delta; |
---|
| 1112 | biggest_N_Num = n; |
---|
| 1113 | numAttr = i; |
---|
| 1114 | } else if(delta == smallestDelta && n > biggest_N_Num){ |
---|
| 1115 | biggest_N_Num = n; |
---|
| 1116 | numAttr = i; |
---|
| 1117 | } |
---|
| 1118 | |
---|
| 1119 | /* nominal attribute */ |
---|
| 1120 | } else { |
---|
| 1121 | |
---|
| 1122 | /* compute the size of the Exemplar which would be created */ |
---|
| 1123 | Enumeration enu = predictedExemplar.enumerateInstances(); |
---|
| 1124 | n = 0; |
---|
| 1125 | while(enu.hasMoreElements()){ |
---|
| 1126 | if(((Instance) enu.nextElement()).value(i) != newInst.value(i)) |
---|
| 1127 | n++; |
---|
| 1128 | } |
---|
| 1129 | if(n > biggest_N_Nom){ |
---|
| 1130 | biggest_N_Nom = n; |
---|
| 1131 | nomAttr = i; |
---|
| 1132 | } |
---|
| 1133 | } |
---|
| 1134 | } |
---|
| 1135 | |
---|
| 1136 | /* selection of the feature to cut between the best nominal and the best numeric */ |
---|
| 1137 | int attrToCut; |
---|
| 1138 | if(numAttr == -1 && nomAttr == -1){ |
---|
| 1139 | attrToCut = 0; |
---|
| 1140 | } else if (numAttr == -1){ |
---|
| 1141 | attrToCut = nomAttr; |
---|
| 1142 | } else if(nomAttr == -1){ |
---|
| 1143 | attrToCut = numAttr; |
---|
| 1144 | } else { |
---|
| 1145 | if(biggest_N_Nom > biggest_N_Num) |
---|
| 1146 | attrToCut = nomAttr; |
---|
| 1147 | else |
---|
| 1148 | attrToCut = numAttr; |
---|
| 1149 | } |
---|
| 1150 | |
---|
| 1151 | /* split the Exemplar */ |
---|
| 1152 | Instance curInst; |
---|
| 1153 | Exemplar a, b; |
---|
| 1154 | a = new Exemplar(this, m_Train, 10, predictedExemplar.classValue()); |
---|
| 1155 | b = new Exemplar(this, m_Train, 10, predictedExemplar.classValue()); |
---|
| 1156 | LinkedList leftAlone = new LinkedList(); |
---|
| 1157 | Enumeration enu = predictedExemplar.enumerateInstances(); |
---|
| 1158 | if(m_Train.attribute(attrToCut).isNumeric()){ |
---|
| 1159 | while(enu.hasMoreElements()){ |
---|
| 1160 | curInst = (Instance) enu.nextElement(); |
---|
| 1161 | if(curInst.value(attrToCut) > newInst.value(attrToCut)){ |
---|
| 1162 | a.generalise(curInst); |
---|
| 1163 | } else if (curInst.value(attrToCut) < newInst.value(attrToCut)){ |
---|
| 1164 | b.generalise(curInst); |
---|
| 1165 | } else if (notEqualFeatures(curInst, newInst)) { |
---|
| 1166 | leftAlone.add(curInst); |
---|
| 1167 | } |
---|
| 1168 | } |
---|
| 1169 | } else { |
---|
| 1170 | while(enu.hasMoreElements()){ |
---|
| 1171 | curInst = (Instance) enu.nextElement(); |
---|
| 1172 | if(curInst.value(attrToCut) != newInst.value(attrToCut)){ |
---|
| 1173 | a.generalise(curInst); |
---|
| 1174 | } else if (notEqualFeatures(curInst, newInst)){ |
---|
| 1175 | leftAlone.add(curInst); |
---|
| 1176 | } |
---|
| 1177 | } |
---|
| 1178 | } |
---|
| 1179 | |
---|
| 1180 | /* treat the left alone Instances */ |
---|
| 1181 | while(leftAlone.size() != 0){ |
---|
| 1182 | |
---|
| 1183 | Instance alone = (Instance) leftAlone.removeFirst(); |
---|
| 1184 | a.preGeneralise(alone); |
---|
| 1185 | if(!a.holds(newInst)){ |
---|
| 1186 | a.validateGeneralisation(); |
---|
| 1187 | continue; |
---|
| 1188 | } |
---|
| 1189 | a.cancelGeneralisation(); |
---|
| 1190 | b.preGeneralise(alone); |
---|
| 1191 | if(!b.holds(newInst)){ |
---|
| 1192 | b.validateGeneralisation(); |
---|
| 1193 | continue; |
---|
| 1194 | } |
---|
| 1195 | b.cancelGeneralisation(); |
---|
| 1196 | Exemplar exem = new Exemplar(this, m_Train, 3, alone.classValue()); |
---|
| 1197 | exem.generalise(alone); |
---|
| 1198 | initWeight(exem); |
---|
| 1199 | addExemplar(exem); |
---|
| 1200 | } |
---|
| 1201 | |
---|
| 1202 | /* add (or not) the new Exemplars */ |
---|
| 1203 | if(a.numInstances() != 0){ |
---|
| 1204 | initWeight(a); |
---|
| 1205 | addExemplar(a); |
---|
| 1206 | } |
---|
| 1207 | if(b.numInstances() != 0){ |
---|
| 1208 | initWeight(b); |
---|
| 1209 | addExemplar(b); |
---|
| 1210 | } |
---|
| 1211 | } |
---|
| 1212 | |
---|
| 1213 | |
---|
| 1214 | /** |
---|
| 1215 | * Returns true if the instance don't have the same feature values |
---|
| 1216 | * |
---|
| 1217 | * @param inst1 an instance |
---|
| 1218 | * @param inst2 an instance |
---|
| 1219 | * @return true if the instance don't have the same feature values |
---|
| 1220 | */ |
---|
| 1221 | private boolean notEqualFeatures(Instance inst1, Instance inst2) { |
---|
| 1222 | |
---|
| 1223 | for(int i = 0; i < m_Train.numAttributes(); i++){ |
---|
| 1224 | if(i == m_Train.classIndex()) |
---|
| 1225 | continue; |
---|
| 1226 | if(inst1.value(i) != inst2.value(i)) |
---|
| 1227 | return true; |
---|
| 1228 | } |
---|
| 1229 | return false; |
---|
| 1230 | } |
---|
| 1231 | |
---|
| 1232 | |
---|
| 1233 | /** |
---|
| 1234 | * Returns true if ex overlaps any of the Exemplars in NNge's lists |
---|
| 1235 | * |
---|
| 1236 | * @param ex an Exemplars |
---|
| 1237 | * @return true if ex overlaps any of the Exemplars in NNge's lists |
---|
| 1238 | */ |
---|
| 1239 | private boolean detectOverlapping(Exemplar ex){ |
---|
| 1240 | Exemplar cur = m_Exemplars; |
---|
| 1241 | while(cur != null){ |
---|
| 1242 | if(ex.overlaps(cur)){ |
---|
| 1243 | return true; |
---|
| 1244 | } |
---|
| 1245 | cur = cur.next; |
---|
| 1246 | } |
---|
| 1247 | return false; |
---|
| 1248 | } |
---|
| 1249 | |
---|
| 1250 | |
---|
| 1251 | /** |
---|
| 1252 | * Updates the minimum, maximum, sum, sumSquare values for all the attributes |
---|
| 1253 | * |
---|
| 1254 | * @param instance the new instance |
---|
| 1255 | */ |
---|
| 1256 | private void updateMinMax(Instance instance){ |
---|
| 1257 | |
---|
| 1258 | for (int j = 0; j < m_Train.numAttributes(); j++) { |
---|
| 1259 | if(m_Train.classIndex() == j || m_Train.attribute(j).isNominal()) |
---|
| 1260 | continue; |
---|
| 1261 | if (instance.value(j) < m_MinArray[j]) |
---|
| 1262 | m_MinArray[j] = instance.value(j); |
---|
| 1263 | if (instance.value(j) > m_MaxArray[j]) |
---|
| 1264 | m_MaxArray[j] = instance.value(j); |
---|
| 1265 | } |
---|
| 1266 | } |
---|
| 1267 | |
---|
| 1268 | |
---|
| 1269 | /** |
---|
| 1270 | * Updates the data for computing the mutual information |
---|
| 1271 | * |
---|
| 1272 | * MUST be called AFTER adding inst in m_Train |
---|
| 1273 | * |
---|
| 1274 | * @param inst the new instance |
---|
| 1275 | * @throws Exception is thrown if an inconsistent situation is met |
---|
| 1276 | */ |
---|
| 1277 | private void updateMI(Instance inst) throws Exception { |
---|
| 1278 | |
---|
| 1279 | if(m_NumFoldersMI < 1){ |
---|
| 1280 | throw new Exception("NNge.updateMI : incorrect number of folders ! Option I must be greater than 1."); |
---|
| 1281 | } |
---|
| 1282 | |
---|
| 1283 | m_MI_NumClass[(int) inst.classValue()]++; |
---|
| 1284 | m_MI_NumInst++; |
---|
| 1285 | |
---|
| 1286 | /* for each attribute */ |
---|
| 1287 | for(int attrIndex = 0; attrIndex < m_Train.numAttributes(); attrIndex++){ |
---|
| 1288 | |
---|
| 1289 | /* which is the class attribute */ |
---|
| 1290 | if(m_Train.classIndex() == attrIndex) |
---|
| 1291 | continue; |
---|
| 1292 | |
---|
| 1293 | /* which is a numeric attribute */ |
---|
| 1294 | else if(m_Train.attribute(attrIndex).isNumeric()){ |
---|
| 1295 | |
---|
| 1296 | /* if max-min have to be updated */ |
---|
| 1297 | if(Double.isNaN(m_MI_MaxArray[attrIndex]) || |
---|
| 1298 | Double.isNaN(m_MI_MinArray[attrIndex]) || |
---|
| 1299 | m_MI_MaxArray[attrIndex] < inst.value(attrIndex) || |
---|
| 1300 | inst.value(attrIndex) < m_MI_MinArray[attrIndex]){ |
---|
| 1301 | |
---|
| 1302 | /* then update them */ |
---|
| 1303 | if(Double.isNaN(m_MI_MaxArray[attrIndex])) m_MI_MaxArray[attrIndex] = inst.value(attrIndex); |
---|
| 1304 | if(Double.isNaN(m_MI_MinArray[attrIndex])) m_MI_MinArray[attrIndex] = inst.value(attrIndex); |
---|
| 1305 | if(m_MI_MaxArray[attrIndex] < inst.value(attrIndex)) m_MI_MaxArray[attrIndex] = inst.value(attrIndex); |
---|
| 1306 | if(m_MI_MinArray[attrIndex] > inst.value(attrIndex)) m_MI_MinArray[attrIndex] = inst.value(attrIndex); |
---|
| 1307 | |
---|
| 1308 | /* and re-compute everything from scratch... (just for this attribute) */ |
---|
| 1309 | double delta = (m_MI_MaxArray[attrIndex] - m_MI_MinArray[attrIndex]) / (double) m_NumFoldersMI; |
---|
| 1310 | |
---|
| 1311 | /* for each interval */ |
---|
| 1312 | for(int inter = 0; inter < m_NumFoldersMI; inter++){ |
---|
| 1313 | |
---|
| 1314 | m_MI_NumAttrInter[attrIndex][inter] = 0; |
---|
| 1315 | |
---|
| 1316 | /* for each class */ |
---|
| 1317 | for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ |
---|
| 1318 | |
---|
| 1319 | m_MI_NumAttrClassInter[attrIndex][cclass][inter] = 0; |
---|
| 1320 | |
---|
| 1321 | /* count */ |
---|
| 1322 | Enumeration enu = m_Train.enumerateInstances(); |
---|
| 1323 | while(enu.hasMoreElements()){ |
---|
| 1324 | Instance cur = (Instance) enu.nextElement(); |
---|
| 1325 | if(( (m_MI_MinArray[attrIndex] + inter * delta) <= cur.value(attrIndex) ) && |
---|
| 1326 | ( cur.value(attrIndex) <= (m_MI_MinArray[attrIndex] + (inter + 1) * delta) ) && |
---|
| 1327 | ( cur.classValue() == cclass ) ){ |
---|
| 1328 | m_MI_NumAttrInter[attrIndex][inter]++; |
---|
| 1329 | m_MI_NumAttrClassInter[attrIndex][cclass][inter]++; |
---|
| 1330 | } |
---|
| 1331 | } |
---|
| 1332 | } |
---|
| 1333 | } |
---|
| 1334 | |
---|
| 1335 | /* max-min don't have to be updated */ |
---|
| 1336 | } else { |
---|
| 1337 | |
---|
| 1338 | /* still have to incr the card of the correct interval */ |
---|
| 1339 | double delta = (m_MI_MaxArray[attrIndex] - m_MI_MinArray[attrIndex]) / (double) m_NumFoldersMI; |
---|
| 1340 | |
---|
| 1341 | /* for each interval */ |
---|
| 1342 | for(int inter = 0; inter < m_NumFoldersMI; inter++){ |
---|
| 1343 | /* which contains inst*/ |
---|
| 1344 | if(( (m_MI_MinArray[attrIndex] + inter * delta) <= inst.value(attrIndex) ) && |
---|
| 1345 | ( inst.value(attrIndex) <= (m_MI_MinArray[attrIndex] + (inter + 1) * delta) )){ |
---|
| 1346 | m_MI_NumAttrInter[attrIndex][inter]++; |
---|
| 1347 | m_MI_NumAttrClassInter[attrIndex][(int) inst.classValue()][inter]++; |
---|
| 1348 | } |
---|
| 1349 | } |
---|
| 1350 | } |
---|
| 1351 | |
---|
| 1352 | /* update the mutual information of this attribute... */ |
---|
| 1353 | m_MI[attrIndex] = 0; |
---|
| 1354 | |
---|
| 1355 | /* for each interval, for each class */ |
---|
| 1356 | for(int inter = 0; inter < m_NumFoldersMI; inter++){ |
---|
| 1357 | for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ |
---|
| 1358 | double pXY = ((double) m_MI_NumAttrClassInter[attrIndex][cclass][inter]) / ((double) m_MI_NumInst); |
---|
| 1359 | double pX = ((double) m_MI_NumClass[cclass]) / ((double) m_MI_NumInst); |
---|
| 1360 | double pY = ((double) m_MI_NumAttrInter[attrIndex][inter]) / ((double) m_MI_NumInst); |
---|
| 1361 | |
---|
| 1362 | if(pXY != 0) |
---|
| 1363 | m_MI[attrIndex] += pXY * Utils.log2(pXY / (pX * pY)); |
---|
| 1364 | } |
---|
| 1365 | } |
---|
| 1366 | |
---|
| 1367 | /* which is a nominal attribute */ |
---|
| 1368 | } else if (m_Train.attribute(attrIndex).isNominal()){ |
---|
| 1369 | |
---|
| 1370 | /*incr the card of the correct 'values' */ |
---|
| 1371 | m_MI_NumAttrValue[attrIndex][(int) inst.value(attrIndex)]++; |
---|
| 1372 | m_MI_NumAttrClassValue[attrIndex][(int) inst.classValue()][(int) inst.value(attrIndex)]++; |
---|
| 1373 | |
---|
| 1374 | /* update the mutual information of this attribute... */ |
---|
| 1375 | m_MI[attrIndex] = 0; |
---|
| 1376 | |
---|
| 1377 | /* for each nominal value, for each class */ |
---|
| 1378 | for(int attrValue = 0; attrValue < m_Train.attribute(attrIndex).numValues() + 1; attrValue++){ |
---|
| 1379 | for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ |
---|
| 1380 | double pXY = ((double) m_MI_NumAttrClassValue[attrIndex][cclass][attrValue]) / ((double) m_MI_NumInst); |
---|
| 1381 | double pX = ((double) m_MI_NumClass[cclass]) / ((double) m_MI_NumInst); |
---|
| 1382 | double pY = ((double) m_MI_NumAttrValue[attrIndex][attrValue]) / ((double) m_MI_NumInst); |
---|
| 1383 | if(pXY != 0) |
---|
| 1384 | m_MI[attrIndex] += pXY * Utils.log2(pXY / (pX * pY)); |
---|
| 1385 | } |
---|
| 1386 | } |
---|
| 1387 | |
---|
| 1388 | /* not a nominal attribute, not a numeric attribute */ |
---|
| 1389 | } else { |
---|
| 1390 | throw new Exception("NNge.updateMI : Cannot deal with 'string attribute'."); |
---|
| 1391 | } |
---|
| 1392 | } |
---|
| 1393 | } |
---|
| 1394 | |
---|
| 1395 | |
---|
| 1396 | /** |
---|
| 1397 | * Init the weight of ex |
---|
| 1398 | * Watch out ! ex shouldn't be in NNge's lists when initialized |
---|
| 1399 | * |
---|
| 1400 | * @param ex the Exemplar to initialise |
---|
| 1401 | */ |
---|
| 1402 | private void initWeight(Exemplar ex) { |
---|
| 1403 | int pos = 0, neg = 0, n = 0; |
---|
| 1404 | Exemplar cur = m_Exemplars; |
---|
| 1405 | if (cur == null){ |
---|
| 1406 | ex.setPositiveCount(1); |
---|
| 1407 | ex.setNegativeCount(0); |
---|
| 1408 | return; |
---|
| 1409 | } |
---|
| 1410 | while(cur != null){ |
---|
| 1411 | pos += cur.getPositiveCount(); |
---|
| 1412 | neg += cur.getNegativeCount(); |
---|
| 1413 | n++; |
---|
| 1414 | cur = cur.next; |
---|
| 1415 | } |
---|
| 1416 | ex.setPositiveCount(pos / n); |
---|
| 1417 | ex.setNegativeCount(neg / n); |
---|
| 1418 | } |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | /** |
---|
| 1422 | * Adds an Exemplar in NNge's lists |
---|
| 1423 | * Ensure that the exemplar is not already in a list : the links would be broken... |
---|
| 1424 | * |
---|
| 1425 | * @param ex a new Exemplar to add |
---|
| 1426 | */ |
---|
| 1427 | private void addExemplar(Exemplar ex) { |
---|
| 1428 | |
---|
| 1429 | /* add ex at the top of the general list */ |
---|
| 1430 | ex.next = m_Exemplars; |
---|
| 1431 | if(m_Exemplars != null) |
---|
| 1432 | m_Exemplars.previous = ex; |
---|
| 1433 | ex.previous = null; |
---|
| 1434 | m_Exemplars = ex; |
---|
| 1435 | |
---|
| 1436 | /* add ex at the top of the corresponding class list */ |
---|
| 1437 | ex.nextWithClass = m_ExemplarsByClass[(int) ex.classValue()]; |
---|
| 1438 | if(m_ExemplarsByClass[(int) ex.classValue()] != null) |
---|
| 1439 | m_ExemplarsByClass[(int) ex.classValue()].previousWithClass = ex; |
---|
| 1440 | ex.previousWithClass = null; |
---|
| 1441 | m_ExemplarsByClass[(int) ex.classValue()] = ex; |
---|
| 1442 | } |
---|
| 1443 | |
---|
| 1444 | |
---|
| 1445 | /** |
---|
| 1446 | * Removes an Exemplar from NNge's lists |
---|
| 1447 | * Ensure that the Exemplar is actually in NNge's lists. |
---|
| 1448 | * Likely to do something wrong if this condition is not respected. |
---|
| 1449 | * Due to the list implementation, the Exemplar can appear only once in the lists : |
---|
| 1450 | * once removed, the exemplar is not in the lists anymore. |
---|
| 1451 | * |
---|
| 1452 | * @param ex a new Exemplar to add |
---|
| 1453 | */ |
---|
| 1454 | private void removeExemplar(Exemplar ex){ |
---|
| 1455 | |
---|
| 1456 | /* remove from the general list */ |
---|
| 1457 | if(m_Exemplars == ex){ |
---|
| 1458 | m_Exemplars = ex.next; |
---|
| 1459 | if(m_Exemplars != null) |
---|
| 1460 | m_Exemplars.previous = null; |
---|
| 1461 | |
---|
| 1462 | } else { |
---|
| 1463 | ex.previous.next = ex.next; |
---|
| 1464 | if(ex.next != null){ |
---|
| 1465 | ex.next.previous = ex.previous; |
---|
| 1466 | } |
---|
| 1467 | } |
---|
| 1468 | ex.next = ex.previous = null; |
---|
| 1469 | |
---|
| 1470 | /* remove from the class list */ |
---|
| 1471 | if(m_ExemplarsByClass[(int) ex.classValue()] == ex){ |
---|
| 1472 | m_ExemplarsByClass[(int) ex.classValue()] = ex.nextWithClass; |
---|
| 1473 | if(m_ExemplarsByClass[(int) ex.classValue()] != null) |
---|
| 1474 | m_ExemplarsByClass[(int) ex.classValue()].previousWithClass = null; |
---|
| 1475 | |
---|
| 1476 | } else { |
---|
| 1477 | ex.previousWithClass.nextWithClass = ex.nextWithClass; |
---|
| 1478 | if(ex.nextWithClass != null){ |
---|
| 1479 | ex.nextWithClass.previousWithClass = ex.previousWithClass; |
---|
| 1480 | } |
---|
| 1481 | } |
---|
| 1482 | ex.nextWithClass = ex.previousWithClass = null; |
---|
| 1483 | } |
---|
| 1484 | |
---|
| 1485 | |
---|
| 1486 | /** |
---|
| 1487 | * returns the weight of indexth attribute |
---|
| 1488 | * |
---|
| 1489 | * @param index attribute's index |
---|
| 1490 | * @return the weight of indexth attribute |
---|
| 1491 | */ |
---|
| 1492 | private double attrWeight (int index) { |
---|
| 1493 | return m_MI[index]; |
---|
| 1494 | } |
---|
| 1495 | |
---|
| 1496 | |
---|
| 1497 | /** |
---|
| 1498 | * Returns a description of this classifier. |
---|
| 1499 | * |
---|
| 1500 | * @return a description of this classifier as a string. |
---|
| 1501 | */ |
---|
| 1502 | public String toString(){ |
---|
| 1503 | |
---|
| 1504 | String s; |
---|
| 1505 | Exemplar cur = m_Exemplars; |
---|
| 1506 | int i; |
---|
| 1507 | |
---|
| 1508 | if (m_MinArray == null) { |
---|
| 1509 | return "No classifier built"; |
---|
| 1510 | } |
---|
| 1511 | int[] nbHypClass = new int[m_Train.numClasses()]; |
---|
| 1512 | int[] nbSingleClass = new int[m_Train.numClasses()]; |
---|
| 1513 | for(i = 0; i<nbHypClass.length; i++){ |
---|
| 1514 | nbHypClass[i] = 0; |
---|
| 1515 | nbSingleClass[i] = 0; |
---|
| 1516 | } |
---|
| 1517 | int nbHyp = 0, nbSingle = 0; |
---|
| 1518 | |
---|
| 1519 | s = "\nNNGE classifier\n\nRules generated :\n"; |
---|
| 1520 | |
---|
| 1521 | while(cur != null){ |
---|
| 1522 | s += "\tclass " + m_Train.attribute(m_Train.classIndex()).value((int) cur.classValue()) + " IF : "; |
---|
| 1523 | s += cur.toRules() + "\n"; |
---|
| 1524 | nbHyp++; |
---|
| 1525 | nbHypClass[(int) cur.classValue()]++; |
---|
| 1526 | if (cur.numInstances() == 1){ |
---|
| 1527 | nbSingle++; |
---|
| 1528 | nbSingleClass[(int) cur.classValue()]++; |
---|
| 1529 | } |
---|
| 1530 | cur = cur.next; |
---|
| 1531 | } |
---|
| 1532 | s += "\nStat :\n"; |
---|
| 1533 | for(i = 0; i<nbHypClass.length; i++){ |
---|
| 1534 | s += "\tclass " + m_Train.attribute(m_Train.classIndex()).value(i) + |
---|
| 1535 | " : " + Integer.toString(nbHypClass[i]) + " exemplar(s) including " + |
---|
| 1536 | Integer.toString(nbHypClass[i] - nbSingleClass[i]) + " Hyperrectangle(s) and " + |
---|
| 1537 | Integer.toString(nbSingleClass[i]) + " Single(s).\n"; |
---|
| 1538 | } |
---|
| 1539 | s += "\n\tTotal : " + Integer.toString(nbHyp) + " exemplars(s) including " + |
---|
| 1540 | Integer.toString(nbHyp - nbSingle) + " Hyperrectangle(s) and " + |
---|
| 1541 | Integer.toString(nbSingle) + " Single(s).\n"; |
---|
| 1542 | |
---|
| 1543 | s += "\n"; |
---|
| 1544 | |
---|
| 1545 | s += "\tFeature weights : "; |
---|
| 1546 | |
---|
| 1547 | String space = "["; |
---|
| 1548 | for(int ii = 0; ii < m_Train.numAttributes(); ii++){ |
---|
| 1549 | if(ii != m_Train.classIndex()){ |
---|
| 1550 | s += space + Double.toString(attrWeight(ii)); |
---|
| 1551 | space = " "; |
---|
| 1552 | } |
---|
| 1553 | } |
---|
| 1554 | s += "]"; |
---|
| 1555 | s += "\n\n"; |
---|
| 1556 | return s; |
---|
| 1557 | } |
---|
| 1558 | |
---|
| 1559 | |
---|
| 1560 | |
---|
| 1561 | /** OPTION HANDLER FUNCTION */ |
---|
| 1562 | |
---|
| 1563 | |
---|
| 1564 | /** |
---|
| 1565 | * Returns an enumeration of all the available options.. |
---|
| 1566 | * |
---|
| 1567 | * @return an enumeration of all available options. |
---|
| 1568 | */ |
---|
| 1569 | public Enumeration listOptions(){ |
---|
| 1570 | |
---|
| 1571 | Vector newVector = new Vector(2); |
---|
| 1572 | |
---|
| 1573 | newVector.addElement(new Option( |
---|
| 1574 | "\tNumber of attempts of generalisation.\n", |
---|
| 1575 | "G", |
---|
| 1576 | 1, |
---|
| 1577 | "-G <value>")); |
---|
| 1578 | newVector.addElement(new Option( |
---|
| 1579 | "\tNumber of folder for computing the mutual information.\n", |
---|
| 1580 | "I", |
---|
| 1581 | 1, |
---|
| 1582 | "-I <value>")); |
---|
| 1583 | |
---|
| 1584 | return newVector.elements(); |
---|
| 1585 | } |
---|
| 1586 | |
---|
| 1587 | |
---|
| 1588 | /** |
---|
| 1589 | * Sets the OptionHandler's options using the given list. All options |
---|
| 1590 | * will be set (or reset) during this call (i.e. incremental setting |
---|
| 1591 | * of options is not possible). <p/> |
---|
| 1592 | * |
---|
| 1593 | <!-- options-start --> |
---|
| 1594 | * Valid options are: <p/> |
---|
| 1595 | * |
---|
| 1596 | * <pre> -G <value> |
---|
| 1597 | * Number of attempts of generalisation. |
---|
| 1598 | * </pre> |
---|
| 1599 | * |
---|
| 1600 | * <pre> -I <value> |
---|
| 1601 | * Number of folder for computing the mutual information. |
---|
| 1602 | * </pre> |
---|
| 1603 | * |
---|
| 1604 | <!-- options-end --> |
---|
| 1605 | * |
---|
| 1606 | * @param options the list of options as an array of strings |
---|
| 1607 | * @throws Exception if an option is not supported |
---|
| 1608 | */ |
---|
| 1609 | public void setOptions(String[] options) throws Exception { |
---|
| 1610 | |
---|
| 1611 | String str; |
---|
| 1612 | |
---|
| 1613 | /* Number max of attempts of generalisation */ |
---|
| 1614 | str = Utils.getOption('G', options); |
---|
| 1615 | if(str.length() != 0){ |
---|
| 1616 | m_NumAttemptsOfGene = Integer.parseInt(str); |
---|
| 1617 | if(m_NumAttemptsOfGene < 1) |
---|
| 1618 | throw new Exception("NNge.setOptions : G option's value must be greater than 1."); |
---|
| 1619 | } else { |
---|
| 1620 | m_NumAttemptsOfGene = 5; |
---|
| 1621 | } |
---|
| 1622 | |
---|
| 1623 | /* Number of folder for computing the mutual information */ |
---|
| 1624 | str = Utils.getOption('I', options); |
---|
| 1625 | if(str.length() != 0){ |
---|
| 1626 | m_NumFoldersMI = Integer.parseInt(str); |
---|
| 1627 | if(m_NumFoldersMI < 1) |
---|
| 1628 | throw new Exception("NNge.setOptions : I option's value must be greater than 1."); |
---|
| 1629 | } else { |
---|
| 1630 | m_NumFoldersMI = 5; |
---|
| 1631 | } |
---|
| 1632 | } |
---|
| 1633 | |
---|
| 1634 | |
---|
| 1635 | /** |
---|
| 1636 | * Gets the current option settings for the OptionHandler. |
---|
| 1637 | * |
---|
| 1638 | * @return the list of current option settings as an array of strings |
---|
| 1639 | */ |
---|
| 1640 | public String[] getOptions(){ |
---|
| 1641 | |
---|
| 1642 | String[] options = new String[5]; |
---|
| 1643 | int current = 0; |
---|
| 1644 | |
---|
| 1645 | options[current++] = "-G"; options[current++] = "" + m_NumAttemptsOfGene; |
---|
| 1646 | options[current++] = "-I"; options[current++] = "" + m_NumFoldersMI; |
---|
| 1647 | |
---|
| 1648 | while (current < options.length) { |
---|
| 1649 | options[current++] = ""; |
---|
| 1650 | } |
---|
| 1651 | return options; |
---|
| 1652 | } |
---|
| 1653 | |
---|
| 1654 | /** |
---|
| 1655 | * Returns the tip text for this property |
---|
| 1656 | * @return tip text for this property suitable for |
---|
| 1657 | * displaying in the explorer/experimenter gui |
---|
| 1658 | */ |
---|
| 1659 | public String numAttemptsOfGeneOptionTipText() { |
---|
| 1660 | return "Sets the number of attempts for generalization."; |
---|
| 1661 | } |
---|
| 1662 | |
---|
| 1663 | /** |
---|
| 1664 | * Gets the number of attempts for generalisation. |
---|
| 1665 | * |
---|
| 1666 | * @return the value of the option G |
---|
| 1667 | */ |
---|
| 1668 | public int getNumAttemptsOfGeneOption() { |
---|
| 1669 | return m_NumAttemptsOfGene; |
---|
| 1670 | } |
---|
| 1671 | |
---|
| 1672 | |
---|
| 1673 | /** |
---|
| 1674 | * Sets the number of attempts for generalisation. |
---|
| 1675 | * |
---|
| 1676 | * @param newIntParameter the new value. |
---|
| 1677 | */ |
---|
| 1678 | public void setNumAttemptsOfGeneOption(int newIntParameter) { |
---|
| 1679 | m_NumAttemptsOfGene = newIntParameter; |
---|
| 1680 | } |
---|
| 1681 | |
---|
| 1682 | /** |
---|
| 1683 | * Returns the tip text for this property |
---|
| 1684 | * @return tip text for this property suitable for |
---|
| 1685 | * displaying in the explorer/experimenter gui |
---|
| 1686 | */ |
---|
| 1687 | public String numFoldersMIOptionTipText() { |
---|
| 1688 | return "Sets the number of folder for mutual information."; |
---|
| 1689 | } |
---|
| 1690 | |
---|
| 1691 | /** |
---|
| 1692 | * Gets the number of folder for mutual information. |
---|
| 1693 | * |
---|
| 1694 | * @return the value of the option I |
---|
| 1695 | */ |
---|
| 1696 | public int getNumFoldersMIOption() { |
---|
| 1697 | return m_NumFoldersMI; |
---|
| 1698 | } |
---|
| 1699 | |
---|
| 1700 | /** |
---|
| 1701 | * Sets the number of folder for mutual information. |
---|
| 1702 | * |
---|
| 1703 | * @param newIntParameter the new value. |
---|
| 1704 | */ |
---|
| 1705 | public void setNumFoldersMIOption(int newIntParameter) { |
---|
| 1706 | m_NumFoldersMI = newIntParameter; |
---|
| 1707 | } |
---|
| 1708 | |
---|
| 1709 | /** |
---|
| 1710 | * Returns the revision string. |
---|
| 1711 | * |
---|
| 1712 | * @return the revision |
---|
| 1713 | */ |
---|
| 1714 | public String getRevision() { |
---|
| 1715 | return RevisionUtils.extract("$Revision: 5956 $"); |
---|
| 1716 | } |
---|
| 1717 | |
---|
| 1718 | /** |
---|
| 1719 | * Main method for testing this class. |
---|
| 1720 | * |
---|
| 1721 | * @param argv should contain command line arguments for evaluation |
---|
| 1722 | * (see Evaluation). |
---|
| 1723 | */ |
---|
| 1724 | public static void main(String [] argv) { |
---|
| 1725 | runClassifier(new NNge(), argv); |
---|
| 1726 | } |
---|
| 1727 | } |
---|