[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * M5Rules.java |
---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.rules; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.trees.m5.M5Base; |
---|
| 25 | import weka.core.RevisionUtils; |
---|
| 26 | import weka.core.TechnicalInformation; |
---|
| 27 | import weka.core.TechnicalInformationHandler; |
---|
| 28 | import weka.core.TechnicalInformation.Field; |
---|
| 29 | import weka.core.TechnicalInformation.Type; |
---|
| 30 | |
---|
| 31 | /** |
---|
| 32 | <!-- globalinfo-start --> |
---|
| 33 | * Generates a decision list for regression problems using separate-and-conquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.<br/> |
---|
| 34 | * <br/> |
---|
| 35 | * For more information see:<br/> |
---|
| 36 | * <br/> |
---|
| 37 | * Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.<br/> |
---|
| 38 | * <br/> |
---|
| 39 | * Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.<br/> |
---|
| 40 | * <br/> |
---|
| 41 | * Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. |
---|
| 42 | * <p/> |
---|
| 43 | <!-- globalinfo-end --> |
---|
| 44 | * |
---|
| 45 | <!-- technical-bibtex-start --> |
---|
| 46 | * BibTeX: |
---|
| 47 | * <pre> |
---|
| 48 | * @inproceedings{Holmes1999, |
---|
| 49 | * author = {Geoffrey Holmes and Mark Hall and Eibe Frank}, |
---|
| 50 | * booktitle = {Twelfth Australian Joint Conference on Artificial Intelligence}, |
---|
| 51 | * pages = {1-12}, |
---|
| 52 | * publisher = {Springer}, |
---|
| 53 | * title = {Generating Rule Sets from Model Trees}, |
---|
| 54 | * year = {1999} |
---|
| 55 | * } |
---|
| 56 | * |
---|
| 57 | * @inproceedings{Quinlan1992, |
---|
| 58 | * address = {Singapore}, |
---|
| 59 | * author = {Ross J. Quinlan}, |
---|
| 60 | * booktitle = {5th Australian Joint Conference on Artificial Intelligence}, |
---|
| 61 | * pages = {343-348}, |
---|
| 62 | * publisher = {World Scientific}, |
---|
| 63 | * title = {Learning with Continuous Classes}, |
---|
| 64 | * year = {1992} |
---|
| 65 | * } |
---|
| 66 | * |
---|
| 67 | * @inproceedings{Wang1997, |
---|
| 68 | * author = {Y. Wang and I. H. Witten}, |
---|
| 69 | * booktitle = {Poster papers of the 9th European Conference on Machine Learning}, |
---|
| 70 | * publisher = {Springer}, |
---|
| 71 | * title = {Induction of model trees for predicting continuous classes}, |
---|
| 72 | * year = {1997} |
---|
| 73 | * } |
---|
| 74 | * </pre> |
---|
| 75 | * <p/> |
---|
| 76 | <!-- technical-bibtex-end --> |
---|
| 77 | * |
---|
| 78 | <!-- options-start --> |
---|
| 79 | * Valid options are: <p/> |
---|
| 80 | * |
---|
| 81 | * <pre> -N |
---|
| 82 | * Use unpruned tree/rules</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -U |
---|
| 85 | * Use unsmoothed predictions</pre> |
---|
| 86 | * |
---|
| 87 | * <pre> -R |
---|
| 88 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
| 89 | * |
---|
| 90 | * <pre> -M <minimum number of instances> |
---|
| 91 | * Set minimum number of instances per leaf |
---|
| 92 | * (default 4)</pre> |
---|
| 93 | * |
---|
| 94 | <!-- options-end --> |
---|
| 95 | * |
---|
| 96 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
| 97 | * @version $Revision: 1.11 $ |
---|
| 98 | */ |
---|
| 99 | public class M5Rules |
---|
| 100 | extends M5Base |
---|
| 101 | implements TechnicalInformationHandler { |
---|
| 102 | |
---|
| 103 | /** for serialization */ |
---|
| 104 | static final long serialVersionUID = -1746114858746563180L; |
---|
| 105 | |
---|
| 106 | /** |
---|
| 107 | * Returns a string describing classifier |
---|
| 108 | * @return a description suitable for |
---|
| 109 | * displaying in the explorer/experimenter gui |
---|
| 110 | */ |
---|
| 111 | public String globalInfo() { |
---|
| 112 | |
---|
| 113 | return "Generates a decision list for regression problems using " |
---|
| 114 | + "separate-and-conquer. In each iteration it builds a " |
---|
| 115 | + "model tree using M5 and makes the \"best\" " |
---|
| 116 | + "leaf into a rule.\n\n" |
---|
| 117 | + "For more information see:\n\n" |
---|
| 118 | + getTechnicalInformation().toString(); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | /** |
---|
| 122 | * Constructor |
---|
| 123 | */ |
---|
| 124 | public M5Rules() { |
---|
| 125 | super(); |
---|
| 126 | setGenerateRules(true); |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 131 | * detailed information about the technical background of this class, |
---|
| 132 | * e.g., paper reference or book this class is based on. |
---|
| 133 | * |
---|
| 134 | * @return the technical information about this class |
---|
| 135 | */ |
---|
| 136 | public TechnicalInformation getTechnicalInformation() { |
---|
| 137 | TechnicalInformation result; |
---|
| 138 | |
---|
| 139 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 140 | result.setValue(Field.AUTHOR, "Geoffrey Holmes and Mark Hall and Eibe Frank"); |
---|
| 141 | result.setValue(Field.TITLE, "Generating Rule Sets from Model Trees"); |
---|
| 142 | result.setValue(Field.BOOKTITLE, "Twelfth Australian Joint Conference on Artificial Intelligence"); |
---|
| 143 | result.setValue(Field.YEAR, "1999"); |
---|
| 144 | result.setValue(Field.PAGES, "1-12"); |
---|
| 145 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
| 146 | |
---|
| 147 | result.add(super.getTechnicalInformation()); |
---|
| 148 | |
---|
| 149 | return result; |
---|
| 150 | } |
---|
| 151 | |
---|
| 152 | /** |
---|
| 153 | * Returns the revision string. |
---|
| 154 | * |
---|
| 155 | * @return the revision |
---|
| 156 | */ |
---|
| 157 | public String getRevision() { |
---|
| 158 | return RevisionUtils.extract("$Revision: 1.11 $"); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | /** |
---|
| 162 | * Main method by which this class can be tested |
---|
| 163 | * |
---|
| 164 | * @param args an array of options |
---|
| 165 | */ |
---|
| 166 | public static void main(String[] args) { |
---|
| 167 | runClassifier(new M5Rules(), args); |
---|
| 168 | } |
---|
| 169 | } |
---|