1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * DiscreteDistribution.java |
---|
19 | * Copyright (C) 2004 Stijn Lievens |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.misc.monotone; |
---|
24 | |
---|
25 | import weka.core.RevisionHandler; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | import weka.core.Utils; |
---|
28 | import weka.estimators.DiscreteEstimator; |
---|
29 | |
---|
30 | import java.io.Serializable; |
---|
31 | |
---|
32 | /** |
---|
33 | * This class represents a discrete probability distribution |
---|
34 | * over a finite number of values. |
---|
35 | * <p> |
---|
36 | * In the present implementation, objects of type |
---|
37 | * <code> DiscreteDistribution </code> are in fact immutable, |
---|
38 | * so all one can do is create objects and retrieve information, |
---|
39 | * such as median and mean, from them. |
---|
40 | * </p> |
---|
41 | * <p> |
---|
42 | * This implementation is part of the master's thesis: "Studie |
---|
43 | * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd |
---|
44 | * rangschikken", Stijn Lievens, Ghent University, 2004. |
---|
45 | * </p> |
---|
46 | * |
---|
47 | * @author Stijn Lievens (stijn.lievens@ugent.be) |
---|
48 | * @version $Revision: 5922 $ |
---|
49 | */ |
---|
50 | public class DiscreteDistribution |
---|
51 | implements Serializable, RevisionHandler { |
---|
52 | |
---|
53 | /** for serialization. */ |
---|
54 | private static final long serialVersionUID = 1954630934425689828L; |
---|
55 | |
---|
56 | /** |
---|
57 | * small tolerance to account for rounding errors when working |
---|
58 | * with doubles |
---|
59 | */ |
---|
60 | private static final double TOLERANCE=Utils.SMALL; |
---|
61 | |
---|
62 | /** the array of probabilities */ |
---|
63 | private double[] m_dd; |
---|
64 | |
---|
65 | /** |
---|
66 | * Create a <code> DiscreteDistribution </code> based on a |
---|
67 | * <code> DiscreteEstimator. </code> |
---|
68 | * |
---|
69 | * @param e the <code> DiscreteEstimator </code> |
---|
70 | */ |
---|
71 | public DiscreteDistribution(DiscreteEstimator e) { |
---|
72 | m_dd = new double[e.getNumSymbols()]; |
---|
73 | |
---|
74 | for (int i = 0; i < m_dd.length; i++) { |
---|
75 | m_dd[i] = e.getProbability(i); |
---|
76 | } |
---|
77 | } |
---|
78 | |
---|
79 | /** |
---|
80 | * Create a <code> DiscreteDistribution </code> based on a |
---|
81 | * <code> CumulativeDiscreteDistribution. </code> |
---|
82 | * |
---|
83 | * @param cdf the <code> CumulativeDiscreteDistribution </code> |
---|
84 | */ |
---|
85 | public DiscreteDistribution(CumulativeDiscreteDistribution cdf) { |
---|
86 | m_dd = new double[cdf.getNumSymbols()]; |
---|
87 | |
---|
88 | if (m_dd.length != 0) { |
---|
89 | m_dd[0] = cdf.getCumulativeProbability(0); |
---|
90 | } |
---|
91 | for (int i = 1; i < m_dd.length; i++) { |
---|
92 | m_dd[i] = cdf.getCumulativeProbability(i) |
---|
93 | - cdf.getCumulativeProbability(i - 1); |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | /** |
---|
98 | * Create a <code> DiscreteDistribution </code> based on an |
---|
99 | * array of doubles. |
---|
100 | * |
---|
101 | * @param dd the array of doubles representing a valid |
---|
102 | * discrete distribution |
---|
103 | * @throws IllegalArgumentException if <code> dd </code> |
---|
104 | * does not represent a valid discrete distribution |
---|
105 | */ |
---|
106 | public DiscreteDistribution(double[] dd) throws IllegalArgumentException { |
---|
107 | if (!validDiscreteDistribution(dd)) { |
---|
108 | throw new IllegalArgumentException |
---|
109 | ("Not a valid discrete distribution"); |
---|
110 | } |
---|
111 | |
---|
112 | m_dd = new double[dd.length]; |
---|
113 | System.arraycopy(dd,0,m_dd,0,dd.length); |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Get the number of elements over which the <code> |
---|
118 | * DiscreteDistribution </code> is defined. |
---|
119 | * |
---|
120 | * @return the number of elements over which the <code> |
---|
121 | * DiscreteDistribution </code> is defined |
---|
122 | */ |
---|
123 | public int getNumSymbols() { |
---|
124 | return (m_dd != null) ? m_dd.length : 0; |
---|
125 | } |
---|
126 | |
---|
127 | /** |
---|
128 | * Get the probability of finding the element at |
---|
129 | * a specified index. |
---|
130 | * |
---|
131 | * @param index the index of the required element |
---|
132 | * @return the probability of finding the specified element |
---|
133 | */ |
---|
134 | public double getProbability(int index) { |
---|
135 | return m_dd[index]; |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * Calculate the mean of the distribution. The scores for |
---|
140 | * calculating the mean start from 0 and have step size one, |
---|
141 | * i.e. if there are n elements then the scores are 0,1,...,n-1. |
---|
142 | * |
---|
143 | * @return the mean of the distribution |
---|
144 | */ |
---|
145 | public double mean() { |
---|
146 | double mean = 0; |
---|
147 | for (int i = 1; i < m_dd.length; i++) { |
---|
148 | mean += i * m_dd[i]; |
---|
149 | } |
---|
150 | return mean; |
---|
151 | } |
---|
152 | |
---|
153 | /** |
---|
154 | * Calculate the median of the distribution. This means |
---|
155 | * the following: if there is a label m such that |
---|
156 | * P(x <= m) >= ½ and |
---|
157 | * P(x >= m) >= ½ then this label is returned. |
---|
158 | * If there is no such label, an interpolation between the |
---|
159 | * smallest label satisfying the first condition and the |
---|
160 | * largest label satisfying the second condition is performed. |
---|
161 | * The returned value is thus either an element label, or |
---|
162 | * exactly between two element labels. |
---|
163 | * |
---|
164 | * @return the median of the distribution. |
---|
165 | **/ |
---|
166 | public double median() { |
---|
167 | |
---|
168 | /* cumulative probabilities starting from the left and |
---|
169 | * right respectively |
---|
170 | */ |
---|
171 | double cl=m_dd[0]; |
---|
172 | double cr=m_dd[m_dd.length - 1]; // cumulative left and right |
---|
173 | |
---|
174 | int i = 0; |
---|
175 | while(cl < 0.5) { |
---|
176 | cl += m_dd[++i]; // pre-increment |
---|
177 | } |
---|
178 | |
---|
179 | int j = m_dd.length - 1; |
---|
180 | while(cr < 0.5) { |
---|
181 | cr += m_dd[--j]; // pre-increment |
---|
182 | } |
---|
183 | |
---|
184 | return i == j ? i : ( (double) (i + j) ) / 2; |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Get a sorted array containing the indices of the elements with |
---|
189 | * maximal probability. |
---|
190 | * |
---|
191 | * @return an array of class indices with maximal probability. |
---|
192 | */ |
---|
193 | public int[] modes() { |
---|
194 | int[] mm = new int[m_dd.length]; |
---|
195 | double max = m_dd[0]; |
---|
196 | int nr = 1; // number of relevant elements in mm |
---|
197 | for (int i = 1; i < m_dd.length; i++) { |
---|
198 | if (m_dd[i] > max + TOLERANCE) { |
---|
199 | |
---|
200 | // new maximum |
---|
201 | max = m_dd[i]; |
---|
202 | mm[0] = i; |
---|
203 | nr = 1; |
---|
204 | } |
---|
205 | else if (Math.abs(m_dd[i] - max) < TOLERANCE) { |
---|
206 | mm[nr++] = i; |
---|
207 | } |
---|
208 | } |
---|
209 | |
---|
210 | // trim to correct size |
---|
211 | int[] modes = new int[nr]; |
---|
212 | System.arraycopy(mm, 0, modes, 0, nr); |
---|
213 | return modes; |
---|
214 | } |
---|
215 | |
---|
216 | /** |
---|
217 | * Convert the <code> DiscreteDistribution </code> to an |
---|
218 | * array of doubles. |
---|
219 | * |
---|
220 | * @return an array of doubles representing the |
---|
221 | * <code> DiscreteDistribution </code> |
---|
222 | */ |
---|
223 | public double[] toArray() { |
---|
224 | double[] dd = new double[m_dd.length]; |
---|
225 | System.arraycopy(m_dd, 0, dd, 0, dd.length); |
---|
226 | return dd; |
---|
227 | } |
---|
228 | |
---|
229 | /** |
---|
230 | * Get a string representation of the given <code> |
---|
231 | * DiscreteDistribution. </code> |
---|
232 | * |
---|
233 | * @return a string representation of this object |
---|
234 | */ |
---|
235 | public String toString() { |
---|
236 | |
---|
237 | // XXX MAYBE WE SHOULD USE STRINGBUFFER AND FIXED WIDTH ... |
---|
238 | String s = "[" + getNumSymbols() + "]:"; |
---|
239 | for (int i = 0; i < getNumSymbols(); i++) { |
---|
240 | s += " " + getProbability(i); |
---|
241 | } |
---|
242 | return s; |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * Checks if <code> this </code> is dominated by <code> dd. </code> |
---|
247 | |
---|
248 | * @param dd the DiscreteDistribution to compare to |
---|
249 | * @return <code> true </code> if <code> this </code> is dominated by |
---|
250 | * <code> dd </code>, <code> false </code> otherwise |
---|
251 | * @throws IllegalArgumentException if the two distributions don't |
---|
252 | * have the same length |
---|
253 | */ |
---|
254 | public boolean stochasticDominatedBy(DiscreteDistribution dd) throws IllegalArgumentException { |
---|
255 | return (new CumulativeDiscreteDistribution(this)). |
---|
256 | stochasticDominatedBy |
---|
257 | (new CumulativeDiscreteDistribution(dd)); |
---|
258 | } |
---|
259 | |
---|
260 | /** |
---|
261 | * Checks if the given array of doubles represents a valid discrete |
---|
262 | * distribution. |
---|
263 | * |
---|
264 | * @param dd an array holding the doubles |
---|
265 | * @return <code> true </code> if <code> dd </code> is a valid discrete distribution, |
---|
266 | * <code> false </code> otherwise |
---|
267 | */ |
---|
268 | private static boolean validDiscreteDistribution(double[] dd) { |
---|
269 | if (dd == null || dd.length == 0) { |
---|
270 | return false; |
---|
271 | } |
---|
272 | |
---|
273 | double sum = 0; |
---|
274 | for (int i = 0; i < dd.length; i++) { |
---|
275 | if (dd[i] < 0) { |
---|
276 | return false; |
---|
277 | } |
---|
278 | sum += dd[i]; |
---|
279 | } |
---|
280 | return !(Math.abs(sum - 1) > TOLERANCE); |
---|
281 | } |
---|
282 | |
---|
283 | /** |
---|
284 | * Returns the revision string. |
---|
285 | * |
---|
286 | * @return the revision |
---|
287 | */ |
---|
288 | public String getRevision() { |
---|
289 | return RevisionUtils.extract("$Revision: 5922 $"); |
---|
290 | } |
---|
291 | } |
---|