1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MIOptimalBall.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.mi; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.core.Capabilities; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.SelectedTag; |
---|
35 | import weka.core.Tag; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.core.TechnicalInformation.Field; |
---|
42 | import weka.core.TechnicalInformation.Type; |
---|
43 | import weka.core.matrix.DoubleVector; |
---|
44 | import weka.filters.Filter; |
---|
45 | import weka.filters.unsupervised.attribute.MultiInstanceToPropositional; |
---|
46 | import weka.filters.unsupervised.attribute.Normalize; |
---|
47 | import weka.filters.unsupervised.attribute.PropositionalToMultiInstance; |
---|
48 | import weka.filters.unsupervised.attribute.Standardize; |
---|
49 | |
---|
50 | import java.util.Enumeration; |
---|
51 | import java.util.Vector; |
---|
52 | |
---|
53 | /** |
---|
54 | <!-- globalinfo-start --> |
---|
55 | * This classifier tries to find a suitable ball in the multiple-instance space, with a certain data point in the instance space as a ball center. The possible ball center is a certain instance in a positive bag. The possible radiuses are those which can achieve the highest classification accuracy. The model selects the maximum radius as the radius of the optimal ball.<br/> |
---|
56 | * <br/> |
---|
57 | * For more information about this algorithm, see:<br/> |
---|
58 | * <br/> |
---|
59 | * Peter Auer, Ronald Ortner: A Boosting Approach to Multiple Instance Learning. In: 15th European Conference on Machine Learning, 63-74, 2004. |
---|
60 | * <p/> |
---|
61 | <!-- globalinfo-end --> |
---|
62 | * |
---|
63 | <!-- technical-bibtex-start --> |
---|
64 | * BibTeX: |
---|
65 | * <pre> |
---|
66 | * @inproceedings{Auer2004, |
---|
67 | * author = {Peter Auer and Ronald Ortner}, |
---|
68 | * booktitle = {15th European Conference on Machine Learning}, |
---|
69 | * note = {LNAI 3201}, |
---|
70 | * pages = {63-74}, |
---|
71 | * publisher = {Springer}, |
---|
72 | * title = {A Boosting Approach to Multiple Instance Learning}, |
---|
73 | * year = {2004} |
---|
74 | * } |
---|
75 | * </pre> |
---|
76 | * <p/> |
---|
77 | <!-- technical-bibtex-end --> |
---|
78 | * |
---|
79 | <!-- options-start --> |
---|
80 | * Valid options are: <p/> |
---|
81 | * |
---|
82 | * <pre> -N <num> |
---|
83 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
84 | * (default 0=normalize)</pre> |
---|
85 | * |
---|
86 | <!-- options-end --> |
---|
87 | * |
---|
88 | * @author Lin Dong (ld21@cs.waikato.ac.nz) |
---|
89 | * @version $Revision: 5928 $ |
---|
90 | */ |
---|
91 | public class MIOptimalBall |
---|
92 | extends AbstractClassifier |
---|
93 | implements OptionHandler, WeightedInstancesHandler, |
---|
94 | MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { |
---|
95 | |
---|
96 | /** for serialization */ |
---|
97 | static final long serialVersionUID = -6465750129576777254L; |
---|
98 | |
---|
99 | /** center of the optimal ball */ |
---|
100 | protected double[] m_Center; |
---|
101 | |
---|
102 | /** radius of the optimal ball */ |
---|
103 | protected double m_Radius; |
---|
104 | |
---|
105 | /** the distances from each instance in a positive bag to each bag*/ |
---|
106 | protected double [][][]m_Distance; |
---|
107 | |
---|
108 | /** The filter used to standardize/normalize all values. */ |
---|
109 | protected Filter m_Filter = null; |
---|
110 | |
---|
111 | /** Whether to normalize/standardize/neither */ |
---|
112 | protected int m_filterType = FILTER_NORMALIZE; |
---|
113 | |
---|
114 | /** Normalize training data */ |
---|
115 | public static final int FILTER_NORMALIZE = 0; |
---|
116 | /** Standardize training data */ |
---|
117 | public static final int FILTER_STANDARDIZE = 1; |
---|
118 | /** No normalization/standardization */ |
---|
119 | public static final int FILTER_NONE = 2; |
---|
120 | /** The filter to apply to the training data */ |
---|
121 | public static final Tag [] TAGS_FILTER = { |
---|
122 | new Tag(FILTER_NORMALIZE, "Normalize training data"), |
---|
123 | new Tag(FILTER_STANDARDIZE, "Standardize training data"), |
---|
124 | new Tag(FILTER_NONE, "No normalization/standardization"), |
---|
125 | }; |
---|
126 | |
---|
127 | /** filter used to convert the MI dataset into single-instance dataset */ |
---|
128 | protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); |
---|
129 | |
---|
130 | /** filter used to convert the single-instance dataset into MI dataset */ |
---|
131 | protected PropositionalToMultiInstance m_ConvertToMI = new PropositionalToMultiInstance(); |
---|
132 | |
---|
133 | /** |
---|
134 | * Returns a string describing this filter |
---|
135 | * |
---|
136 | * @return a description of the filter suitable for |
---|
137 | * displaying in the explorer/experimenter gui |
---|
138 | */ |
---|
139 | public String globalInfo() { |
---|
140 | return |
---|
141 | "This classifier tries to find a suitable ball in the " |
---|
142 | + "multiple-instance space, with a certain data point in the instance " |
---|
143 | + "space as a ball center. The possible ball center is a certain " |
---|
144 | + "instance in a positive bag. The possible radiuses are those which can " |
---|
145 | + "achieve the highest classification accuracy. The model selects the " |
---|
146 | + "maximum radius as the radius of the optimal ball.\n\n" |
---|
147 | + "For more information about this algorithm, see:\n\n" |
---|
148 | + getTechnicalInformation().toString(); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Returns an instance of a TechnicalInformation object, containing |
---|
153 | * detailed information about the technical background of this class, |
---|
154 | * e.g., paper reference or book this class is based on. |
---|
155 | * |
---|
156 | * @return the technical information about this class |
---|
157 | */ |
---|
158 | public TechnicalInformation getTechnicalInformation() { |
---|
159 | TechnicalInformation result; |
---|
160 | |
---|
161 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
162 | result.setValue(Field.AUTHOR, "Peter Auer and Ronald Ortner"); |
---|
163 | result.setValue(Field.TITLE, "A Boosting Approach to Multiple Instance Learning"); |
---|
164 | result.setValue(Field.BOOKTITLE, "15th European Conference on Machine Learning"); |
---|
165 | result.setValue(Field.YEAR, "2004"); |
---|
166 | result.setValue(Field.PAGES, "63-74"); |
---|
167 | result.setValue(Field.PUBLISHER, "Springer"); |
---|
168 | result.setValue(Field.NOTE, "LNAI 3201"); |
---|
169 | |
---|
170 | return result; |
---|
171 | } |
---|
172 | |
---|
173 | /** |
---|
174 | * Returns default capabilities of the classifier. |
---|
175 | * |
---|
176 | * @return the capabilities of this classifier |
---|
177 | */ |
---|
178 | public Capabilities getCapabilities() { |
---|
179 | Capabilities result = super.getCapabilities(); |
---|
180 | result.disableAll(); |
---|
181 | |
---|
182 | // attributes |
---|
183 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
184 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
185 | result.enable(Capability.MISSING_VALUES); |
---|
186 | |
---|
187 | // class |
---|
188 | result.enable(Capability.BINARY_CLASS); |
---|
189 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
190 | |
---|
191 | // other |
---|
192 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
193 | |
---|
194 | return result; |
---|
195 | } |
---|
196 | |
---|
197 | /** |
---|
198 | * Returns the capabilities of this multi-instance classifier for the |
---|
199 | * relational data. |
---|
200 | * |
---|
201 | * @return the capabilities of this object |
---|
202 | * @see Capabilities |
---|
203 | */ |
---|
204 | public Capabilities getMultiInstanceCapabilities() { |
---|
205 | Capabilities result = super.getCapabilities(); |
---|
206 | result.disableAll(); |
---|
207 | |
---|
208 | // attributes |
---|
209 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
210 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
211 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
212 | result.enable(Capability.MISSING_VALUES); |
---|
213 | |
---|
214 | // class |
---|
215 | result.disableAllClasses(); |
---|
216 | result.enable(Capability.NO_CLASS); |
---|
217 | |
---|
218 | return result; |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | * Builds the classifier |
---|
223 | * |
---|
224 | * @param data the training data to be used for generating the |
---|
225 | * boosted classifier. |
---|
226 | * @throws Exception if the classifier could not be built successfully |
---|
227 | */ |
---|
228 | public void buildClassifier(Instances data) throws Exception { |
---|
229 | // can classifier handle the data? |
---|
230 | getCapabilities().testWithFail(data); |
---|
231 | |
---|
232 | // remove instances with missing class |
---|
233 | Instances train = new Instances(data); |
---|
234 | train.deleteWithMissingClass(); |
---|
235 | |
---|
236 | int numAttributes = train.attribute(1).relation().numAttributes(); |
---|
237 | m_Center = new double[numAttributes]; |
---|
238 | |
---|
239 | if (getDebug()) |
---|
240 | System.out.println("Start training ..."); |
---|
241 | |
---|
242 | // convert the training dataset into single-instance dataset |
---|
243 | m_ConvertToSI.setInputFormat(train); |
---|
244 | train = Filter.useFilter( train, m_ConvertToSI); |
---|
245 | |
---|
246 | if (m_filterType == FILTER_STANDARDIZE) |
---|
247 | m_Filter = new Standardize(); |
---|
248 | else if (m_filterType == FILTER_NORMALIZE) |
---|
249 | m_Filter = new Normalize(); |
---|
250 | else |
---|
251 | m_Filter = null; |
---|
252 | |
---|
253 | if (m_Filter!=null) { |
---|
254 | // normalize/standardize the converted training dataset |
---|
255 | m_Filter.setInputFormat(train); |
---|
256 | train = Filter.useFilter(train, m_Filter); |
---|
257 | } |
---|
258 | |
---|
259 | // convert the single-instance dataset into multi-instance dataset |
---|
260 | m_ConvertToMI.setInputFormat(train); |
---|
261 | train = Filter.useFilter(train, m_ConvertToMI); |
---|
262 | |
---|
263 | /*calculate all the distances (and store them in m_Distance[][][]), which |
---|
264 | are from each instance in all positive bags to all bags */ |
---|
265 | calculateDistance(train); |
---|
266 | |
---|
267 | /*find the suitable ball center (m_Center) and the corresponding radius (m_Radius)*/ |
---|
268 | findRadius(train); |
---|
269 | |
---|
270 | if (getDebug()) |
---|
271 | System.out.println("Finish building optimal ball model"); |
---|
272 | } |
---|
273 | |
---|
274 | |
---|
275 | |
---|
276 | /** |
---|
277 | * calculate the distances from each instance in a positive bag to each bag. |
---|
278 | * All result distances are stored in m_Distance[i][j][k], where |
---|
279 | * m_Distance[i][j][k] refers the distances from the jth instance in ith bag |
---|
280 | * to the kth bag |
---|
281 | * |
---|
282 | * @param train the multi-instance dataset (with relational attribute) |
---|
283 | */ |
---|
284 | public void calculateDistance (Instances train) { |
---|
285 | int numBags =train.numInstances(); |
---|
286 | int numInstances; |
---|
287 | Instance tempCenter; |
---|
288 | |
---|
289 | m_Distance = new double [numBags][][]; |
---|
290 | for (int i=0; i<numBags; i++) { |
---|
291 | if (train.instance(i).classValue() == 1.0) { //positive bag |
---|
292 | numInstances = train.instance(i).relationalValue(1).numInstances(); |
---|
293 | m_Distance[i]= new double[numInstances][]; |
---|
294 | for (int j=0; j<numInstances; j++) { |
---|
295 | tempCenter = train.instance(i).relationalValue(1).instance(j); |
---|
296 | m_Distance[i][j]=new double [numBags]; //store the distance from one center to all the bags |
---|
297 | for (int k=0; k<numBags; k++){ |
---|
298 | if (i==k) |
---|
299 | m_Distance[i][j][k]= 0; |
---|
300 | else |
---|
301 | m_Distance[i][j][k]= minBagDistance (tempCenter, train.instance(k)); |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Calculate the distance from one data point to a bag |
---|
310 | * |
---|
311 | * @param center the data point in instance space |
---|
312 | * @param bag the bag |
---|
313 | * @return the double value as the distance. |
---|
314 | */ |
---|
315 | public double minBagDistance (Instance center, Instance bag){ |
---|
316 | double distance; |
---|
317 | double minDistance = Double.MAX_VALUE; |
---|
318 | Instances temp = bag.relationalValue(1); |
---|
319 | //calculate the distance from the data point to each instance in the bag and return the minimum distance |
---|
320 | for (int i=0; i<temp.numInstances(); i++){ |
---|
321 | distance =0; |
---|
322 | for (int j=0; j<center.numAttributes(); j++) |
---|
323 | distance += (center.value(j)-temp.instance(i).value(j))*(center.value(j)-temp.instance(i).value(j)); |
---|
324 | |
---|
325 | if (minDistance>distance) |
---|
326 | minDistance = distance; |
---|
327 | } |
---|
328 | return Math.sqrt(minDistance); |
---|
329 | } |
---|
330 | |
---|
331 | /** |
---|
332 | * Find the maximum radius for the optimal ball. |
---|
333 | * |
---|
334 | * @param train the multi-instance data |
---|
335 | */ |
---|
336 | public void findRadius(Instances train) { |
---|
337 | int numBags, numInstances; |
---|
338 | double radius, bagDistance; |
---|
339 | int highestCount=0; |
---|
340 | |
---|
341 | numBags = train.numInstances(); |
---|
342 | //try each instance in all positive bag as a ball center (tempCenter), |
---|
343 | for (int i=0; i<numBags; i++) { |
---|
344 | if (train.instance(i).classValue()== 1.0) {//positive bag |
---|
345 | numInstances = train.instance(i).relationalValue(1).numInstances(); |
---|
346 | for (int j=0; j<numInstances; j++) { |
---|
347 | Instance tempCenter = train.instance(i).relationalValue(1).instance(j); |
---|
348 | |
---|
349 | //set the possible set of ball radius corresponding to each tempCenter, |
---|
350 | double sortedDistance[] = sortArray(m_Distance[i][j]); //sort the distance value |
---|
351 | for (int k=1; k<sortedDistance.length; k++){ |
---|
352 | radius = sortedDistance[k]-(sortedDistance[k]-sortedDistance[k-1])/2.0 ; |
---|
353 | |
---|
354 | //evaluate the performance on the training data according to |
---|
355 | //the curren selected tempCenter and the set of radius |
---|
356 | int correctCount =0; |
---|
357 | for (int n=0; n<numBags; n++){ |
---|
358 | bagDistance=m_Distance[i][j][n]; |
---|
359 | if ((bagDistance <= radius && train.instance(n).classValue()==1.0) |
---|
360 | ||(bagDistance > radius && train.instance(n).classValue ()==0.0)) |
---|
361 | correctCount += train.instance(n).weight(); |
---|
362 | |
---|
363 | } |
---|
364 | |
---|
365 | //and keep the track of the ball center and the maximum radius which can achieve the highest accuracy. |
---|
366 | if (correctCount > highestCount || (correctCount==highestCount && radius > m_Radius)){ |
---|
367 | highestCount = correctCount; |
---|
368 | m_Radius = radius; |
---|
369 | for (int p=0; p<tempCenter.numAttributes(); p++) |
---|
370 | m_Center[p]= tempCenter.value(p); |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | } |
---|
375 | } |
---|
376 | } |
---|
377 | |
---|
378 | /** |
---|
379 | * Sort the array. |
---|
380 | * |
---|
381 | * @param distance the array need to be sorted |
---|
382 | * @return sorted array |
---|
383 | */ |
---|
384 | public double [] sortArray(double [] distance) { |
---|
385 | double [] sorted = new double [distance.length]; |
---|
386 | |
---|
387 | //make a copy of the array |
---|
388 | double []disCopy = new double[distance.length]; |
---|
389 | for (int i=0;i<distance.length; i++) |
---|
390 | disCopy[i]= distance[i]; |
---|
391 | |
---|
392 | DoubleVector sortVector = new DoubleVector(disCopy); |
---|
393 | sortVector.sort(); |
---|
394 | sorted = sortVector.getArrayCopy(); |
---|
395 | return sorted; |
---|
396 | } |
---|
397 | |
---|
398 | |
---|
399 | /** |
---|
400 | * Computes the distribution for a given multiple instance |
---|
401 | * |
---|
402 | * @param newBag the instance for which distribution is computed |
---|
403 | * @return the distribution |
---|
404 | * @throws Exception if the distribution can't be computed successfully |
---|
405 | */ |
---|
406 | public double[] distributionForInstance(Instance newBag) |
---|
407 | throws Exception { |
---|
408 | |
---|
409 | double [] distribution = new double[2]; |
---|
410 | double distance; |
---|
411 | distribution[0]=0; |
---|
412 | distribution[1]=0; |
---|
413 | |
---|
414 | Instances insts = new Instances(newBag.dataset(),0); |
---|
415 | insts.add(newBag); |
---|
416 | |
---|
417 | // Filter instances |
---|
418 | insts= Filter.useFilter( insts, m_ConvertToSI); |
---|
419 | if (m_Filter!=null) |
---|
420 | insts = Filter.useFilter(insts, m_Filter); |
---|
421 | |
---|
422 | //calculate the distance from each single instance to the ball center |
---|
423 | int numInsts = insts.numInstances(); |
---|
424 | insts.deleteAttributeAt(0); //remove the bagIndex attribute, no use for the distance calculation |
---|
425 | |
---|
426 | for (int i=0; i<numInsts; i++){ |
---|
427 | distance =0; |
---|
428 | for (int j=0; j<insts.numAttributes()-1; j++) |
---|
429 | distance += (insts.instance(i).value(j) - m_Center[j])*(insts.instance(i).value(j)-m_Center[j]); |
---|
430 | |
---|
431 | if (distance <=m_Radius*m_Radius){ // check whether this single instance is inside the ball |
---|
432 | distribution[1]=1.0; //predicted as a positive bag |
---|
433 | break; |
---|
434 | } |
---|
435 | } |
---|
436 | |
---|
437 | distribution[0]= 1-distribution[1]; |
---|
438 | |
---|
439 | return distribution; |
---|
440 | } |
---|
441 | |
---|
442 | /** |
---|
443 | * Returns an enumeration describing the available options. |
---|
444 | * |
---|
445 | * @return an enumeration of all the available options. |
---|
446 | */ |
---|
447 | public Enumeration listOptions() { |
---|
448 | Vector result = new Vector(); |
---|
449 | |
---|
450 | result.addElement(new Option( |
---|
451 | "\tWhether to 0=normalize/1=standardize/2=neither. \n" |
---|
452 | + "\t(default 0=normalize)", |
---|
453 | "N", 1, "-N <num>")); |
---|
454 | |
---|
455 | return result.elements(); |
---|
456 | } |
---|
457 | |
---|
458 | /** |
---|
459 | * Gets the current settings of the classifier. |
---|
460 | * |
---|
461 | * @return an array of strings suitable for passing to setOptions |
---|
462 | */ |
---|
463 | public String[] getOptions() { |
---|
464 | Vector result; |
---|
465 | |
---|
466 | result = new Vector(); |
---|
467 | |
---|
468 | if (getDebug()) |
---|
469 | result.add("-D"); |
---|
470 | |
---|
471 | result.add("-N"); |
---|
472 | result.add("" + m_filterType); |
---|
473 | |
---|
474 | return (String[]) result.toArray(new String[result.size()]); |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * Parses a given list of options. <p/> |
---|
479 | * |
---|
480 | <!-- options-start --> |
---|
481 | * Valid options are: <p/> |
---|
482 | * |
---|
483 | * <pre> -N <num> |
---|
484 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
485 | * (default 0=normalize)</pre> |
---|
486 | * |
---|
487 | <!-- options-end --> |
---|
488 | * |
---|
489 | * @param options the list of options as an array of strings |
---|
490 | * @throws Exception if an option is not supported |
---|
491 | */ |
---|
492 | public void setOptions(String[] options) throws Exception { |
---|
493 | setDebug(Utils.getFlag('D', options)); |
---|
494 | |
---|
495 | String nString = Utils.getOption('N', options); |
---|
496 | if (nString.length() != 0) { |
---|
497 | setFilterType(new SelectedTag(Integer.parseInt(nString), TAGS_FILTER)); |
---|
498 | } else { |
---|
499 | setFilterType(new SelectedTag(FILTER_NORMALIZE, TAGS_FILTER)); |
---|
500 | } |
---|
501 | } |
---|
502 | |
---|
503 | /** |
---|
504 | * Returns the tip text for this property |
---|
505 | * |
---|
506 | * @return tip text for this property suitable for |
---|
507 | * displaying in the explorer/experimenter gui |
---|
508 | */ |
---|
509 | public String filterTypeTipText() { |
---|
510 | return "The filter type for transforming the training data."; |
---|
511 | } |
---|
512 | |
---|
513 | /** |
---|
514 | * Sets how the training data will be transformed. Should be one of |
---|
515 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
516 | * |
---|
517 | * @param newType the new filtering mode |
---|
518 | */ |
---|
519 | public void setFilterType(SelectedTag newType) { |
---|
520 | |
---|
521 | if (newType.getTags() == TAGS_FILTER) { |
---|
522 | m_filterType = newType.getSelectedTag().getID(); |
---|
523 | } |
---|
524 | } |
---|
525 | |
---|
526 | /** |
---|
527 | * Gets how the training data will be transformed. Will be one of |
---|
528 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
529 | * |
---|
530 | * @return the filtering mode |
---|
531 | */ |
---|
532 | public SelectedTag getFilterType() { |
---|
533 | |
---|
534 | return new SelectedTag(m_filterType, TAGS_FILTER); |
---|
535 | } |
---|
536 | |
---|
537 | /** |
---|
538 | * Returns the revision string. |
---|
539 | * |
---|
540 | * @return the revision |
---|
541 | */ |
---|
542 | public String getRevision() { |
---|
543 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
544 | } |
---|
545 | |
---|
546 | /** |
---|
547 | * Main method for testing this class. |
---|
548 | * |
---|
549 | * @param argv should contain the command line arguments to the |
---|
550 | * scheme (see Evaluation) |
---|
551 | */ |
---|
552 | public static void main(String[] argv) { |
---|
553 | runClassifier(new MIOptimalBall(), argv); |
---|
554 | } |
---|
555 | } |
---|