[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MILR.java |
---|
| 19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.mi; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.Capabilities; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 31 | import weka.core.Optimization; |
---|
| 32 | import weka.core.Option; |
---|
| 33 | import weka.core.OptionHandler; |
---|
| 34 | import weka.core.RevisionUtils; |
---|
| 35 | import weka.core.SelectedTag; |
---|
| 36 | import weka.core.Tag; |
---|
| 37 | import weka.core.Utils; |
---|
| 38 | import weka.core.Capabilities.Capability; |
---|
| 39 | |
---|
| 40 | import java.util.Enumeration; |
---|
| 41 | import java.util.Vector; |
---|
| 42 | |
---|
| 43 | /** |
---|
| 44 | <!-- globalinfo-start --> |
---|
| 45 | * Uses either standard or collective multi-instance assumption, but within linear regression. For the collective assumption, it offers arithmetic or geometric mean for the posteriors. |
---|
| 46 | * <p/> |
---|
| 47 | <!-- globalinfo-end --> |
---|
| 48 | * |
---|
| 49 | <!-- options-start --> |
---|
| 50 | * Valid options are: <p/> |
---|
| 51 | * |
---|
| 52 | * <pre> -D |
---|
| 53 | * Turn on debugging output.</pre> |
---|
| 54 | * |
---|
| 55 | * <pre> -R <ridge> |
---|
| 56 | * Set the ridge in the log-likelihood.</pre> |
---|
| 57 | * |
---|
| 58 | * <pre> -A [0|1|2] |
---|
| 59 | * Defines the type of algorithm: |
---|
| 60 | * 0. standard MI assumption |
---|
| 61 | * 1. collective MI assumption, arithmetic mean for posteriors |
---|
| 62 | * 2. collective MI assumption, geometric mean for posteriors</pre> |
---|
| 63 | * |
---|
| 64 | <!-- options-end --> |
---|
| 65 | * |
---|
| 66 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 67 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
| 68 | * @version $Revision: 5928 $ |
---|
| 69 | */ |
---|
| 70 | public class MILR |
---|
| 71 | extends AbstractClassifier |
---|
| 72 | implements OptionHandler, MultiInstanceCapabilitiesHandler { |
---|
| 73 | |
---|
| 74 | /** for serialization */ |
---|
| 75 | static final long serialVersionUID = 1996101190172373826L; |
---|
| 76 | |
---|
| 77 | protected double[] m_Par; |
---|
| 78 | |
---|
| 79 | /** The number of the class labels */ |
---|
| 80 | protected int m_NumClasses; |
---|
| 81 | |
---|
| 82 | /** The ridge parameter. */ |
---|
| 83 | protected double m_Ridge = 1e-6; |
---|
| 84 | |
---|
| 85 | /** Class labels for each bag */ |
---|
| 86 | protected int[] m_Classes; |
---|
| 87 | |
---|
| 88 | /** MI data */ |
---|
| 89 | protected double[][][] m_Data; |
---|
| 90 | |
---|
| 91 | /** All attribute names */ |
---|
| 92 | protected Instances m_Attributes; |
---|
| 93 | |
---|
| 94 | protected double[] xMean = null, xSD = null; |
---|
| 95 | |
---|
| 96 | /** the type of processing */ |
---|
| 97 | protected int m_AlgorithmType = ALGORITHMTYPE_DEFAULT; |
---|
| 98 | |
---|
| 99 | /** standard MI assumption */ |
---|
| 100 | public static final int ALGORITHMTYPE_DEFAULT = 0; |
---|
| 101 | /** collective MI assumption, arithmetic mean for posteriors */ |
---|
| 102 | public static final int ALGORITHMTYPE_ARITHMETIC = 1; |
---|
| 103 | /** collective MI assumption, geometric mean for posteriors */ |
---|
| 104 | public static final int ALGORITHMTYPE_GEOMETRIC = 2; |
---|
| 105 | /** the types of algorithms */ |
---|
| 106 | public static final Tag [] TAGS_ALGORITHMTYPE = { |
---|
| 107 | new Tag(ALGORITHMTYPE_DEFAULT, "standard MI assumption"), |
---|
| 108 | new Tag(ALGORITHMTYPE_ARITHMETIC, "collective MI assumption, arithmetic mean for posteriors"), |
---|
| 109 | new Tag(ALGORITHMTYPE_GEOMETRIC, "collective MI assumption, geometric mean for posteriors"), |
---|
| 110 | }; |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Returns the tip text for this property |
---|
| 114 | * |
---|
| 115 | * @return tip text for this property suitable for |
---|
| 116 | * displaying in the explorer/experimenter gui |
---|
| 117 | */ |
---|
| 118 | public String globalInfo() { |
---|
| 119 | return |
---|
| 120 | "Uses either standard or collective multi-instance assumption, but " |
---|
| 121 | + "within linear regression. For the collective assumption, it offers " |
---|
| 122 | + "arithmetic or geometric mean for the posteriors."; |
---|
| 123 | } |
---|
| 124 | |
---|
| 125 | /** |
---|
| 126 | * Returns an enumeration describing the available options |
---|
| 127 | * |
---|
| 128 | * @return an enumeration of all the available options |
---|
| 129 | */ |
---|
| 130 | public Enumeration listOptions() { |
---|
| 131 | Vector result = new Vector(); |
---|
| 132 | |
---|
| 133 | result.addElement(new Option( |
---|
| 134 | "\tTurn on debugging output.", |
---|
| 135 | "D", 0, "-D")); |
---|
| 136 | |
---|
| 137 | result.addElement(new Option( |
---|
| 138 | "\tSet the ridge in the log-likelihood.", |
---|
| 139 | "R", 1, "-R <ridge>")); |
---|
| 140 | |
---|
| 141 | result.addElement(new Option( |
---|
| 142 | "\tDefines the type of algorithm:\n" |
---|
| 143 | + "\t 0. standard MI assumption\n" |
---|
| 144 | + "\t 1. collective MI assumption, arithmetic mean for posteriors\n" |
---|
| 145 | + "\t 2. collective MI assumption, geometric mean for posteriors", |
---|
| 146 | "A", 1, "-A [0|1|2]")); |
---|
| 147 | |
---|
| 148 | return result.elements(); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Parses a given list of options. |
---|
| 153 | * |
---|
| 154 | * @param options the list of options as an array of strings |
---|
| 155 | * @throws Exception if an option is not supported |
---|
| 156 | */ |
---|
| 157 | public void setOptions(String[] options) throws Exception { |
---|
| 158 | String tmpStr; |
---|
| 159 | |
---|
| 160 | setDebug(Utils.getFlag('D', options)); |
---|
| 161 | |
---|
| 162 | tmpStr = Utils.getOption('R', options); |
---|
| 163 | if (tmpStr.length() != 0) |
---|
| 164 | setRidge(Double.parseDouble(tmpStr)); |
---|
| 165 | else |
---|
| 166 | setRidge(1.0e-6); |
---|
| 167 | |
---|
| 168 | tmpStr = Utils.getOption('A', options); |
---|
| 169 | if (tmpStr.length() != 0) { |
---|
| 170 | setAlgorithmType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_ALGORITHMTYPE)); |
---|
| 171 | } else { |
---|
| 172 | setAlgorithmType(new SelectedTag(ALGORITHMTYPE_DEFAULT, TAGS_ALGORITHMTYPE)); |
---|
| 173 | } |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * Gets the current settings of the classifier. |
---|
| 178 | * |
---|
| 179 | * @return an array of strings suitable for passing to setOptions |
---|
| 180 | */ |
---|
| 181 | public String[] getOptions() { |
---|
| 182 | Vector result; |
---|
| 183 | |
---|
| 184 | result = new Vector(); |
---|
| 185 | |
---|
| 186 | if (getDebug()) |
---|
| 187 | result.add("-D"); |
---|
| 188 | |
---|
| 189 | result.add("-R"); |
---|
| 190 | result.add("" + getRidge()); |
---|
| 191 | |
---|
| 192 | result.add("-A"); |
---|
| 193 | result.add("" + m_AlgorithmType); |
---|
| 194 | |
---|
| 195 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | /** |
---|
| 199 | * Returns the tip text for this property |
---|
| 200 | * |
---|
| 201 | * @return tip text for this property suitable for |
---|
| 202 | * displaying in the explorer/experimenter gui |
---|
| 203 | */ |
---|
| 204 | public String ridgeTipText() { |
---|
| 205 | return "The ridge in the log-likelihood."; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | /** |
---|
| 209 | * Sets the ridge in the log-likelihood. |
---|
| 210 | * |
---|
| 211 | * @param ridge the ridge |
---|
| 212 | */ |
---|
| 213 | public void setRidge(double ridge) { |
---|
| 214 | m_Ridge = ridge; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /** |
---|
| 218 | * Gets the ridge in the log-likelihood. |
---|
| 219 | * |
---|
| 220 | * @return the ridge |
---|
| 221 | */ |
---|
| 222 | public double getRidge() { |
---|
| 223 | return m_Ridge; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | /** |
---|
| 227 | * Returns the tip text for this property |
---|
| 228 | * |
---|
| 229 | * @return tip text for this property suitable for |
---|
| 230 | * displaying in the explorer/experimenter gui |
---|
| 231 | */ |
---|
| 232 | public String algorithmTypeTipText() { |
---|
| 233 | return "The mean type for the posteriors."; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | /** |
---|
| 237 | * Gets the type of algorithm. |
---|
| 238 | * |
---|
| 239 | * @return the algorithm type |
---|
| 240 | */ |
---|
| 241 | public SelectedTag getAlgorithmType() { |
---|
| 242 | return new SelectedTag(m_AlgorithmType, TAGS_ALGORITHMTYPE); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | /** |
---|
| 246 | * Sets the algorithm type. |
---|
| 247 | * |
---|
| 248 | * @param newType the new algorithm type |
---|
| 249 | */ |
---|
| 250 | public void setAlgorithmType(SelectedTag newType) { |
---|
| 251 | if (newType.getTags() == TAGS_ALGORITHMTYPE) { |
---|
| 252 | m_AlgorithmType = newType.getSelectedTag().getID(); |
---|
| 253 | } |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | private class OptEng |
---|
| 257 | extends Optimization { |
---|
| 258 | |
---|
| 259 | /** the type to use |
---|
| 260 | * @see MILR#TAGS_ALGORITHMTYPE */ |
---|
| 261 | private int m_Type; |
---|
| 262 | |
---|
| 263 | /** |
---|
| 264 | * initializes the object |
---|
| 265 | * |
---|
| 266 | * @param type the type top use |
---|
| 267 | * @see MILR#TAGS_ALGORITHMTYPE |
---|
| 268 | */ |
---|
| 269 | public OptEng(int type) { |
---|
| 270 | super(); |
---|
| 271 | |
---|
| 272 | m_Type = type; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | /** |
---|
| 276 | * Evaluate objective function |
---|
| 277 | * @param x the current values of variables |
---|
| 278 | * @return the value of the objective function |
---|
| 279 | */ |
---|
| 280 | protected double objectiveFunction(double[] x){ |
---|
| 281 | double nll = 0; // -LogLikelihood |
---|
| 282 | |
---|
| 283 | switch (m_Type) { |
---|
| 284 | case ALGORITHMTYPE_DEFAULT: |
---|
| 285 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 286 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 287 | double bag = 0.0, // NLL of each bag |
---|
| 288 | prod = 0.0; // Log-prob. |
---|
| 289 | |
---|
| 290 | for(int j=0; j<nI; j++){ |
---|
| 291 | double exp=0.0; |
---|
| 292 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 293 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 294 | exp += x[0]; |
---|
| 295 | exp = Math.exp(exp); |
---|
| 296 | |
---|
| 297 | if(m_Classes[i]==1) |
---|
| 298 | prod -= Math.log(1.0+exp); |
---|
| 299 | else |
---|
| 300 | bag += Math.log(1.0+exp); |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | if(m_Classes[i]==1) |
---|
| 304 | bag = -Math.log(1.0-Math.exp(prod)); |
---|
| 305 | |
---|
| 306 | nll += bag; |
---|
| 307 | } |
---|
| 308 | break; |
---|
| 309 | |
---|
| 310 | case ALGORITHMTYPE_ARITHMETIC: |
---|
| 311 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 312 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 313 | double bag = 0; // NLL of each bag |
---|
| 314 | |
---|
| 315 | for(int j=0; j<nI; j++){ |
---|
| 316 | double exp=0.0; |
---|
| 317 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 318 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 319 | exp += x[0]; |
---|
| 320 | exp = Math.exp(exp); |
---|
| 321 | |
---|
| 322 | if(m_Classes[i] == 1) |
---|
| 323 | bag += 1.0-1.0/(1.0+exp); // To avoid exp infinite |
---|
| 324 | else |
---|
| 325 | bag += 1.0/(1.0+exp); |
---|
| 326 | } |
---|
| 327 | bag /= (double)nI; |
---|
| 328 | |
---|
| 329 | nll -= Math.log(bag); |
---|
| 330 | } |
---|
| 331 | break; |
---|
| 332 | |
---|
| 333 | case ALGORITHMTYPE_GEOMETRIC: |
---|
| 334 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 335 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 336 | double bag = 0; // Log-prob. |
---|
| 337 | |
---|
| 338 | for(int j=0; j<nI; j++){ |
---|
| 339 | double exp=0.0; |
---|
| 340 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 341 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 342 | exp += x[0]; |
---|
| 343 | |
---|
| 344 | if(m_Classes[i]==1) |
---|
| 345 | bag -= exp/(double)nI; |
---|
| 346 | else |
---|
| 347 | bag += exp/(double)nI; |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | nll += Math.log(1.0+Math.exp(bag)); |
---|
| 351 | } |
---|
| 352 | break; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | // ridge: note that intercepts NOT included |
---|
| 356 | for(int r=1; r<x.length; r++) |
---|
| 357 | nll += m_Ridge*x[r]*x[r]; |
---|
| 358 | |
---|
| 359 | return nll; |
---|
| 360 | } |
---|
| 361 | |
---|
| 362 | /** |
---|
| 363 | * Evaluate Jacobian vector |
---|
| 364 | * @param x the current values of variables |
---|
| 365 | * @return the gradient vector |
---|
| 366 | */ |
---|
| 367 | protected double[] evaluateGradient(double[] x){ |
---|
| 368 | double[] grad = new double[x.length]; |
---|
| 369 | |
---|
| 370 | switch (m_Type) { |
---|
| 371 | case ALGORITHMTYPE_DEFAULT: |
---|
| 372 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 373 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 374 | |
---|
| 375 | double denom = 0.0; // denominator, in log-scale |
---|
| 376 | double[] bag = new double[grad.length]; //gradient update with ith bag |
---|
| 377 | |
---|
| 378 | for(int j=0; j<nI; j++){ |
---|
| 379 | // Compute exp(b0+b1*Xi1j+...)/[1+exp(b0+b1*Xi1j+...)] |
---|
| 380 | double exp=0.0; |
---|
| 381 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 382 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 383 | exp += x[0]; |
---|
| 384 | exp = Math.exp(exp)/(1.0+Math.exp(exp)); |
---|
| 385 | |
---|
| 386 | if(m_Classes[i]==1) |
---|
| 387 | // Bug fix: it used to be denom += Math.log(1.0+exp); |
---|
| 388 | // Fixed 21 Jan 2005 (Eibe) |
---|
| 389 | denom -= Math.log(1.0-exp); |
---|
| 390 | |
---|
| 391 | // Instance-wise update of dNLL/dBk |
---|
| 392 | for(int p=0; p<x.length; p++){ // pth variable |
---|
| 393 | double m = 1.0; |
---|
| 394 | if(p>0) m=m_Data[i][p-1][j]; |
---|
| 395 | bag[p] += m*exp; |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | denom = Math.exp(denom); |
---|
| 400 | |
---|
| 401 | // Bag-wise update of dNLL/dBk |
---|
| 402 | for(int q=0; q<grad.length; q++){ |
---|
| 403 | if(m_Classes[i]==1) |
---|
| 404 | grad[q] -= bag[q]/(denom-1.0); |
---|
| 405 | else |
---|
| 406 | grad[q] += bag[q]; |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | break; |
---|
| 410 | |
---|
| 411 | case ALGORITHMTYPE_ARITHMETIC: |
---|
| 412 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 413 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 414 | |
---|
| 415 | double denom=0.0; |
---|
| 416 | double[] numrt = new double[x.length]; |
---|
| 417 | |
---|
| 418 | for(int j=0; j<nI; j++){ |
---|
| 419 | // Compute exp(b0+b1*Xi1j+...)/[1+exp(b0+b1*Xi1j+...)] |
---|
| 420 | double exp=0.0; |
---|
| 421 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 422 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 423 | exp += x[0]; |
---|
| 424 | exp = Math.exp(exp); |
---|
| 425 | if(m_Classes[i]==1) |
---|
| 426 | denom += exp/(1.0+exp); |
---|
| 427 | else |
---|
| 428 | denom += 1.0/(1.0+exp); |
---|
| 429 | |
---|
| 430 | // Instance-wise update of dNLL/dBk |
---|
| 431 | for(int p=0; p<x.length; p++){ // pth variable |
---|
| 432 | double m = 1.0; |
---|
| 433 | if(p>0) m=m_Data[i][p-1][j]; |
---|
| 434 | numrt[p] += m*exp/((1.0+exp)*(1.0+exp)); |
---|
| 435 | } |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | // Bag-wise update of dNLL/dBk |
---|
| 439 | for(int q=0; q<grad.length; q++){ |
---|
| 440 | if(m_Classes[i]==1) |
---|
| 441 | grad[q] -= numrt[q]/denom; |
---|
| 442 | else |
---|
| 443 | grad[q] += numrt[q]/denom; |
---|
| 444 | } |
---|
| 445 | } |
---|
| 446 | break; |
---|
| 447 | |
---|
| 448 | case ALGORITHMTYPE_GEOMETRIC: |
---|
| 449 | for(int i=0; i<m_Classes.length; i++){ // ith bag |
---|
| 450 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
| 451 | double bag = 0; |
---|
| 452 | double[] sumX = new double[x.length]; |
---|
| 453 | for(int j=0; j<nI; j++){ |
---|
| 454 | // Compute exp(b0+b1*Xi1j+...)/[1+exp(b0+b1*Xi1j+...)] |
---|
| 455 | double exp=0.0; |
---|
| 456 | for(int k=m_Data[i].length-1; k>=0; k--) |
---|
| 457 | exp += m_Data[i][k][j]*x[k+1]; |
---|
| 458 | exp += x[0]; |
---|
| 459 | |
---|
| 460 | if(m_Classes[i]==1){ |
---|
| 461 | bag -= exp/(double)nI; |
---|
| 462 | for(int q=0; q<grad.length; q++){ |
---|
| 463 | double m = 1.0; |
---|
| 464 | if(q>0) m=m_Data[i][q-1][j]; |
---|
| 465 | sumX[q] -= m/(double)nI; |
---|
| 466 | } |
---|
| 467 | } |
---|
| 468 | else{ |
---|
| 469 | bag += exp/(double)nI; |
---|
| 470 | for(int q=0; q<grad.length; q++){ |
---|
| 471 | double m = 1.0; |
---|
| 472 | if(q>0) m=m_Data[i][q-1][j]; |
---|
| 473 | sumX[q] += m/(double)nI; |
---|
| 474 | } |
---|
| 475 | } |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | for(int p=0; p<x.length; p++) |
---|
| 479 | grad[p] += Math.exp(bag)*sumX[p]/(1.0+Math.exp(bag)); |
---|
| 480 | } |
---|
| 481 | break; |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | // ridge: note that intercepts NOT included |
---|
| 485 | for(int r=1; r<x.length; r++){ |
---|
| 486 | grad[r] += 2.0*m_Ridge*x[r]; |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | return grad; |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | /** |
---|
| 493 | * Returns the revision string. |
---|
| 494 | * |
---|
| 495 | * @return the revision |
---|
| 496 | */ |
---|
| 497 | public String getRevision() { |
---|
| 498 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 499 | } |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | /** |
---|
| 503 | * Returns default capabilities of the classifier. |
---|
| 504 | * |
---|
| 505 | * @return the capabilities of this classifier |
---|
| 506 | */ |
---|
| 507 | public Capabilities getCapabilities() { |
---|
| 508 | Capabilities result = super.getCapabilities(); |
---|
| 509 | result.disableAll(); |
---|
| 510 | |
---|
| 511 | // attributes |
---|
| 512 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 513 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 514 | result.enable(Capability.MISSING_VALUES); |
---|
| 515 | |
---|
| 516 | // class |
---|
| 517 | result.enable(Capability.BINARY_CLASS); |
---|
| 518 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 519 | |
---|
| 520 | // other |
---|
| 521 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
| 522 | |
---|
| 523 | return result; |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Returns the capabilities of this multi-instance classifier for the |
---|
| 528 | * relational data. |
---|
| 529 | * |
---|
| 530 | * @return the capabilities of this object |
---|
| 531 | * @see Capabilities |
---|
| 532 | */ |
---|
| 533 | public Capabilities getMultiInstanceCapabilities() { |
---|
| 534 | Capabilities result = super.getCapabilities(); |
---|
| 535 | result.disableAll(); |
---|
| 536 | |
---|
| 537 | // attributes |
---|
| 538 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 539 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 540 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 541 | result.enable(Capability.MISSING_VALUES); |
---|
| 542 | |
---|
| 543 | // class |
---|
| 544 | result.disableAllClasses(); |
---|
| 545 | result.enable(Capability.NO_CLASS); |
---|
| 546 | |
---|
| 547 | return result; |
---|
| 548 | } |
---|
| 549 | |
---|
| 550 | /** |
---|
| 551 | * Builds the classifier |
---|
| 552 | * |
---|
| 553 | * @param train the training data to be used for generating the |
---|
| 554 | * boosted classifier. |
---|
| 555 | * @throws Exception if the classifier could not be built successfully |
---|
| 556 | */ |
---|
| 557 | public void buildClassifier(Instances train) throws Exception { |
---|
| 558 | // can classifier handle the data? |
---|
| 559 | getCapabilities().testWithFail(train); |
---|
| 560 | |
---|
| 561 | // remove instances with missing class |
---|
| 562 | train = new Instances(train); |
---|
| 563 | train.deleteWithMissingClass(); |
---|
| 564 | |
---|
| 565 | m_NumClasses = train.numClasses(); |
---|
| 566 | |
---|
| 567 | int nR = train.attribute(1).relation().numAttributes(); |
---|
| 568 | int nC = train.numInstances(); |
---|
| 569 | |
---|
| 570 | m_Data = new double [nC][nR][]; // Data values |
---|
| 571 | m_Classes = new int [nC]; // Class values |
---|
| 572 | m_Attributes = train.attribute(1).relation(); |
---|
| 573 | |
---|
| 574 | xMean = new double [nR]; // Mean of mean |
---|
| 575 | xSD = new double [nR]; // Mode of stddev |
---|
| 576 | |
---|
| 577 | double sY1=0, sY0=0, totIns=0; // Number of classes |
---|
| 578 | int[] missingbags = new int[nR]; |
---|
| 579 | |
---|
| 580 | if (m_Debug) { |
---|
| 581 | System.out.println("Extracting data..."); |
---|
| 582 | } |
---|
| 583 | |
---|
| 584 | for(int h=0; h<m_Data.length; h++){ |
---|
| 585 | Instance current = train.instance(h); |
---|
| 586 | m_Classes[h] = (int)current.classValue(); // Class value starts from 0 |
---|
| 587 | Instances currInsts = current.relationalValue(1); |
---|
| 588 | int nI = currInsts.numInstances(); |
---|
| 589 | totIns += (double)nI; |
---|
| 590 | |
---|
| 591 | for (int i = 0; i < nR; i++) { |
---|
| 592 | // initialize m_data[][][] |
---|
| 593 | m_Data[h][i] = new double[nI]; |
---|
| 594 | double avg=0, std=0, num=0; |
---|
| 595 | for (int k=0; k<nI; k++){ |
---|
| 596 | if(!currInsts.instance(k).isMissing(i)){ |
---|
| 597 | m_Data[h][i][k] = currInsts.instance(k).value(i); |
---|
| 598 | avg += m_Data[h][i][k]; |
---|
| 599 | std += m_Data[h][i][k]*m_Data[h][i][k]; |
---|
| 600 | num++; |
---|
| 601 | } |
---|
| 602 | else |
---|
| 603 | m_Data[h][i][k] = Double.NaN; |
---|
| 604 | } |
---|
| 605 | |
---|
| 606 | if(num > 0){ |
---|
| 607 | xMean[i] += avg/num; |
---|
| 608 | xSD[i] += std/num; |
---|
| 609 | } |
---|
| 610 | else |
---|
| 611 | missingbags[i]++; |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | // Class count |
---|
| 615 | if (m_Classes[h] == 1) |
---|
| 616 | sY1++; |
---|
| 617 | else |
---|
| 618 | sY0++; |
---|
| 619 | } |
---|
| 620 | |
---|
| 621 | for (int j = 0; j < nR; j++) { |
---|
| 622 | xMean[j] = xMean[j]/(double)(nC-missingbags[j]); |
---|
| 623 | xSD[j] = Math.sqrt(Math.abs(xSD[j]/((double)(nC-missingbags[j])-1.0) |
---|
| 624 | -xMean[j]*xMean[j]*(double)(nC-missingbags[j])/ |
---|
| 625 | ((double)(nC-missingbags[j])-1.0))); |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | if (m_Debug) { |
---|
| 629 | // Output stats about input data |
---|
| 630 | System.out.println("Descriptives..."); |
---|
| 631 | System.out.println(sY0 + " bags have class 0 and " + |
---|
| 632 | sY1 + " bags have class 1"); |
---|
| 633 | System.out.println("\n Variable Avg SD "); |
---|
| 634 | for (int j = 0; j < nR; j++) |
---|
| 635 | System.out.println(Utils.doubleToString(j,8,4) |
---|
| 636 | + Utils.doubleToString(xMean[j], 10, 4) |
---|
| 637 | + Utils.doubleToString(xSD[j], 10,4)); |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | // Normalise input data and remove ignored attributes |
---|
| 641 | for (int i = 0; i < nC; i++) { |
---|
| 642 | for (int j = 0; j < nR; j++) { |
---|
| 643 | for(int k=0; k < m_Data[i][j].length; k++){ |
---|
| 644 | if(xSD[j] != 0){ |
---|
| 645 | if(!Double.isNaN(m_Data[i][j][k])) |
---|
| 646 | m_Data[i][j][k] = (m_Data[i][j][k] - xMean[j]) / xSD[j]; |
---|
| 647 | else |
---|
| 648 | m_Data[i][j][k] = 0; |
---|
| 649 | } |
---|
| 650 | } |
---|
| 651 | } |
---|
| 652 | } |
---|
| 653 | |
---|
| 654 | if (m_Debug) { |
---|
| 655 | System.out.println("\nIteration History..." ); |
---|
| 656 | } |
---|
| 657 | |
---|
| 658 | double x[] = new double[nR + 1]; |
---|
| 659 | x[0] = Math.log((sY1+1.0) / (sY0+1.0)); |
---|
| 660 | double[][] b = new double[2][x.length]; |
---|
| 661 | b[0][0] = Double.NaN; |
---|
| 662 | b[1][0] = Double.NaN; |
---|
| 663 | for (int q=1; q < x.length;q++){ |
---|
| 664 | x[q] = 0.0; |
---|
| 665 | b[0][q] = Double.NaN; |
---|
| 666 | b[1][q] = Double.NaN; |
---|
| 667 | } |
---|
| 668 | |
---|
| 669 | OptEng opt = new OptEng(m_AlgorithmType); |
---|
| 670 | opt.setDebug(m_Debug); |
---|
| 671 | m_Par = opt.findArgmin(x, b); |
---|
| 672 | while(m_Par==null){ |
---|
| 673 | m_Par = opt.getVarbValues(); |
---|
| 674 | if (m_Debug) |
---|
| 675 | System.out.println("200 iterations finished, not enough!"); |
---|
| 676 | m_Par = opt.findArgmin(m_Par, b); |
---|
| 677 | } |
---|
| 678 | if (m_Debug) |
---|
| 679 | System.out.println(" -------------<Converged>--------------"); |
---|
| 680 | |
---|
| 681 | // feature selection use |
---|
| 682 | if (m_AlgorithmType == ALGORITHMTYPE_ARITHMETIC) { |
---|
| 683 | double[] fs = new double[nR]; |
---|
| 684 | for(int k=1; k<nR+1; k++) |
---|
| 685 | fs[k-1] = Math.abs(m_Par[k]); |
---|
| 686 | int[] idx = Utils.sort(fs); |
---|
| 687 | double max = fs[idx[idx.length-1]]; |
---|
| 688 | for(int k=idx.length-1; k>=0; k--) |
---|
| 689 | System.out.println(m_Attributes.attribute(idx[k]).name()+"\t"+(fs[idx[k]]*100/max)); |
---|
| 690 | } |
---|
| 691 | |
---|
| 692 | // Convert coefficients back to non-normalized attribute units |
---|
| 693 | for(int j = 1; j < nR+1; j++) { |
---|
| 694 | if (xSD[j-1] != 0) { |
---|
| 695 | m_Par[j] /= xSD[j-1]; |
---|
| 696 | m_Par[0] -= m_Par[j] * xMean[j-1]; |
---|
| 697 | } |
---|
| 698 | } |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | /** |
---|
| 702 | * Computes the distribution for a given exemplar |
---|
| 703 | * |
---|
| 704 | * @param exmp the exemplar for which distribution is computed |
---|
| 705 | * @return the distribution |
---|
| 706 | * @throws Exception if the distribution can't be computed successfully |
---|
| 707 | */ |
---|
| 708 | public double[] distributionForInstance(Instance exmp) |
---|
| 709 | throws Exception { |
---|
| 710 | |
---|
| 711 | // Extract the data |
---|
| 712 | Instances ins = exmp.relationalValue(1); |
---|
| 713 | int nI = ins.numInstances(), nA = ins.numAttributes(); |
---|
| 714 | double[][] dat = new double [nI][nA+1]; |
---|
| 715 | for(int j=0; j<nI; j++){ |
---|
| 716 | dat[j][0]=1.0; |
---|
| 717 | int idx=1; |
---|
| 718 | for(int k=0; k<nA; k++){ |
---|
| 719 | if(!ins.instance(j).isMissing(k)) |
---|
| 720 | dat[j][idx] = ins.instance(j).value(k); |
---|
| 721 | else |
---|
| 722 | dat[j][idx] = xMean[idx-1]; |
---|
| 723 | idx++; |
---|
| 724 | } |
---|
| 725 | } |
---|
| 726 | |
---|
| 727 | // Compute the probability of the bag |
---|
| 728 | double [] distribution = new double[2]; |
---|
| 729 | switch (m_AlgorithmType) { |
---|
| 730 | case ALGORITHMTYPE_DEFAULT: |
---|
| 731 | distribution[0]=0.0; // Log-Prob. for class 0 |
---|
| 732 | |
---|
| 733 | for(int i=0; i<nI; i++){ |
---|
| 734 | double exp = 0.0; |
---|
| 735 | for(int r=0; r<m_Par.length; r++) |
---|
| 736 | exp += m_Par[r]*dat[i][r]; |
---|
| 737 | exp = Math.exp(exp); |
---|
| 738 | |
---|
| 739 | // Prob. updated for one instance |
---|
| 740 | distribution[0] -= Math.log(1.0+exp); |
---|
| 741 | } |
---|
| 742 | |
---|
| 743 | // Prob. for class 0 |
---|
| 744 | distribution[0] = Math.exp(distribution[0]); |
---|
| 745 | // Prob. for class 1 |
---|
| 746 | distribution[1] = 1.0 - distribution[0]; |
---|
| 747 | break; |
---|
| 748 | |
---|
| 749 | case ALGORITHMTYPE_ARITHMETIC: |
---|
| 750 | distribution[0]=0.0; // Prob. for class 0 |
---|
| 751 | |
---|
| 752 | for(int i=0; i<nI; i++){ |
---|
| 753 | double exp = 0.0; |
---|
| 754 | for(int r=0; r<m_Par.length; r++) |
---|
| 755 | exp += m_Par[r]*dat[i][r]; |
---|
| 756 | exp = Math.exp(exp); |
---|
| 757 | |
---|
| 758 | // Prob. updated for one instance |
---|
| 759 | distribution[0] += 1.0/(1.0+exp); |
---|
| 760 | } |
---|
| 761 | |
---|
| 762 | // Prob. for class 0 |
---|
| 763 | distribution[0] /= (double)nI; |
---|
| 764 | // Prob. for class 1 |
---|
| 765 | distribution[1] = 1.0 - distribution[0]; |
---|
| 766 | break; |
---|
| 767 | |
---|
| 768 | case ALGORITHMTYPE_GEOMETRIC: |
---|
| 769 | for(int i=0; i<nI; i++){ |
---|
| 770 | double exp = 0.0; |
---|
| 771 | for(int r=0; r<m_Par.length; r++) |
---|
| 772 | exp += m_Par[r]*dat[i][r]; |
---|
| 773 | distribution[1] += exp/(double)nI; |
---|
| 774 | } |
---|
| 775 | |
---|
| 776 | // Prob. for class 1 |
---|
| 777 | distribution[1] = 1.0/(1.0+Math.exp(-distribution[1])); |
---|
| 778 | // Prob. for class 0 |
---|
| 779 | distribution[0] = 1-distribution[1]; |
---|
| 780 | break; |
---|
| 781 | } |
---|
| 782 | |
---|
| 783 | return distribution; |
---|
| 784 | } |
---|
| 785 | |
---|
| 786 | /** |
---|
| 787 | * Gets a string describing the classifier. |
---|
| 788 | * |
---|
| 789 | * @return a string describing the classifer built. |
---|
| 790 | */ |
---|
| 791 | public String toString() { |
---|
| 792 | |
---|
| 793 | String result = "Modified Logistic Regression"; |
---|
| 794 | if (m_Par == null) { |
---|
| 795 | return result + ": No model built yet."; |
---|
| 796 | } |
---|
| 797 | |
---|
| 798 | result += "\nMean type: " + getAlgorithmType().getSelectedTag().getReadable() + "\n"; |
---|
| 799 | result += "\nCoefficients...\n" |
---|
| 800 | + "Variable Coeff.\n"; |
---|
| 801 | for (int j = 1, idx=0; j < m_Par.length; j++, idx++) { |
---|
| 802 | result += m_Attributes.attribute(idx).name(); |
---|
| 803 | result += " "+Utils.doubleToString(m_Par[j], 12, 4); |
---|
| 804 | result += "\n"; |
---|
| 805 | } |
---|
| 806 | |
---|
| 807 | result += "Intercept:"; |
---|
| 808 | result += " "+Utils.doubleToString(m_Par[0], 10, 4); |
---|
| 809 | result += "\n"; |
---|
| 810 | |
---|
| 811 | result += "\nOdds Ratios...\n" |
---|
| 812 | + "Variable O.R.\n"; |
---|
| 813 | for (int j = 1, idx=0; j < m_Par.length; j++, idx++) { |
---|
| 814 | result += " " + m_Attributes.attribute(idx).name(); |
---|
| 815 | double ORc = Math.exp(m_Par[j]); |
---|
| 816 | result += " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); |
---|
| 817 | } |
---|
| 818 | result += "\n"; |
---|
| 819 | return result; |
---|
| 820 | } |
---|
| 821 | |
---|
| 822 | /** |
---|
| 823 | * Returns the revision string. |
---|
| 824 | * |
---|
| 825 | * @return the revision |
---|
| 826 | */ |
---|
| 827 | public String getRevision() { |
---|
| 828 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 829 | } |
---|
| 830 | |
---|
| 831 | /** |
---|
| 832 | * Main method for testing this class. |
---|
| 833 | * |
---|
| 834 | * @param argv should contain the command line arguments to the |
---|
| 835 | * scheme (see Evaluation) |
---|
| 836 | */ |
---|
| 837 | public static void main(String[] argv) { |
---|
| 838 | runClassifier(new MILR(), argv); |
---|
| 839 | } |
---|
| 840 | } |
---|