1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MIEMDD.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.mi; |
---|
24 | |
---|
25 | import weka.classifiers.RandomizableClassifier; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
31 | import weka.core.Optimization; |
---|
32 | import weka.core.Option; |
---|
33 | import weka.core.OptionHandler; |
---|
34 | import weka.core.RevisionUtils; |
---|
35 | import weka.core.SelectedTag; |
---|
36 | import weka.core.Tag; |
---|
37 | import weka.core.TechnicalInformation; |
---|
38 | import weka.core.TechnicalInformationHandler; |
---|
39 | import weka.core.Utils; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.core.TechnicalInformation.Field; |
---|
42 | import weka.core.TechnicalInformation.Type; |
---|
43 | import weka.filters.Filter; |
---|
44 | import weka.filters.unsupervised.attribute.Normalize; |
---|
45 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
46 | import weka.filters.unsupervised.attribute.Standardize; |
---|
47 | |
---|
48 | import java.util.Enumeration; |
---|
49 | import java.util.Random; |
---|
50 | import java.util.Vector; |
---|
51 | |
---|
52 | /** |
---|
53 | <!-- globalinfo-start --> |
---|
54 | * EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.<br/> |
---|
55 | * It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM. In this implementation, we use most-likely cause DD model and only use 3 random selected postive bags as initial starting points of EM.<br/> |
---|
56 | * <br/> |
---|
57 | * For more information see:<br/> |
---|
58 | * <br/> |
---|
59 | * Qi Zhang, Sally A. Goldman: EM-DD: An Improved Multiple-Instance Learning Technique. In: Advances in Neural Information Processing Systems 14, 1073-108, 2001. |
---|
60 | * <p/> |
---|
61 | <!-- globalinfo-end --> |
---|
62 | * |
---|
63 | <!-- technical-bibtex-start --> |
---|
64 | * BibTeX: |
---|
65 | * <pre> |
---|
66 | * @inproceedings{Zhang2001, |
---|
67 | * author = {Qi Zhang and Sally A. Goldman}, |
---|
68 | * booktitle = {Advances in Neural Information Processing Systems 14}, |
---|
69 | * pages = {1073-108}, |
---|
70 | * publisher = {MIT Press}, |
---|
71 | * title = {EM-DD: An Improved Multiple-Instance Learning Technique}, |
---|
72 | * year = {2001} |
---|
73 | * } |
---|
74 | * </pre> |
---|
75 | * <p/> |
---|
76 | <!-- technical-bibtex-end --> |
---|
77 | * |
---|
78 | <!-- options-start --> |
---|
79 | * Valid options are: <p/> |
---|
80 | * |
---|
81 | * <pre> -N <num> |
---|
82 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
83 | * (default 1=standardize)</pre> |
---|
84 | * |
---|
85 | * <pre> -S <num> |
---|
86 | * Random number seed. |
---|
87 | * (default 1)</pre> |
---|
88 | * |
---|
89 | * <pre> -D |
---|
90 | * If set, classifier is run in debug mode and |
---|
91 | * may output additional info to the console</pre> |
---|
92 | * |
---|
93 | <!-- options-end --> |
---|
94 | * |
---|
95 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
96 | * @author Lin Dong (ld21@cs.waikato.ac.nz) |
---|
97 | * @version $Revision: 5481 $ |
---|
98 | */ |
---|
99 | public class MIEMDD |
---|
100 | extends RandomizableClassifier |
---|
101 | implements OptionHandler, MultiInstanceCapabilitiesHandler, |
---|
102 | TechnicalInformationHandler { |
---|
103 | |
---|
104 | /** for serialization */ |
---|
105 | static final long serialVersionUID = 3899547154866223734L; |
---|
106 | |
---|
107 | /** The index of the class attribute */ |
---|
108 | protected int m_ClassIndex; |
---|
109 | |
---|
110 | protected double[] m_Par; |
---|
111 | |
---|
112 | /** The number of the class labels */ |
---|
113 | protected int m_NumClasses; |
---|
114 | |
---|
115 | /** Class labels for each bag */ |
---|
116 | protected int[] m_Classes; |
---|
117 | |
---|
118 | /** MI data */ |
---|
119 | protected double[][][] m_Data; |
---|
120 | |
---|
121 | /** All attribute names */ |
---|
122 | protected Instances m_Attributes; |
---|
123 | |
---|
124 | /** MI data */ |
---|
125 | protected double[][] m_emData; |
---|
126 | |
---|
127 | /** The filter used to standardize/normalize all values. */ |
---|
128 | protected Filter m_Filter = null; |
---|
129 | |
---|
130 | /** Whether to normalize/standardize/neither, default:standardize */ |
---|
131 | protected int m_filterType = FILTER_STANDARDIZE; |
---|
132 | |
---|
133 | /** Normalize training data */ |
---|
134 | public static final int FILTER_NORMALIZE = 0; |
---|
135 | /** Standardize training data */ |
---|
136 | public static final int FILTER_STANDARDIZE = 1; |
---|
137 | /** No normalization/standardization */ |
---|
138 | public static final int FILTER_NONE = 2; |
---|
139 | /** The filter to apply to the training data */ |
---|
140 | public static final Tag[] TAGS_FILTER = { |
---|
141 | new Tag(FILTER_NORMALIZE, "Normalize training data"), |
---|
142 | new Tag(FILTER_STANDARDIZE, "Standardize training data"), |
---|
143 | new Tag(FILTER_NONE, "No normalization/standardization"), |
---|
144 | }; |
---|
145 | |
---|
146 | /** The filter used to get rid of missing values. */ |
---|
147 | protected ReplaceMissingValues m_Missing = new ReplaceMissingValues(); |
---|
148 | |
---|
149 | /** |
---|
150 | * Returns a string describing this filter |
---|
151 | * |
---|
152 | * @return a description of the filter suitable for |
---|
153 | * displaying in the explorer/experimenter gui |
---|
154 | */ |
---|
155 | public String globalInfo() { |
---|
156 | return |
---|
157 | "EMDD model builds heavily upon Dietterich's Diverse Density (DD) " |
---|
158 | + "algorithm.\nIt is a general framework for MI learning of converting " |
---|
159 | + "the MI problem to a single-instance setting using EM. In this " |
---|
160 | + "implementation, we use most-likely cause DD model and only use 3 " |
---|
161 | + "random selected postive bags as initial starting points of EM.\n\n" |
---|
162 | + "For more information see:\n\n" |
---|
163 | + getTechnicalInformation().toString(); |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * Returns an instance of a TechnicalInformation object, containing |
---|
168 | * detailed information about the technical background of this class, |
---|
169 | * e.g., paper reference or book this class is based on. |
---|
170 | * |
---|
171 | * @return the technical information about this class |
---|
172 | */ |
---|
173 | public TechnicalInformation getTechnicalInformation() { |
---|
174 | TechnicalInformation result; |
---|
175 | |
---|
176 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
177 | result.setValue(Field.AUTHOR, "Qi Zhang and Sally A. Goldman"); |
---|
178 | result.setValue(Field.TITLE, "EM-DD: An Improved Multiple-Instance Learning Technique"); |
---|
179 | result.setValue(Field.BOOKTITLE, "Advances in Neural Information Processing Systems 14"); |
---|
180 | result.setValue(Field.YEAR, "2001"); |
---|
181 | result.setValue(Field.PAGES, "1073-108"); |
---|
182 | result.setValue(Field.PUBLISHER, "MIT Press"); |
---|
183 | |
---|
184 | return result; |
---|
185 | } |
---|
186 | |
---|
187 | /** |
---|
188 | * Returns an enumeration describing the available options |
---|
189 | * |
---|
190 | * @return an enumeration of all the available options |
---|
191 | */ |
---|
192 | public Enumeration listOptions() { |
---|
193 | Vector result = new Vector(); |
---|
194 | |
---|
195 | result.addElement(new Option( |
---|
196 | "\tWhether to 0=normalize/1=standardize/2=neither.\n" |
---|
197 | + "\t(default 1=standardize)", |
---|
198 | "N", 1, "-N <num>")); |
---|
199 | |
---|
200 | Enumeration enm = super.listOptions(); |
---|
201 | while (enm.hasMoreElements()) |
---|
202 | result.addElement(enm.nextElement()); |
---|
203 | |
---|
204 | return result.elements(); |
---|
205 | } |
---|
206 | |
---|
207 | /** |
---|
208 | * Parses a given list of options. <p/> |
---|
209 | * |
---|
210 | <!-- options-start --> |
---|
211 | * Valid options are: <p/> |
---|
212 | * |
---|
213 | * <pre> -N <num> |
---|
214 | * Whether to 0=normalize/1=standardize/2=neither. |
---|
215 | * (default 1=standardize)</pre> |
---|
216 | * |
---|
217 | * <pre> -S <num> |
---|
218 | * Random number seed. |
---|
219 | * (default 1)</pre> |
---|
220 | * |
---|
221 | * <pre> -D |
---|
222 | * If set, classifier is run in debug mode and |
---|
223 | * may output additional info to the console</pre> |
---|
224 | * |
---|
225 | <!-- options-end --> |
---|
226 | * |
---|
227 | * @param options the list of options as an array of strings |
---|
228 | * @throws Exception if an option is not supported |
---|
229 | */ |
---|
230 | public void setOptions(String[] options) throws Exception { |
---|
231 | String tmpStr; |
---|
232 | |
---|
233 | tmpStr = Utils.getOption('N', options); |
---|
234 | if (tmpStr.length() != 0) { |
---|
235 | setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER)); |
---|
236 | } else { |
---|
237 | setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER)); |
---|
238 | } |
---|
239 | |
---|
240 | super.setOptions(options); |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | /** |
---|
245 | * Gets the current settings of the classifier. |
---|
246 | * |
---|
247 | * @return an array of strings suitable for passing to setOptions |
---|
248 | */ |
---|
249 | public String[] getOptions() { |
---|
250 | Vector result; |
---|
251 | String[] options; |
---|
252 | int i; |
---|
253 | |
---|
254 | result = new Vector(); |
---|
255 | options = super.getOptions(); |
---|
256 | for (i = 0; i < options.length; i++) |
---|
257 | result.add(options[i]); |
---|
258 | |
---|
259 | result.add("-N"); |
---|
260 | result.add("" + m_filterType); |
---|
261 | |
---|
262 | return (String[]) result.toArray(new String[result.size()]); |
---|
263 | } |
---|
264 | |
---|
265 | /** |
---|
266 | * Returns the tip text for this property |
---|
267 | * |
---|
268 | * @return tip text for this property suitable for |
---|
269 | * displaying in the explorer/experimenter gui |
---|
270 | */ |
---|
271 | public String filterTypeTipText() { |
---|
272 | return "The filter type for transforming the training data."; |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Gets how the training data will be transformed. Will be one of |
---|
277 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
278 | * |
---|
279 | * @return the filtering mode |
---|
280 | */ |
---|
281 | public SelectedTag getFilterType() { |
---|
282 | return new SelectedTag(m_filterType, TAGS_FILTER); |
---|
283 | } |
---|
284 | |
---|
285 | /** |
---|
286 | * Sets how the training data will be transformed. Should be one of |
---|
287 | * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. |
---|
288 | * |
---|
289 | * @param newType the new filtering mode |
---|
290 | */ |
---|
291 | public void setFilterType(SelectedTag newType) { |
---|
292 | |
---|
293 | if (newType.getTags() == TAGS_FILTER) { |
---|
294 | m_filterType = newType.getSelectedTag().getID(); |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | private class OptEng |
---|
299 | extends Optimization { |
---|
300 | /** |
---|
301 | * Evaluate objective function |
---|
302 | * @param x the current values of variables |
---|
303 | * @return the value of the objective function |
---|
304 | */ |
---|
305 | protected double objectiveFunction(double[] x){ |
---|
306 | double nll = 0; // -LogLikelihood |
---|
307 | for (int i=0; i<m_Classes.length; i++){ // ith bag |
---|
308 | double ins=0.0; |
---|
309 | for (int k=0; k<m_emData[i].length; k++) //attribute index |
---|
310 | ins += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2])* |
---|
311 | x[k*2+1]*x[k*2+1]; |
---|
312 | ins = Math.exp(-ins); // Pr. of being positive |
---|
313 | |
---|
314 | if (m_Classes[i]==1){ |
---|
315 | if (ins <= m_Zero) ins = m_Zero; |
---|
316 | nll -= Math.log(ins); //bag level -LogLikelihood |
---|
317 | } |
---|
318 | else{ |
---|
319 | ins = 1.0 - ins; //Pr. of being negative |
---|
320 | if(ins<=m_Zero) ins=m_Zero; |
---|
321 | nll -= Math.log(ins); |
---|
322 | } |
---|
323 | } |
---|
324 | return nll; |
---|
325 | } |
---|
326 | |
---|
327 | /** |
---|
328 | * Evaluate Jacobian vector |
---|
329 | * @param x the current values of variables |
---|
330 | * @return the gradient vector |
---|
331 | */ |
---|
332 | protected double[] evaluateGradient(double[] x){ |
---|
333 | double[] grad = new double[x.length]; |
---|
334 | for (int i=0; i<m_Classes.length; i++){ // ith bag |
---|
335 | double[] numrt = new double[x.length]; |
---|
336 | double exp=0.0; |
---|
337 | for (int k=0; k<m_emData[i].length; k++) //attr index |
---|
338 | exp += (m_emData[i][k]-x[k*2])*(m_emData[i][k]-x[k*2]) |
---|
339 | *x[k*2+1]*x[k*2+1]; |
---|
340 | exp = Math.exp(-exp); //Pr. of being positive |
---|
341 | |
---|
342 | //Instance-wise update |
---|
343 | for (int p=0; p<m_emData[i].length; p++){ // pth variable |
---|
344 | numrt[2*p] = 2.0*(x[2*p]-m_emData[i][p])*x[p*2+1]*x[p*2+1]; |
---|
345 | numrt[2*p+1] = 2.0*(x[2*p]-m_emData[i][p])*(x[2*p]-m_emData[i][p]) |
---|
346 | *x[p*2+1]; |
---|
347 | } |
---|
348 | |
---|
349 | //Bag-wise update |
---|
350 | for (int q=0; q<m_emData[i].length; q++){ |
---|
351 | if (m_Classes[i] == 1) {//derivation of (-LogLikeliHood) for positive bags |
---|
352 | grad[2*q] += numrt[2*q]; |
---|
353 | grad[2*q+1] += numrt[2*q+1]; |
---|
354 | } |
---|
355 | else{ //derivation of (-LogLikeliHood) for negative bags |
---|
356 | grad[2*q] -= numrt[2*q]*exp/(1.0-exp); |
---|
357 | grad[2*q+1] -= numrt[2*q+1]*exp/(1.0-exp); |
---|
358 | } |
---|
359 | } |
---|
360 | } // one bag |
---|
361 | |
---|
362 | return grad; |
---|
363 | } |
---|
364 | |
---|
365 | /** |
---|
366 | * Returns the revision string. |
---|
367 | * |
---|
368 | * @return the revision |
---|
369 | */ |
---|
370 | public String getRevision() { |
---|
371 | return RevisionUtils.extract("$Revision: 5481 $"); |
---|
372 | } |
---|
373 | } |
---|
374 | |
---|
375 | /** |
---|
376 | * Returns default capabilities of the classifier. |
---|
377 | * |
---|
378 | * @return the capabilities of this classifier |
---|
379 | */ |
---|
380 | public Capabilities getCapabilities() { |
---|
381 | Capabilities result = super.getCapabilities(); |
---|
382 | result.disableAll(); |
---|
383 | |
---|
384 | // attributes |
---|
385 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
386 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
387 | result.enable(Capability.MISSING_VALUES); |
---|
388 | |
---|
389 | // class |
---|
390 | result.enable(Capability.BINARY_CLASS); |
---|
391 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
392 | |
---|
393 | // other |
---|
394 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
395 | |
---|
396 | return result; |
---|
397 | } |
---|
398 | |
---|
399 | /** |
---|
400 | * Returns the capabilities of this multi-instance classifier for the |
---|
401 | * relational data. |
---|
402 | * |
---|
403 | * @return the capabilities of this object |
---|
404 | * @see Capabilities |
---|
405 | */ |
---|
406 | public Capabilities getMultiInstanceCapabilities() { |
---|
407 | Capabilities result = super.getCapabilities(); |
---|
408 | result.disableAll(); |
---|
409 | |
---|
410 | // attributes |
---|
411 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
412 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
413 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
414 | result.enable(Capability.MISSING_VALUES); |
---|
415 | |
---|
416 | // class |
---|
417 | result.disableAllClasses(); |
---|
418 | result.enable(Capability.NO_CLASS); |
---|
419 | |
---|
420 | return result; |
---|
421 | } |
---|
422 | |
---|
423 | /** |
---|
424 | * Builds the classifier |
---|
425 | * |
---|
426 | * @param train the training data to be used for generating the |
---|
427 | * boosted classifier. |
---|
428 | * @throws Exception if the classifier could not be built successfully |
---|
429 | */ |
---|
430 | public void buildClassifier(Instances train) throws Exception { |
---|
431 | // can classifier handle the data? |
---|
432 | getCapabilities().testWithFail(train); |
---|
433 | |
---|
434 | // remove instances with missing class |
---|
435 | train = new Instances(train); |
---|
436 | train.deleteWithMissingClass(); |
---|
437 | |
---|
438 | m_ClassIndex = train.classIndex(); |
---|
439 | m_NumClasses = train.numClasses(); |
---|
440 | |
---|
441 | int nR = train.attribute(1).relation().numAttributes(); |
---|
442 | int nC = train.numInstances(); |
---|
443 | int[] bagSize = new int[nC]; |
---|
444 | Instances datasets = new Instances(train.attribute(1).relation(), 0); |
---|
445 | |
---|
446 | m_Data = new double [nC][nR][]; // Data values |
---|
447 | m_Classes = new int [nC]; // Class values |
---|
448 | m_Attributes = datasets.stringFreeStructure(); |
---|
449 | if (m_Debug) { |
---|
450 | System.out.println("\n\nExtracting data..."); |
---|
451 | } |
---|
452 | |
---|
453 | for (int h = 0; h < nC; h++) {//h_th bag |
---|
454 | Instance current = train.instance(h); |
---|
455 | m_Classes[h] = (int)current.classValue(); // Class value starts from 0 |
---|
456 | Instances currInsts = current.relationalValue(1); |
---|
457 | for (int i = 0; i < currInsts.numInstances(); i++){ |
---|
458 | Instance inst = currInsts.instance(i); |
---|
459 | datasets.add(inst); |
---|
460 | } |
---|
461 | |
---|
462 | int nI = currInsts.numInstances(); |
---|
463 | bagSize[h] = nI; |
---|
464 | } |
---|
465 | |
---|
466 | |
---|
467 | /* filter the training data */ |
---|
468 | if (m_filterType == FILTER_STANDARDIZE) |
---|
469 | m_Filter = new Standardize(); |
---|
470 | else if (m_filterType == FILTER_NORMALIZE) |
---|
471 | m_Filter = new Normalize(); |
---|
472 | else |
---|
473 | m_Filter = null; |
---|
474 | |
---|
475 | if (m_Filter != null) { |
---|
476 | m_Filter.setInputFormat(datasets); |
---|
477 | datasets = Filter.useFilter(datasets, m_Filter); |
---|
478 | } |
---|
479 | |
---|
480 | m_Missing.setInputFormat(datasets); |
---|
481 | datasets = Filter.useFilter(datasets, m_Missing); |
---|
482 | |
---|
483 | int instIndex = 0; |
---|
484 | int start = 0; |
---|
485 | for (int h = 0; h < nC; h++) { |
---|
486 | for (int i = 0; i < datasets.numAttributes(); i++) { |
---|
487 | // initialize m_data[][][] |
---|
488 | m_Data[h][i] = new double[bagSize[h]]; |
---|
489 | instIndex=start; |
---|
490 | for (int k = 0; k < bagSize[h]; k++){ |
---|
491 | m_Data[h][i][k] = datasets.instance(instIndex).value(i); |
---|
492 | instIndex++; |
---|
493 | } |
---|
494 | } |
---|
495 | start=instIndex; |
---|
496 | } |
---|
497 | |
---|
498 | if (m_Debug) { |
---|
499 | System.out.println("\n\nIteration History..." ); |
---|
500 | } |
---|
501 | |
---|
502 | m_emData =new double[nC][nR]; |
---|
503 | m_Par= new double[2*nR]; |
---|
504 | |
---|
505 | double[] x = new double[nR*2]; |
---|
506 | double[] tmp = new double[x.length]; |
---|
507 | double[] pre_x = new double[x.length]; |
---|
508 | double[] best_hypothesis = new double[x.length]; |
---|
509 | double[][] b = new double[2][x.length]; |
---|
510 | |
---|
511 | OptEng opt; |
---|
512 | double bestnll = Double.MAX_VALUE; |
---|
513 | double min_error = Double.MAX_VALUE; |
---|
514 | double nll, pre_nll; |
---|
515 | int iterationCount; |
---|
516 | |
---|
517 | |
---|
518 | for (int t = 0; t < x.length; t++) { |
---|
519 | b[0][t] = Double.NaN; |
---|
520 | b[1][t] = Double.NaN; |
---|
521 | } |
---|
522 | |
---|
523 | //random pick 3 positive bags |
---|
524 | Random r = new Random(getSeed()); |
---|
525 | FastVector index = new FastVector(); |
---|
526 | int n1, n2, n3; |
---|
527 | do { |
---|
528 | n1 = r.nextInt(nC-1); |
---|
529 | } while (m_Classes[n1] == 0); |
---|
530 | index.addElement(new Integer(n1)); |
---|
531 | |
---|
532 | do { |
---|
533 | n2 = r.nextInt(nC-1); |
---|
534 | } while (n2 == n1|| m_Classes[n2] == 0); |
---|
535 | index.addElement(new Integer(n2)); |
---|
536 | |
---|
537 | do { |
---|
538 | n3 = r.nextInt(nC-1); |
---|
539 | } while (n3 == n1 || n3 == n2 || m_Classes[n3] == 0); |
---|
540 | index.addElement(new Integer(n3)); |
---|
541 | |
---|
542 | for (int s = 0; s < index.size(); s++){ |
---|
543 | int exIdx = ((Integer)index.elementAt(s)).intValue(); |
---|
544 | if (m_Debug) |
---|
545 | System.out.println("\nH0 at "+exIdx); |
---|
546 | |
---|
547 | |
---|
548 | for (int p = 0; p < m_Data[exIdx][0].length; p++) { |
---|
549 | //initialize a hypothesis |
---|
550 | for (int q = 0; q < nR; q++) { |
---|
551 | x[2 * q] = m_Data[exIdx][q][p]; |
---|
552 | x[2 * q + 1] = 1.0; |
---|
553 | } |
---|
554 | |
---|
555 | pre_nll = Double.MAX_VALUE; |
---|
556 | nll = Double.MAX_VALUE/10.0; |
---|
557 | iterationCount = 0; |
---|
558 | //while (Math.abs(nll-pre_nll)>0.01*pre_nll && iterationCount<10) { //stop condition |
---|
559 | while (nll < pre_nll && iterationCount < 10) { |
---|
560 | iterationCount++; |
---|
561 | pre_nll = nll; |
---|
562 | |
---|
563 | if (m_Debug) |
---|
564 | System.out.println("\niteration: "+iterationCount); |
---|
565 | |
---|
566 | //E-step (find one instance from each bag with max likelihood ) |
---|
567 | for (int i = 0; i < m_Data.length; i++) { //for each bag |
---|
568 | |
---|
569 | int insIndex = findInstance(i, x); |
---|
570 | |
---|
571 | for (int att = 0; att < m_Data[0].length; att++) //for each attribute |
---|
572 | m_emData[i][att] = m_Data[i][att][insIndex]; |
---|
573 | } |
---|
574 | if (m_Debug) |
---|
575 | System.out.println("E-step for new H' finished"); |
---|
576 | |
---|
577 | //M-step |
---|
578 | opt = new OptEng(); |
---|
579 | tmp = opt.findArgmin(x, b); |
---|
580 | while (tmp == null) { |
---|
581 | tmp = opt.getVarbValues(); |
---|
582 | if (m_Debug) |
---|
583 | System.out.println("200 iterations finished, not enough!"); |
---|
584 | tmp = opt.findArgmin(tmp, b); |
---|
585 | } |
---|
586 | nll = opt.getMinFunction(); |
---|
587 | |
---|
588 | pre_x = x; |
---|
589 | x = tmp; // update hypothesis |
---|
590 | |
---|
591 | |
---|
592 | //keep the track of the best target point which has the minimum nll |
---|
593 | /* if (nll < bestnll) { |
---|
594 | bestnll = nll; |
---|
595 | m_Par = tmp; |
---|
596 | if (m_Debug) |
---|
597 | System.out.println("!!!!!!!!!!!!!!!!Smaller NLL found: " + nll); |
---|
598 | }*/ |
---|
599 | |
---|
600 | //if (m_Debug) |
---|
601 | //System.out.println(exIdx+" "+p+": "+nll+" "+pre_nll+" " +bestnll); |
---|
602 | |
---|
603 | } //converged for one instance |
---|
604 | |
---|
605 | //evaluate the hypothesis on the training data and |
---|
606 | //keep the track of the hypothesis with minimum error on training data |
---|
607 | double distribution[] = new double[2]; |
---|
608 | int error = 0; |
---|
609 | if (nll > pre_nll) |
---|
610 | m_Par = pre_x; |
---|
611 | else |
---|
612 | m_Par = x; |
---|
613 | |
---|
614 | for (int i = 0; i<train.numInstances(); i++) { |
---|
615 | distribution = distributionForInstance (train.instance(i)); |
---|
616 | if (distribution[1] >= 0.5 && m_Classes[i] == 0) |
---|
617 | error++; |
---|
618 | else if (distribution[1]<0.5 && m_Classes[i] == 1) |
---|
619 | error++; |
---|
620 | } |
---|
621 | if (error < min_error) { |
---|
622 | best_hypothesis = m_Par; |
---|
623 | min_error = error; |
---|
624 | if (nll > pre_nll) |
---|
625 | bestnll = pre_nll; |
---|
626 | else |
---|
627 | bestnll = nll; |
---|
628 | if (m_Debug) |
---|
629 | System.out.println("error= "+ error +" nll= " + bestnll); |
---|
630 | } |
---|
631 | } |
---|
632 | if (m_Debug) { |
---|
633 | System.out.println(exIdx+ ": -------------<Converged>--------------"); |
---|
634 | System.out.println("current minimum error= "+min_error+" nll= "+bestnll); |
---|
635 | } |
---|
636 | } |
---|
637 | m_Par = best_hypothesis; |
---|
638 | } |
---|
639 | |
---|
640 | |
---|
641 | /** |
---|
642 | * given x, find the instance in ith bag with the most likelihood |
---|
643 | * probability, which is most likely to responsible for the label of the |
---|
644 | * bag For a positive bag, find the instance with the maximal probability |
---|
645 | * of being positive For a negative bag, find the instance with the minimal |
---|
646 | * probability of being negative |
---|
647 | * |
---|
648 | * @param i the bag index |
---|
649 | * @param x the current values of variables |
---|
650 | * @return index of the instance in the bag |
---|
651 | */ |
---|
652 | protected int findInstance(int i, double[] x){ |
---|
653 | |
---|
654 | double min=Double.MAX_VALUE; |
---|
655 | int insIndex=0; |
---|
656 | int nI = m_Data[i][0].length; // numInstances in ith bag |
---|
657 | |
---|
658 | for (int j=0; j<nI; j++){ |
---|
659 | double ins=0.0; |
---|
660 | for (int k=0; k<m_Data[i].length; k++) // for each attribute |
---|
661 | ins += (m_Data[i][k][j]-x[k*2])*(m_Data[i][k][j]-x[k*2])* |
---|
662 | x[k*2+1]*x[k*2+1]; |
---|
663 | |
---|
664 | //the probability can be calculated as Math.exp(-ins) |
---|
665 | //to find the maximum Math.exp(-ins) is equivalent to find the minimum of (ins) |
---|
666 | if (ins<min) { |
---|
667 | min=ins; |
---|
668 | insIndex=j; |
---|
669 | } |
---|
670 | } |
---|
671 | return insIndex; |
---|
672 | } |
---|
673 | |
---|
674 | |
---|
675 | /** |
---|
676 | * Computes the distribution for a given exemplar |
---|
677 | * |
---|
678 | * @param exmp the exemplar for which distribution is computed |
---|
679 | * @return the distribution |
---|
680 | * @throws Exception if the distribution can't be computed successfully |
---|
681 | */ |
---|
682 | public double[] distributionForInstance(Instance exmp) |
---|
683 | throws Exception { |
---|
684 | |
---|
685 | // Extract the data |
---|
686 | Instances ins = exmp.relationalValue(1); |
---|
687 | if (m_Filter != null) |
---|
688 | ins = Filter.useFilter(ins, m_Filter); |
---|
689 | |
---|
690 | ins = Filter.useFilter(ins, m_Missing); |
---|
691 | |
---|
692 | int nI = ins.numInstances(), nA = ins.numAttributes(); |
---|
693 | double[][] dat = new double [nI][nA]; |
---|
694 | for (int j = 0; j < nI; j++){ |
---|
695 | for (int k=0; k<nA; k++){ |
---|
696 | dat[j][k] = ins.instance(j).value(k); |
---|
697 | } |
---|
698 | } |
---|
699 | //find the concept instance in the exemplar |
---|
700 | double min = Double.MAX_VALUE; |
---|
701 | double maxProb = -1.0; |
---|
702 | for (int j = 0; j < nI; j++){ |
---|
703 | double exp = 0.0; |
---|
704 | for (int k = 0; k<nA; k++) // for each attribute |
---|
705 | exp += (dat[j][k]-m_Par[k*2])*(dat[j][k]-m_Par[k*2])*m_Par[k*2+1]*m_Par[k*2+1]; |
---|
706 | //the probability can be calculated as Math.exp(-exp) |
---|
707 | //to find the maximum Math.exp(-exp) is equivalent to find the minimum of (exp) |
---|
708 | if (exp < min) { |
---|
709 | min = exp; |
---|
710 | maxProb = Math.exp(-exp); //maximum probability of being positive |
---|
711 | } |
---|
712 | } |
---|
713 | |
---|
714 | // Compute the probability of the bag |
---|
715 | double[] distribution = new double[2]; |
---|
716 | distribution[1] = maxProb; |
---|
717 | distribution[0] = 1.0 - distribution[1]; //mininum prob. of being negative |
---|
718 | |
---|
719 | return distribution; |
---|
720 | } |
---|
721 | |
---|
722 | |
---|
723 | /** |
---|
724 | * Gets a string describing the classifier. |
---|
725 | * |
---|
726 | * @return a string describing the classifer built. |
---|
727 | */ |
---|
728 | public String toString() { |
---|
729 | |
---|
730 | String result = "MIEMDD"; |
---|
731 | if (m_Par == null) { |
---|
732 | return result + ": No model built yet."; |
---|
733 | } |
---|
734 | |
---|
735 | result += "\nCoefficients...\n" |
---|
736 | + "Variable Point Scale\n"; |
---|
737 | for (int j = 0, idx=0; j < m_Par.length/2; j++, idx++) { |
---|
738 | result += m_Attributes.attribute(idx).name(); |
---|
739 | result += " "+Utils.doubleToString(m_Par[j*2], 12, 4); |
---|
740 | result += " "+Utils.doubleToString(m_Par[j*2+1], 12, 4)+"\n"; |
---|
741 | } |
---|
742 | |
---|
743 | return result; |
---|
744 | } |
---|
745 | |
---|
746 | /** |
---|
747 | * Returns the revision string. |
---|
748 | * |
---|
749 | * @return the revision |
---|
750 | */ |
---|
751 | public String getRevision() { |
---|
752 | return RevisionUtils.extract("$Revision: 5481 $"); |
---|
753 | } |
---|
754 | |
---|
755 | /** |
---|
756 | * Main method for testing this class. |
---|
757 | * |
---|
758 | * @param argv should contain the command line arguments to the |
---|
759 | * scheme (see Evaluation) |
---|
760 | */ |
---|
761 | public static void main(String[] argv) { |
---|
762 | runClassifier(new MIEMDD(), argv); |
---|
763 | } |
---|
764 | } |
---|