1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * MIBoost.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.mi; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.SingleClassifierEnhancer; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
32 | import weka.core.Optimization; |
---|
33 | import weka.core.Option; |
---|
34 | import weka.core.OptionHandler; |
---|
35 | import weka.core.RevisionUtils; |
---|
36 | import weka.core.TechnicalInformation; |
---|
37 | import weka.core.TechnicalInformationHandler; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.core.WeightedInstancesHandler; |
---|
40 | import weka.core.Capabilities.Capability; |
---|
41 | import weka.core.TechnicalInformation.Field; |
---|
42 | import weka.core.TechnicalInformation.Type; |
---|
43 | import weka.filters.Filter; |
---|
44 | import weka.filters.unsupervised.attribute.Discretize; |
---|
45 | import weka.filters.unsupervised.attribute.MultiInstanceToPropositional; |
---|
46 | |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Vector; |
---|
49 | |
---|
50 | /** |
---|
51 | <!-- globalinfo-start --> |
---|
52 | * MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.<br/> |
---|
53 | * <br/> |
---|
54 | * For more information about Adaboost, see:<br/> |
---|
55 | * <br/> |
---|
56 | * Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. |
---|
57 | * <p/> |
---|
58 | <!-- globalinfo-end --> |
---|
59 | * |
---|
60 | <!-- technical-bibtex-start --> |
---|
61 | * BibTeX: |
---|
62 | * <pre> |
---|
63 | * @inproceedings{Freund1996, |
---|
64 | * address = {San Francisco}, |
---|
65 | * author = {Yoav Freund and Robert E. Schapire}, |
---|
66 | * booktitle = {Thirteenth International Conference on Machine Learning}, |
---|
67 | * pages = {148-156}, |
---|
68 | * publisher = {Morgan Kaufmann}, |
---|
69 | * title = {Experiments with a new boosting algorithm}, |
---|
70 | * year = {1996} |
---|
71 | * } |
---|
72 | * </pre> |
---|
73 | * <p/> |
---|
74 | <!-- technical-bibtex-end --> |
---|
75 | * |
---|
76 | <!-- options-start --> |
---|
77 | * Valid options are: <p/> |
---|
78 | * |
---|
79 | * <pre> -D |
---|
80 | * Turn on debugging output.</pre> |
---|
81 | * |
---|
82 | * <pre> -B <num> |
---|
83 | * The number of bins in discretization |
---|
84 | * (default 0, no discretization)</pre> |
---|
85 | * |
---|
86 | * <pre> -R <num> |
---|
87 | * Maximum number of boost iterations. |
---|
88 | * (default 10)</pre> |
---|
89 | * |
---|
90 | * <pre> -W <class name> |
---|
91 | * Full name of classifier to boost. |
---|
92 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
93 | * |
---|
94 | * <pre> -D |
---|
95 | * If set, classifier is run in debug mode and |
---|
96 | * may output additional info to the console</pre> |
---|
97 | * |
---|
98 | <!-- options-end --> |
---|
99 | * |
---|
100 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
101 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
102 | * @version $Revision: 5928 $ |
---|
103 | */ |
---|
104 | public class MIBoost |
---|
105 | extends SingleClassifierEnhancer |
---|
106 | implements OptionHandler, MultiInstanceCapabilitiesHandler, |
---|
107 | TechnicalInformationHandler { |
---|
108 | |
---|
109 | /** for serialization */ |
---|
110 | static final long serialVersionUID = -3808427225599279539L; |
---|
111 | |
---|
112 | /** the models for the iterations */ |
---|
113 | protected Classifier[] m_Models; |
---|
114 | |
---|
115 | /** The number of the class labels */ |
---|
116 | protected int m_NumClasses; |
---|
117 | |
---|
118 | /** Class labels for each bag */ |
---|
119 | protected int[] m_Classes; |
---|
120 | |
---|
121 | /** attributes name for the new dataset used to build the model */ |
---|
122 | protected Instances m_Attributes; |
---|
123 | |
---|
124 | /** Number of iterations */ |
---|
125 | private int m_NumIterations = 100; |
---|
126 | |
---|
127 | /** Voting weights of models */ |
---|
128 | protected double[] m_Beta; |
---|
129 | |
---|
130 | /** the maximum number of boost iterations */ |
---|
131 | protected int m_MaxIterations = 10; |
---|
132 | |
---|
133 | /** the number of discretization bins */ |
---|
134 | protected int m_DiscretizeBin = 0; |
---|
135 | |
---|
136 | /** filter used for discretization */ |
---|
137 | protected Discretize m_Filter = null; |
---|
138 | |
---|
139 | /** filter used to convert the MI dataset into single-instance dataset */ |
---|
140 | protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); |
---|
141 | |
---|
142 | /** |
---|
143 | * Returns a string describing this filter |
---|
144 | * |
---|
145 | * @return a description of the filter suitable for |
---|
146 | * displaying in the explorer/experimenter gui |
---|
147 | */ |
---|
148 | public String globalInfo() { |
---|
149 | return |
---|
150 | "MI AdaBoost method, considers the geometric mean of posterior " |
---|
151 | + "of instances inside a bag (arithmatic mean of log-posterior) and " |
---|
152 | + "the expectation for a bag is taken inside the loss function.\n\n" |
---|
153 | + "For more information about Adaboost, see:\n\n" |
---|
154 | + getTechnicalInformation().toString(); |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | * Returns an instance of a TechnicalInformation object, containing |
---|
159 | * detailed information about the technical background of this class, |
---|
160 | * e.g., paper reference or book this class is based on. |
---|
161 | * |
---|
162 | * @return the technical information about this class |
---|
163 | */ |
---|
164 | public TechnicalInformation getTechnicalInformation() { |
---|
165 | TechnicalInformation result; |
---|
166 | |
---|
167 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
168 | result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); |
---|
169 | result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); |
---|
170 | result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); |
---|
171 | result.setValue(Field.YEAR, "1996"); |
---|
172 | result.setValue(Field.PAGES, "148-156"); |
---|
173 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); |
---|
174 | result.setValue(Field.ADDRESS, "San Francisco"); |
---|
175 | |
---|
176 | return result; |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * Returns an enumeration describing the available options |
---|
181 | * |
---|
182 | * @return an enumeration of all the available options |
---|
183 | */ |
---|
184 | public Enumeration listOptions() { |
---|
185 | Vector result = new Vector(); |
---|
186 | |
---|
187 | result.addElement(new Option( |
---|
188 | "\tTurn on debugging output.", |
---|
189 | "D", 0, "-D")); |
---|
190 | |
---|
191 | result.addElement(new Option( |
---|
192 | "\tThe number of bins in discretization\n" |
---|
193 | + "\t(default 0, no discretization)", |
---|
194 | "B", 1, "-B <num>")); |
---|
195 | |
---|
196 | result.addElement(new Option( |
---|
197 | "\tMaximum number of boost iterations.\n" |
---|
198 | + "\t(default 10)", |
---|
199 | "R", 1, "-R <num>")); |
---|
200 | |
---|
201 | result.addElement(new Option( |
---|
202 | "\tFull name of classifier to boost.\n" |
---|
203 | + "\teg: weka.classifiers.bayes.NaiveBayes", |
---|
204 | "W", 1, "-W <class name>")); |
---|
205 | |
---|
206 | Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); |
---|
207 | while (enu.hasMoreElements()) { |
---|
208 | result.addElement(enu.nextElement()); |
---|
209 | } |
---|
210 | |
---|
211 | return result.elements(); |
---|
212 | } |
---|
213 | |
---|
214 | /** |
---|
215 | * Parses a given list of options. <p/> |
---|
216 | * |
---|
217 | <!-- options-start --> |
---|
218 | * Valid options are: <p/> |
---|
219 | * |
---|
220 | * <pre> -D |
---|
221 | * Turn on debugging output.</pre> |
---|
222 | * |
---|
223 | * <pre> -B <num> |
---|
224 | * The number of bins in discretization |
---|
225 | * (default 0, no discretization)</pre> |
---|
226 | * |
---|
227 | * <pre> -R <num> |
---|
228 | * Maximum number of boost iterations. |
---|
229 | * (default 10)</pre> |
---|
230 | * |
---|
231 | * <pre> -W <class name> |
---|
232 | * Full name of classifier to boost. |
---|
233 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
234 | * |
---|
235 | * <pre> -D |
---|
236 | * If set, classifier is run in debug mode and |
---|
237 | * may output additional info to the console</pre> |
---|
238 | * |
---|
239 | <!-- options-end --> |
---|
240 | * |
---|
241 | * @param options the list of options as an array of strings |
---|
242 | * @throws Exception if an option is not supported |
---|
243 | */ |
---|
244 | public void setOptions(String[] options) throws Exception { |
---|
245 | setDebug(Utils.getFlag('D', options)); |
---|
246 | |
---|
247 | String bin = Utils.getOption('B', options); |
---|
248 | if (bin.length() != 0) { |
---|
249 | setDiscretizeBin(Integer.parseInt(bin)); |
---|
250 | } else { |
---|
251 | setDiscretizeBin(0); |
---|
252 | } |
---|
253 | |
---|
254 | String boostIterations = Utils.getOption('R', options); |
---|
255 | if (boostIterations.length() != 0) { |
---|
256 | setMaxIterations(Integer.parseInt(boostIterations)); |
---|
257 | } else { |
---|
258 | setMaxIterations(10); |
---|
259 | } |
---|
260 | |
---|
261 | super.setOptions(options); |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Gets the current settings of the classifier. |
---|
266 | * |
---|
267 | * @return an array of strings suitable for passing to setOptions |
---|
268 | */ |
---|
269 | public String[] getOptions() { |
---|
270 | Vector result; |
---|
271 | String[] options; |
---|
272 | int i; |
---|
273 | |
---|
274 | result = new Vector(); |
---|
275 | |
---|
276 | result.add("-R"); |
---|
277 | result.add("" + getMaxIterations()); |
---|
278 | |
---|
279 | result.add("-B"); |
---|
280 | result.add("" + getDiscretizeBin()); |
---|
281 | |
---|
282 | options = super.getOptions(); |
---|
283 | for (i = 0; i < options.length; i++) |
---|
284 | result.add(options[i]); |
---|
285 | |
---|
286 | return (String[]) result.toArray(new String[result.size()]); |
---|
287 | } |
---|
288 | |
---|
289 | /** |
---|
290 | * Returns the tip text for this property |
---|
291 | * |
---|
292 | * @return tip text for this property suitable for |
---|
293 | * displaying in the explorer/experimenter gui |
---|
294 | */ |
---|
295 | public String maxIterationsTipText() { |
---|
296 | return "The maximum number of boost iterations."; |
---|
297 | } |
---|
298 | |
---|
299 | /** |
---|
300 | * Set the maximum number of boost iterations |
---|
301 | * |
---|
302 | * @param maxIterations the maximum number of boost iterations |
---|
303 | */ |
---|
304 | public void setMaxIterations(int maxIterations) { |
---|
305 | m_MaxIterations = maxIterations; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Get the maximum number of boost iterations |
---|
310 | * |
---|
311 | * @return the maximum number of boost iterations |
---|
312 | */ |
---|
313 | public int getMaxIterations() { |
---|
314 | |
---|
315 | return m_MaxIterations; |
---|
316 | } |
---|
317 | |
---|
318 | /** |
---|
319 | * Returns the tip text for this property |
---|
320 | * |
---|
321 | * @return tip text for this property suitable for |
---|
322 | * displaying in the explorer/experimenter gui |
---|
323 | */ |
---|
324 | public String discretizeBinTipText() { |
---|
325 | return "The number of bins in discretization."; |
---|
326 | } |
---|
327 | |
---|
328 | /** |
---|
329 | * Set the number of bins in discretization |
---|
330 | * |
---|
331 | * @param bin the number of bins in discretization |
---|
332 | */ |
---|
333 | public void setDiscretizeBin(int bin) { |
---|
334 | m_DiscretizeBin = bin; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * Get the number of bins in discretization |
---|
339 | * |
---|
340 | * @return the number of bins in discretization |
---|
341 | */ |
---|
342 | public int getDiscretizeBin() { |
---|
343 | return m_DiscretizeBin; |
---|
344 | } |
---|
345 | |
---|
346 | private class OptEng |
---|
347 | extends Optimization { |
---|
348 | |
---|
349 | private double[] weights, errs; |
---|
350 | |
---|
351 | public void setWeights(double[] w){ |
---|
352 | weights = w; |
---|
353 | } |
---|
354 | |
---|
355 | public void setErrs(double[] e){ |
---|
356 | errs = e; |
---|
357 | } |
---|
358 | |
---|
359 | /** |
---|
360 | * Evaluate objective function |
---|
361 | * @param x the current values of variables |
---|
362 | * @return the value of the objective function |
---|
363 | * @throws Exception if result is NaN |
---|
364 | */ |
---|
365 | protected double objectiveFunction(double[] x) throws Exception{ |
---|
366 | double obj=0; |
---|
367 | for(int i=0; i<weights.length; i++){ |
---|
368 | obj += weights[i]*Math.exp(x[0]*(2.0*errs[i]-1.0)); |
---|
369 | if(Double.isNaN(obj)) |
---|
370 | throw new Exception("Objective function value is NaN!"); |
---|
371 | |
---|
372 | } |
---|
373 | return obj; |
---|
374 | } |
---|
375 | |
---|
376 | /** |
---|
377 | * Evaluate Jacobian vector |
---|
378 | * @param x the current values of variables |
---|
379 | * @return the gradient vector |
---|
380 | * @throws Exception if gradient is NaN |
---|
381 | */ |
---|
382 | protected double[] evaluateGradient(double[] x) throws Exception{ |
---|
383 | double[] grad = new double[1]; |
---|
384 | for(int i=0; i<weights.length; i++){ |
---|
385 | grad[0] += weights[i]*(2.0*errs[i]-1.0)*Math.exp(x[0]*(2.0*errs[i]-1.0)); |
---|
386 | if(Double.isNaN(grad[0])) |
---|
387 | throw new Exception("Gradient is NaN!"); |
---|
388 | |
---|
389 | } |
---|
390 | return grad; |
---|
391 | } |
---|
392 | |
---|
393 | /** |
---|
394 | * Returns the revision string. |
---|
395 | * |
---|
396 | * @return the revision |
---|
397 | */ |
---|
398 | public String getRevision() { |
---|
399 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | /** |
---|
404 | * Returns default capabilities of the classifier. |
---|
405 | * |
---|
406 | * @return the capabilities of this classifier |
---|
407 | */ |
---|
408 | public Capabilities getCapabilities() { |
---|
409 | Capabilities result = super.getCapabilities(); |
---|
410 | |
---|
411 | // attributes |
---|
412 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
413 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
414 | result.enable(Capability.MISSING_VALUES); |
---|
415 | |
---|
416 | // class |
---|
417 | result.disableAllClasses(); |
---|
418 | result.disableAllClassDependencies(); |
---|
419 | if (super.getCapabilities().handles(Capability.BINARY_CLASS)) |
---|
420 | result.enable(Capability.BINARY_CLASS); |
---|
421 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
422 | |
---|
423 | // other |
---|
424 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
425 | |
---|
426 | return result; |
---|
427 | } |
---|
428 | |
---|
429 | /** |
---|
430 | * Returns the capabilities of this multi-instance classifier for the |
---|
431 | * relational data. |
---|
432 | * |
---|
433 | * @return the capabilities of this object |
---|
434 | * @see Capabilities |
---|
435 | */ |
---|
436 | public Capabilities getMultiInstanceCapabilities() { |
---|
437 | Capabilities result = super.getCapabilities(); |
---|
438 | |
---|
439 | // class |
---|
440 | result.disableAllClasses(); |
---|
441 | result.enable(Capability.NO_CLASS); |
---|
442 | |
---|
443 | return result; |
---|
444 | } |
---|
445 | |
---|
446 | /** |
---|
447 | * Builds the classifier |
---|
448 | * |
---|
449 | * @param exps the training data to be used for generating the |
---|
450 | * boosted classifier. |
---|
451 | * @throws Exception if the classifier could not be built successfully |
---|
452 | */ |
---|
453 | public void buildClassifier(Instances exps) throws Exception { |
---|
454 | |
---|
455 | // can classifier handle the data? |
---|
456 | getCapabilities().testWithFail(exps); |
---|
457 | |
---|
458 | // remove instances with missing class |
---|
459 | Instances train = new Instances(exps); |
---|
460 | train.deleteWithMissingClass(); |
---|
461 | |
---|
462 | m_NumClasses = train.numClasses(); |
---|
463 | m_NumIterations = m_MaxIterations; |
---|
464 | |
---|
465 | if (m_Classifier == null) |
---|
466 | throw new Exception("A base classifier has not been specified!"); |
---|
467 | if(!(m_Classifier instanceof WeightedInstancesHandler)) |
---|
468 | throw new Exception("Base classifier cannot handle weighted instances!"); |
---|
469 | |
---|
470 | m_Models = AbstractClassifier.makeCopies(m_Classifier, getMaxIterations()); |
---|
471 | if(m_Debug) |
---|
472 | System.err.println("Base classifier: "+m_Classifier.getClass().getName()); |
---|
473 | |
---|
474 | m_Beta = new double[m_NumIterations]; |
---|
475 | |
---|
476 | /* modified by Lin Dong. (use MIToSingleInstance filter to convert the MI datasets) */ |
---|
477 | |
---|
478 | //Initialize the bags' weights |
---|
479 | double N = (double)train.numInstances(), sumNi=0; |
---|
480 | for(int i=0; i<N; i++) |
---|
481 | sumNi += train.instance(i).relationalValue(1).numInstances(); |
---|
482 | for(int i=0; i<N; i++){ |
---|
483 | train.instance(i).setWeight(sumNi/N); |
---|
484 | } |
---|
485 | |
---|
486 | //convert the training dataset into single-instance dataset |
---|
487 | m_ConvertToSI.setInputFormat(train); |
---|
488 | Instances data = Filter.useFilter( train, m_ConvertToSI); |
---|
489 | data.deleteAttributeAt(0); //remove the bagIndex attribute; |
---|
490 | |
---|
491 | |
---|
492 | // Assume the order of the instances are preserved in the Discretize filter |
---|
493 | if(m_DiscretizeBin > 0){ |
---|
494 | m_Filter = new Discretize(); |
---|
495 | m_Filter.setInputFormat(new Instances(data, 0)); |
---|
496 | m_Filter.setBins(m_DiscretizeBin); |
---|
497 | data = Filter.useFilter(data, m_Filter); |
---|
498 | } |
---|
499 | |
---|
500 | // Main algorithm |
---|
501 | int dataIdx; |
---|
502 | iterations: |
---|
503 | for(int m=0; m < m_MaxIterations; m++){ |
---|
504 | if(m_Debug) |
---|
505 | System.err.println("\nIteration "+m); |
---|
506 | |
---|
507 | |
---|
508 | // Build a model |
---|
509 | m_Models[m].buildClassifier(data); |
---|
510 | |
---|
511 | // Prediction of each bag |
---|
512 | double[] err=new double[(int)N], weights=new double[(int)N]; |
---|
513 | boolean perfect = true, tooWrong=true; |
---|
514 | dataIdx = 0; |
---|
515 | for(int n=0; n<N; n++){ |
---|
516 | Instance exn = train.instance(n); |
---|
517 | // Prediction of each instance and the predicted class distribution |
---|
518 | // of the bag |
---|
519 | double nn = (double)exn.relationalValue(1).numInstances(); |
---|
520 | for(int p=0; p<nn; p++){ |
---|
521 | Instance testIns = data.instance(dataIdx++); |
---|
522 | if((int)m_Models[m].classifyInstance(testIns) |
---|
523 | != (int)exn.classValue()) // Weighted instance-wise 0-1 errors |
---|
524 | err[n] ++; |
---|
525 | } |
---|
526 | weights[n] = exn.weight(); |
---|
527 | err[n] /= nn; |
---|
528 | if(err[n] > 0.5) |
---|
529 | perfect = false; |
---|
530 | if(err[n] < 0.5) |
---|
531 | tooWrong = false; |
---|
532 | } |
---|
533 | |
---|
534 | if(perfect || tooWrong){ // No or 100% classification error, cannot find beta |
---|
535 | if (m == 0) |
---|
536 | m_Beta[m] = 1.0; |
---|
537 | else |
---|
538 | m_Beta[m] = 0; |
---|
539 | m_NumIterations = m+1; |
---|
540 | if(m_Debug) System.err.println("No errors"); |
---|
541 | break iterations; |
---|
542 | } |
---|
543 | |
---|
544 | double[] x = new double[1]; |
---|
545 | x[0] = 0; |
---|
546 | double[][] b = new double[2][x.length]; |
---|
547 | b[0][0] = Double.NaN; |
---|
548 | b[1][0] = Double.NaN; |
---|
549 | |
---|
550 | OptEng opt = new OptEng(); |
---|
551 | opt.setWeights(weights); |
---|
552 | opt.setErrs(err); |
---|
553 | //opt.setDebug(m_Debug); |
---|
554 | if (m_Debug) |
---|
555 | System.out.println("Start searching for c... "); |
---|
556 | x = opt.findArgmin(x, b); |
---|
557 | while(x==null){ |
---|
558 | x = opt.getVarbValues(); |
---|
559 | if (m_Debug) |
---|
560 | System.out.println("200 iterations finished, not enough!"); |
---|
561 | x = opt.findArgmin(x, b); |
---|
562 | } |
---|
563 | if (m_Debug) |
---|
564 | System.out.println("Finished."); |
---|
565 | m_Beta[m] = x[0]; |
---|
566 | |
---|
567 | if(m_Debug) |
---|
568 | System.err.println("c = "+m_Beta[m]); |
---|
569 | |
---|
570 | // Stop if error too small or error too big and ignore this model |
---|
571 | if (Double.isInfinite(m_Beta[m]) |
---|
572 | || Utils.smOrEq(m_Beta[m], 0) |
---|
573 | ) { |
---|
574 | if (m == 0) |
---|
575 | m_Beta[m] = 1.0; |
---|
576 | else |
---|
577 | m_Beta[m] = 0; |
---|
578 | m_NumIterations = m+1; |
---|
579 | if(m_Debug) |
---|
580 | System.err.println("Errors out of range!"); |
---|
581 | break iterations; |
---|
582 | } |
---|
583 | |
---|
584 | // Update weights of data and class label of wfData |
---|
585 | dataIdx=0; |
---|
586 | double totWeights=0; |
---|
587 | for(int r=0; r<N; r++){ |
---|
588 | Instance exr = train.instance(r); |
---|
589 | exr.setWeight(weights[r]*Math.exp(m_Beta[m]*(2.0*err[r]-1.0))); |
---|
590 | totWeights += exr.weight(); |
---|
591 | } |
---|
592 | |
---|
593 | if(m_Debug) |
---|
594 | System.err.println("Total weights = "+totWeights); |
---|
595 | |
---|
596 | for(int r=0; r<N; r++){ |
---|
597 | Instance exr = train.instance(r); |
---|
598 | double num = (double)exr.relationalValue(1).numInstances(); |
---|
599 | exr.setWeight(sumNi*exr.weight()/totWeights); |
---|
600 | //if(m_Debug) |
---|
601 | // System.err.print("\nExemplar "+r+"="+exr.weight()+": \t"); |
---|
602 | for(int s=0; s<num; s++){ |
---|
603 | Instance inss = data.instance(dataIdx); |
---|
604 | inss.setWeight(exr.weight()/num); |
---|
605 | // if(m_Debug) |
---|
606 | // System.err.print("instance "+s+"="+inss.weight()+ |
---|
607 | // "|ew*iw*sumNi="+data.instance(dataIdx).weight()+"\t"); |
---|
608 | if(Double.isNaN(inss.weight())) |
---|
609 | throw new Exception("instance "+s+" in bag "+r+" has weight NaN!"); |
---|
610 | dataIdx++; |
---|
611 | } |
---|
612 | //if(m_Debug) |
---|
613 | // System.err.println(); |
---|
614 | } |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | /** |
---|
619 | * Computes the distribution for a given exemplar |
---|
620 | * |
---|
621 | * @param exmp the exemplar for which distribution is computed |
---|
622 | * @return the classification |
---|
623 | * @throws Exception if the distribution can't be computed successfully |
---|
624 | */ |
---|
625 | public double[] distributionForInstance(Instance exmp) |
---|
626 | throws Exception { |
---|
627 | |
---|
628 | double[] rt = new double[m_NumClasses]; |
---|
629 | |
---|
630 | Instances insts = new Instances(exmp.dataset(), 0); |
---|
631 | insts.add(exmp); |
---|
632 | |
---|
633 | // convert the training dataset into single-instance dataset |
---|
634 | insts = Filter.useFilter( insts, m_ConvertToSI); |
---|
635 | insts.deleteAttributeAt(0); //remove the bagIndex attribute |
---|
636 | |
---|
637 | double n = insts.numInstances(); |
---|
638 | |
---|
639 | if(m_DiscretizeBin > 0) |
---|
640 | insts = Filter.useFilter(insts, m_Filter); |
---|
641 | |
---|
642 | for(int y=0; y<n; y++){ |
---|
643 | Instance ins = insts.instance(y); |
---|
644 | for(int x=0; x<m_NumIterations; x++){ |
---|
645 | rt[(int)m_Models[x].classifyInstance(ins)] += m_Beta[x]/n; |
---|
646 | } |
---|
647 | } |
---|
648 | |
---|
649 | for(int i=0; i<rt.length; i++) |
---|
650 | rt[i] = Math.exp(rt[i]); |
---|
651 | |
---|
652 | Utils.normalize(rt); |
---|
653 | return rt; |
---|
654 | } |
---|
655 | |
---|
656 | /** |
---|
657 | * Gets a string describing the classifier. |
---|
658 | * |
---|
659 | * @return a string describing the classifer built. |
---|
660 | */ |
---|
661 | public String toString() { |
---|
662 | |
---|
663 | if (m_Models == null) { |
---|
664 | return "No model built yet!"; |
---|
665 | } |
---|
666 | StringBuffer text = new StringBuffer(); |
---|
667 | text.append("MIBoost: number of bins in discretization = "+m_DiscretizeBin+"\n"); |
---|
668 | if (m_NumIterations == 0) { |
---|
669 | text.append("No model built yet.\n"); |
---|
670 | } else if (m_NumIterations == 1) { |
---|
671 | text.append("No boosting possible, one classifier used: Weight = " |
---|
672 | + Utils.roundDouble(m_Beta[0], 2)+"\n"); |
---|
673 | text.append("Base classifiers:\n"+m_Models[0].toString()); |
---|
674 | } else { |
---|
675 | text.append("Base classifiers and their weights: \n"); |
---|
676 | for (int i = 0; i < m_NumIterations ; i++) { |
---|
677 | text.append("\n\n"+i+": Weight = " + Utils.roundDouble(m_Beta[i], 2) |
---|
678 | +"\nBase classifier:\n"+m_Models[i].toString() ); |
---|
679 | } |
---|
680 | } |
---|
681 | |
---|
682 | text.append("\n\nNumber of performed Iterations: " |
---|
683 | + m_NumIterations + "\n"); |
---|
684 | |
---|
685 | return text.toString(); |
---|
686 | } |
---|
687 | |
---|
688 | /** |
---|
689 | * Returns the revision string. |
---|
690 | * |
---|
691 | * @return the revision |
---|
692 | */ |
---|
693 | public String getRevision() { |
---|
694 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
695 | } |
---|
696 | |
---|
697 | /** |
---|
698 | * Main method for testing this class. |
---|
699 | * |
---|
700 | * @param argv should contain the command line arguments to the |
---|
701 | * scheme (see Evaluation) |
---|
702 | */ |
---|
703 | public static void main(String[] argv) { |
---|
704 | runClassifier(new MIBoost(), argv); |
---|
705 | } |
---|
706 | } |
---|