[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * CitationKNN.java |
---|
| 19 | * Copyright (C) 2005 Miguel Garcia Torres |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.mi; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.Classifier; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.MultiInstanceCapabilitiesHandler; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.OptionHandler; |
---|
| 32 | import weka.core.RevisionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.TechnicalInformation; |
---|
| 35 | import weka.core.TechnicalInformationHandler; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | import weka.core.TechnicalInformation.Field; |
---|
| 39 | import weka.core.TechnicalInformation.Type; |
---|
| 40 | |
---|
| 41 | import java.io.Serializable; |
---|
| 42 | import java.util.Enumeration; |
---|
| 43 | import java.util.Vector; |
---|
| 44 | /** |
---|
| 45 | <!-- globalinfo-start --> |
---|
| 46 | * Modified version of the Citation kNN multi instance classifier.<br/> |
---|
| 47 | * <br/> |
---|
| 48 | * For more information see:<br/> |
---|
| 49 | * <br/> |
---|
| 50 | * Jun Wang, Zucker, Jean-Daniel: Solving Multiple-Instance Problem: A Lazy Learning Approach. In: 17th International Conference on Machine Learning, 1119-1125, 2000. |
---|
| 51 | * <p/> |
---|
| 52 | <!-- globalinfo-end --> |
---|
| 53 | * |
---|
| 54 | <!-- technical-bibtex-start --> |
---|
| 55 | * BibTeX: |
---|
| 56 | * <pre> |
---|
| 57 | * @inproceedings{Wang2000, |
---|
| 58 | * author = {Jun Wang and Zucker and Jean-Daniel}, |
---|
| 59 | * booktitle = {17th International Conference on Machine Learning}, |
---|
| 60 | * editor = {Pat Langley}, |
---|
| 61 | * pages = {1119-1125}, |
---|
| 62 | * title = {Solving Multiple-Instance Problem: A Lazy Learning Approach}, |
---|
| 63 | * year = {2000} |
---|
| 64 | * } |
---|
| 65 | * </pre> |
---|
| 66 | * <p/> |
---|
| 67 | <!-- technical-bibtex-end --> |
---|
| 68 | * |
---|
| 69 | <!-- options-start --> |
---|
| 70 | * Valid options are: <p/> |
---|
| 71 | * |
---|
| 72 | * <pre> -R <number of references> |
---|
| 73 | * Number of Nearest References (default 1)</pre> |
---|
| 74 | * |
---|
| 75 | * <pre> -C <number of citers> |
---|
| 76 | * Number of Nearest Citers (default 1)</pre> |
---|
| 77 | * |
---|
| 78 | * <pre> -H <rank> |
---|
| 79 | * Rank of the Hausdorff Distance (default 1)</pre> |
---|
| 80 | * |
---|
| 81 | <!-- options-end --> |
---|
| 82 | * |
---|
| 83 | * @author Miguel Garcia Torres (mgarciat@ull.es) |
---|
| 84 | * @version $Revision: 5928 $ |
---|
| 85 | */ |
---|
| 86 | public class CitationKNN |
---|
| 87 | extends AbstractClassifier |
---|
| 88 | implements OptionHandler, MultiInstanceCapabilitiesHandler, |
---|
| 89 | TechnicalInformationHandler { |
---|
| 90 | |
---|
| 91 | /** for serialization */ |
---|
| 92 | static final long serialVersionUID = -8435377743874094852L; |
---|
| 93 | |
---|
| 94 | /** The index of the class attribute */ |
---|
| 95 | protected int m_ClassIndex; |
---|
| 96 | |
---|
| 97 | /** The number of the class labels */ |
---|
| 98 | protected int m_NumClasses; |
---|
| 99 | |
---|
| 100 | /** */ |
---|
| 101 | protected int m_IdIndex; |
---|
| 102 | |
---|
| 103 | /** Debugging output */ |
---|
| 104 | protected boolean m_Debug; |
---|
| 105 | |
---|
| 106 | /** Class labels for each bag */ |
---|
| 107 | protected int[] m_Classes; |
---|
| 108 | |
---|
| 109 | /** attribute name structure of the relational attribute*/ |
---|
| 110 | protected Instances m_Attributes; |
---|
| 111 | |
---|
| 112 | /** Number of references */ |
---|
| 113 | protected int m_NumReferences = 1; |
---|
| 114 | |
---|
| 115 | /** Number of citers*/ |
---|
| 116 | protected int m_NumCiters = 1; |
---|
| 117 | |
---|
| 118 | /** Training bags*/ |
---|
| 119 | protected Instances m_TrainBags; |
---|
| 120 | |
---|
| 121 | /** Different debugging output */ |
---|
| 122 | protected boolean m_CNNDebug = false; |
---|
| 123 | |
---|
| 124 | protected boolean m_CitersDebug = false; |
---|
| 125 | |
---|
| 126 | protected boolean m_ReferencesDebug = false; |
---|
| 127 | |
---|
| 128 | protected boolean m_HDistanceDebug = false; |
---|
| 129 | |
---|
| 130 | protected boolean m_NeighborListDebug = false; |
---|
| 131 | |
---|
| 132 | /** C nearest neighbors considering all the bags*/ |
---|
| 133 | protected NeighborList[] m_CNN; |
---|
| 134 | |
---|
| 135 | /** C nearest citers */ |
---|
| 136 | protected int[] m_Citers; |
---|
| 137 | |
---|
| 138 | /** R nearest references */ |
---|
| 139 | protected int[] m_References; |
---|
| 140 | |
---|
| 141 | /** Rank associated to the Hausdorff distance*/ |
---|
| 142 | protected int m_HDRank = 1; |
---|
| 143 | |
---|
| 144 | /** Normalization of the euclidean distance */ |
---|
| 145 | private double[] m_Diffs; |
---|
| 146 | |
---|
| 147 | private double[] m_Min; |
---|
| 148 | |
---|
| 149 | private double m_MinNorm = 0.95; |
---|
| 150 | |
---|
| 151 | private double[] m_Max; |
---|
| 152 | |
---|
| 153 | private double m_MaxNorm = 1.05; |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Returns a string describing this filter |
---|
| 157 | * |
---|
| 158 | * @return a description of the filter suitable for |
---|
| 159 | * displaying in the explorer/experimenter gui |
---|
| 160 | */ |
---|
| 161 | public String globalInfo() { |
---|
| 162 | return |
---|
| 163 | "Modified version of the Citation kNN multi instance classifier.\n\n" |
---|
| 164 | + "For more information see:\n\n" |
---|
| 165 | + getTechnicalInformation().toString(); |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /** |
---|
| 169 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 170 | * detailed information about the technical background of this class, |
---|
| 171 | * e.g., paper reference or book this class is based on. |
---|
| 172 | * |
---|
| 173 | * @return the technical information about this class |
---|
| 174 | */ |
---|
| 175 | public TechnicalInformation getTechnicalInformation() { |
---|
| 176 | TechnicalInformation result; |
---|
| 177 | |
---|
| 178 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 179 | result.setValue(Field.AUTHOR, "Jun Wang and Zucker and Jean-Daniel"); |
---|
| 180 | result.setValue(Field.TITLE, "Solving Multiple-Instance Problem: A Lazy Learning Approach"); |
---|
| 181 | result.setValue(Field.BOOKTITLE, "17th International Conference on Machine Learning"); |
---|
| 182 | result.setValue(Field.EDITOR, "Pat Langley"); |
---|
| 183 | result.setValue(Field.YEAR, "2000"); |
---|
| 184 | result.setValue(Field.PAGES, "1119-1125"); |
---|
| 185 | |
---|
| 186 | return result; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | /** |
---|
| 190 | * Calculates the normalization of each attribute. |
---|
| 191 | */ |
---|
| 192 | public void preprocessData(){ |
---|
| 193 | int i,j, k; |
---|
| 194 | double min, max; |
---|
| 195 | Instances instances; |
---|
| 196 | Instance instance; |
---|
| 197 | // compute the min/max of each feature |
---|
| 198 | |
---|
| 199 | for (i=0;i<m_Attributes.numAttributes();i++) { |
---|
| 200 | min=Double.POSITIVE_INFINITY ; |
---|
| 201 | max=Double.NEGATIVE_INFINITY ; |
---|
| 202 | for(j = 0; j < m_TrainBags.numInstances(); j++){ |
---|
| 203 | instances = m_TrainBags.instance(j).relationalValue(1); |
---|
| 204 | for (k=0;k<instances.numInstances();k++) { |
---|
| 205 | instance = instances.instance(k); |
---|
| 206 | if(instance.value(i) < min) |
---|
| 207 | min= instance.value(i); |
---|
| 208 | if(instance.value(i) > max) |
---|
| 209 | max= instance.value(i); |
---|
| 210 | } |
---|
| 211 | } |
---|
| 212 | m_Min[i] = min * m_MinNorm; |
---|
| 213 | m_Max[i] = max * m_MaxNorm; |
---|
| 214 | m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Returns the tip text for this property |
---|
| 221 | * |
---|
| 222 | * @return tip text for this property suitable for |
---|
| 223 | * displaying in the explorer/experimenter gui |
---|
| 224 | */ |
---|
| 225 | public String HDRankTipText() { |
---|
| 226 | return "The rank associated to the Hausdorff distance."; |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** |
---|
| 230 | * Sets the rank associated to the Hausdorff distance |
---|
| 231 | * @param hDRank the rank of the Hausdorff distance |
---|
| 232 | */ |
---|
| 233 | public void setHDRank(int hDRank){ |
---|
| 234 | m_HDRank = hDRank; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /** |
---|
| 238 | * Returns the rank associated to the Hausdorff distance |
---|
| 239 | * @return the rank number |
---|
| 240 | */ |
---|
| 241 | public int getHDRank(){ |
---|
| 242 | return m_HDRank; |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | /** |
---|
| 246 | * Returns the tip text for this property |
---|
| 247 | * |
---|
| 248 | * @return tip text for this property suitable for |
---|
| 249 | * displaying in the explorer/experimenter gui |
---|
| 250 | */ |
---|
| 251 | public String numReferencesTipText() { |
---|
| 252 | return |
---|
| 253 | "The number of references considered to estimate the class " |
---|
| 254 | + "prediction of tests bags."; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /** |
---|
| 258 | * Sets the number of references considered to estimate |
---|
| 259 | * the class prediction of tests bags |
---|
| 260 | * @param numReferences the number of references |
---|
| 261 | */ |
---|
| 262 | public void setNumReferences(int numReferences){ |
---|
| 263 | m_NumReferences = numReferences; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Returns the number of references considered to estimate |
---|
| 268 | * the class prediction of tests bags |
---|
| 269 | * @return the number of references |
---|
| 270 | */ |
---|
| 271 | public int getNumReferences(){ |
---|
| 272 | return m_NumReferences; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | /** |
---|
| 276 | * Returns the tip text for this property |
---|
| 277 | * |
---|
| 278 | * @return tip text for this property suitable for |
---|
| 279 | * displaying in the explorer/experimenter gui |
---|
| 280 | */ |
---|
| 281 | public String numCitersTipText() { |
---|
| 282 | return |
---|
| 283 | "The number of citers considered to estimate the class " |
---|
| 284 | + "prediction of test bags."; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /** |
---|
| 288 | * Sets the number of citers considered to estimate |
---|
| 289 | * the class prediction of tests bags |
---|
| 290 | * @param numCiters the number of citers |
---|
| 291 | */ |
---|
| 292 | public void setNumCiters(int numCiters){ |
---|
| 293 | m_NumCiters = numCiters; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | /** |
---|
| 297 | * Returns the number of citers considered to estimate |
---|
| 298 | * the class prediction of tests bags |
---|
| 299 | * @return the number of citers |
---|
| 300 | */ |
---|
| 301 | public int getNumCiters(){ |
---|
| 302 | return m_NumCiters; |
---|
| 303 | } |
---|
| 304 | |
---|
| 305 | /** |
---|
| 306 | * Returns default capabilities of the classifier. |
---|
| 307 | * |
---|
| 308 | * @return the capabilities of this classifier |
---|
| 309 | */ |
---|
| 310 | public Capabilities getCapabilities() { |
---|
| 311 | Capabilities result = super.getCapabilities(); |
---|
| 312 | result.disableAll(); |
---|
| 313 | |
---|
| 314 | // attributes |
---|
| 315 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 316 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 317 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 318 | result.enable(Capability.RELATIONAL_ATTRIBUTES); |
---|
| 319 | result.enable(Capability.MISSING_VALUES); |
---|
| 320 | |
---|
| 321 | // class |
---|
| 322 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 323 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 324 | |
---|
| 325 | // other |
---|
| 326 | result.enable(Capability.ONLY_MULTIINSTANCE); |
---|
| 327 | |
---|
| 328 | return result; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /** |
---|
| 332 | * Returns the capabilities of this multi-instance classifier for the |
---|
| 333 | * relational data. |
---|
| 334 | * |
---|
| 335 | * @return the capabilities of this object |
---|
| 336 | * @see Capabilities |
---|
| 337 | */ |
---|
| 338 | public Capabilities getMultiInstanceCapabilities() { |
---|
| 339 | Capabilities result = super.getCapabilities(); |
---|
| 340 | result.disableAll(); |
---|
| 341 | |
---|
| 342 | // attributes |
---|
| 343 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 344 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 345 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 346 | result.enable(Capability.MISSING_VALUES); |
---|
| 347 | |
---|
| 348 | // class |
---|
| 349 | result.disableAllClasses(); |
---|
| 350 | result.enable(Capability.NO_CLASS); |
---|
| 351 | |
---|
| 352 | return result; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | /** |
---|
| 356 | * Builds the classifier |
---|
| 357 | * |
---|
| 358 | * @param train the training data to be used for generating the |
---|
| 359 | * boosted classifier. |
---|
| 360 | * @throws Exception if the classifier could not be built successfully |
---|
| 361 | */ |
---|
| 362 | public void buildClassifier(Instances train) throws Exception { |
---|
| 363 | // can classifier handle the data? |
---|
| 364 | getCapabilities().testWithFail(train); |
---|
| 365 | |
---|
| 366 | // remove instances with missing class |
---|
| 367 | train = new Instances(train); |
---|
| 368 | train.deleteWithMissingClass(); |
---|
| 369 | |
---|
| 370 | m_TrainBags = train; |
---|
| 371 | m_ClassIndex = train.classIndex(); |
---|
| 372 | m_IdIndex = 0; |
---|
| 373 | m_NumClasses = train.numClasses(); |
---|
| 374 | |
---|
| 375 | m_Classes = new int [train.numInstances()]; // Class values |
---|
| 376 | m_Attributes = train.instance(0).relationalValue(1).stringFreeStructure(); |
---|
| 377 | |
---|
| 378 | m_Citers = new int[train.numClasses()]; |
---|
| 379 | m_References = new int[train.numClasses()]; |
---|
| 380 | |
---|
| 381 | m_Diffs = new double[m_Attributes.numAttributes()]; |
---|
| 382 | m_Min = new double[m_Attributes.numAttributes()]; |
---|
| 383 | m_Max = new double[m_Attributes.numAttributes()]; |
---|
| 384 | |
---|
| 385 | preprocessData(); |
---|
| 386 | |
---|
| 387 | buildCNN(); |
---|
| 388 | |
---|
| 389 | if(m_CNNDebug){ |
---|
| 390 | System.out.println("########################################### "); |
---|
| 391 | System.out.println("###########CITATION######################## "); |
---|
| 392 | System.out.println("########################################### "); |
---|
| 393 | for(int i = 0; i < m_CNN.length; i++){ |
---|
| 394 | System.out.println("Bag: " + i); |
---|
| 395 | m_CNN[i].printReducedList(); |
---|
| 396 | } |
---|
| 397 | } |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | /** |
---|
| 401 | * generates all the variables associated to the citation |
---|
| 402 | * classifier |
---|
| 403 | * |
---|
| 404 | * @throws Exception if generation fails |
---|
| 405 | */ |
---|
| 406 | public void buildCNN() throws Exception { |
---|
| 407 | |
---|
| 408 | int numCiters = 0; |
---|
| 409 | |
---|
| 410 | if((m_NumCiters >= m_TrainBags.numInstances()) || |
---|
| 411 | (m_NumCiters < 0)) |
---|
| 412 | throw new Exception("Number of citers is out of the range [0, numInstances)"); |
---|
| 413 | else |
---|
| 414 | numCiters = m_NumCiters; |
---|
| 415 | |
---|
| 416 | m_CNN = new NeighborList[m_TrainBags.numInstances()]; |
---|
| 417 | Instance bag; |
---|
| 418 | |
---|
| 419 | for(int i = 0; i< m_TrainBags.numInstances(); i++){ |
---|
| 420 | bag = m_TrainBags.instance(i); |
---|
| 421 | //first we find its neighbors |
---|
| 422 | NeighborList neighborList = findNeighbors(bag, numCiters, m_TrainBags); |
---|
| 423 | m_CNN[i] = neighborList; |
---|
| 424 | } |
---|
| 425 | } |
---|
| 426 | |
---|
| 427 | /** |
---|
| 428 | * calculates the citers associated to a bag |
---|
| 429 | * @param bag the bag cited |
---|
| 430 | */ |
---|
| 431 | public void countBagCiters(Instance bag){ |
---|
| 432 | |
---|
| 433 | //Initialization of the vector |
---|
| 434 | for(int i = 0; i < m_TrainBags.numClasses(); i++) |
---|
| 435 | m_Citers[i] = 0; |
---|
| 436 | // |
---|
| 437 | if(m_CitersDebug == true) |
---|
| 438 | System.out.println("-------CITERS--------"); |
---|
| 439 | |
---|
| 440 | NeighborList neighborList; |
---|
| 441 | NeighborNode current; |
---|
| 442 | boolean stopSearch = false; |
---|
| 443 | int index; |
---|
| 444 | |
---|
| 445 | // compute the distance between the test bag and each training bag. Update |
---|
| 446 | // the bagCiter count in case it be a neighbour |
---|
| 447 | |
---|
| 448 | double bagDistance = 0; |
---|
| 449 | for(int i = 0; i < m_TrainBags.numInstances(); i++){ |
---|
| 450 | //measure the distance |
---|
| 451 | bagDistance = distanceSet(bag, m_TrainBags.instance(i)); |
---|
| 452 | if(m_CitersDebug == true){ |
---|
| 453 | System.out.print("bag - bag(" + i + "): " + bagDistance); |
---|
| 454 | System.out.println(" <" + m_TrainBags.instance(i).classValue() + ">"); |
---|
| 455 | } |
---|
| 456 | //compare the distance to see if it would belong to the |
---|
| 457 | // neighborhood of each training exemplar |
---|
| 458 | neighborList = m_CNN[i]; |
---|
| 459 | current = neighborList.mFirst; |
---|
| 460 | |
---|
| 461 | while((current != null) && (!stopSearch)) { |
---|
| 462 | if(m_CitersDebug == true) |
---|
| 463 | System.out.println("\t\tciter Distance: " + current.mDistance); |
---|
| 464 | if(current.mDistance < bagDistance){ |
---|
| 465 | current = current.mNext; |
---|
| 466 | } else{ |
---|
| 467 | stopSearch = true; |
---|
| 468 | if(m_CitersDebug == true){ |
---|
| 469 | System.out.println("\t***"); |
---|
| 470 | } |
---|
| 471 | } |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | if(stopSearch == true){ |
---|
| 475 | stopSearch = false; |
---|
| 476 | index = (int)(m_TrainBags.instance(i)).classValue(); |
---|
| 477 | m_Citers[index] += 1; |
---|
| 478 | } |
---|
| 479 | |
---|
| 480 | } |
---|
| 481 | |
---|
| 482 | if(m_CitersDebug == true){ |
---|
| 483 | for(int i= 0; i < m_Citers.length; i++){ |
---|
| 484 | System.out.println("[" + i + "]: " + m_Citers[i]); |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | |
---|
| 488 | } |
---|
| 489 | |
---|
| 490 | /** |
---|
| 491 | * Calculates the references of the exemplar bag |
---|
| 492 | * @param bag the exemplar to which the nearest references |
---|
| 493 | * will be calculated |
---|
| 494 | */ |
---|
| 495 | public void countBagReferences(Instance bag){ |
---|
| 496 | int index = 0, referencesIndex = 0; |
---|
| 497 | |
---|
| 498 | if(m_TrainBags.numInstances() < m_NumReferences) |
---|
| 499 | referencesIndex = m_TrainBags.numInstances() - 1; |
---|
| 500 | else |
---|
| 501 | referencesIndex = m_NumReferences; |
---|
| 502 | |
---|
| 503 | if(m_CitersDebug == true){ |
---|
| 504 | System.out.println("-------References (" + referencesIndex+ ")--------"); |
---|
| 505 | } |
---|
| 506 | //Initialization of the vector |
---|
| 507 | for(int i = 0; i < m_References.length; i++) |
---|
| 508 | m_References[i] = 0; |
---|
| 509 | |
---|
| 510 | if(referencesIndex > 0){ |
---|
| 511 | //first we find its neighbors |
---|
| 512 | NeighborList neighborList = findNeighbors(bag, referencesIndex, m_TrainBags); |
---|
| 513 | if(m_ReferencesDebug == true){ |
---|
| 514 | System.out.println("Bag: " + bag + " Neighbors: "); |
---|
| 515 | neighborList.printReducedList(); |
---|
| 516 | } |
---|
| 517 | NeighborNode current = neighborList.mFirst; |
---|
| 518 | while(current != null){ |
---|
| 519 | index = (int) current.mBag.classValue(); |
---|
| 520 | m_References[index] += 1; |
---|
| 521 | current = current.mNext; |
---|
| 522 | } |
---|
| 523 | } |
---|
| 524 | if(m_ReferencesDebug == true){ |
---|
| 525 | System.out.println("References:"); |
---|
| 526 | for(int j = 0; j < m_References.length; j++) |
---|
| 527 | System.out.println("[" + j + "]: " + m_References[j]); |
---|
| 528 | } |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | /** |
---|
| 532 | * Build the list of nearest k neighbors to the given test instance. |
---|
| 533 | * @param bag the bag to search for neighbors of |
---|
| 534 | * @param kNN the number of nearest neighbors |
---|
| 535 | * @param bags the data |
---|
| 536 | * @return a list of neighbors |
---|
| 537 | */ |
---|
| 538 | protected NeighborList findNeighbors(Instance bag, int kNN, Instances bags){ |
---|
| 539 | double distance; |
---|
| 540 | int index = 0; |
---|
| 541 | |
---|
| 542 | if(kNN > bags.numInstances()) |
---|
| 543 | kNN = bags.numInstances() - 1; |
---|
| 544 | |
---|
| 545 | NeighborList neighborList = new NeighborList(kNN); |
---|
| 546 | for(int i = 0; i < bags.numInstances(); i++){ |
---|
| 547 | if(bag != bags.instance(i)){ // for hold-one-out cross-validation |
---|
| 548 | distance = distanceSet(bag, bags.instance(i)) ; //mDistanceSet.distance(bag, mInstances, bags.exemplar(i), mInstances); |
---|
| 549 | if(m_NeighborListDebug) |
---|
| 550 | System.out.println("distance(bag, " + i + "): " + distance); |
---|
| 551 | if(neighborList.isEmpty() || (index < kNN) || (distance <= neighborList.mLast.mDistance)) |
---|
| 552 | neighborList.insertSorted(distance, bags.instance(i), i); |
---|
| 553 | index++; |
---|
| 554 | } |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | if(m_NeighborListDebug){ |
---|
| 558 | System.out.println("bag neighbors:"); |
---|
| 559 | neighborList.printReducedList(); |
---|
| 560 | } |
---|
| 561 | |
---|
| 562 | return neighborList; |
---|
| 563 | } |
---|
| 564 | |
---|
| 565 | /** |
---|
| 566 | * Calculates the distance between two instances |
---|
| 567 | * @param first instance |
---|
| 568 | * @param second instance |
---|
| 569 | * @return the distance value |
---|
| 570 | */ |
---|
| 571 | public double distanceSet(Instance first, Instance second){ |
---|
| 572 | double[] h_f = new double[first.relationalValue(1).numInstances()]; |
---|
| 573 | double distance; |
---|
| 574 | |
---|
| 575 | //initilization |
---|
| 576 | for(int i = 0; i < h_f.length; i++) |
---|
| 577 | h_f[i] = Double.MAX_VALUE; |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | int rank; |
---|
| 581 | |
---|
| 582 | |
---|
| 583 | if(m_HDRank >= first.relationalValue(1).numInstances()) |
---|
| 584 | rank = first.relationalValue(1).numInstances(); |
---|
| 585 | else if(m_HDRank < 1) |
---|
| 586 | rank = 1; |
---|
| 587 | else |
---|
| 588 | rank = m_HDRank; |
---|
| 589 | |
---|
| 590 | if(m_HDistanceDebug){ |
---|
| 591 | System.out.println("-------HAUSDORFF DISTANCE--------"); |
---|
| 592 | System.out.println("rank: " + rank + "\nset of instances:"); |
---|
| 593 | System.out.println("\tset 1:"); |
---|
| 594 | for(int i = 0; i < first.relationalValue(1).numInstances(); i++) |
---|
| 595 | System.out.println(first.relationalValue(1).instance(i)); |
---|
| 596 | |
---|
| 597 | System.out.println("\n\tset 2:"); |
---|
| 598 | for(int i = 0; i < second.relationalValue(1).numInstances(); i++) |
---|
| 599 | System.out.println(second.relationalValue(1).instance(i)); |
---|
| 600 | |
---|
| 601 | System.out.println("\n"); |
---|
| 602 | } |
---|
| 603 | |
---|
| 604 | //for each instance in bag first |
---|
| 605 | for(int i = 0; i < first.relationalValue(1).numInstances(); i++){ |
---|
| 606 | // calculate the distance to each instance in |
---|
| 607 | // bag second |
---|
| 608 | if(m_HDistanceDebug){ |
---|
| 609 | System.out.println("\nDistances:"); |
---|
| 610 | } |
---|
| 611 | for(int j = 0; j < second.relationalValue(1).numInstances(); j++){ |
---|
| 612 | distance = distance(first.relationalValue(1).instance(i), second.relationalValue(1).instance(j)); |
---|
| 613 | if(distance < h_f[i]) |
---|
| 614 | h_f[i] = distance; |
---|
| 615 | if(m_HDistanceDebug){ |
---|
| 616 | System.out.println("\tdist(" + i + ", "+ j + "): " + distance + " --> h_f[" + i + "]: " + h_f[i]); |
---|
| 617 | } |
---|
| 618 | } |
---|
| 619 | } |
---|
| 620 | int[] index_f = Utils.stableSort(h_f); |
---|
| 621 | |
---|
| 622 | if(m_HDistanceDebug){ |
---|
| 623 | System.out.println("\nRanks:\n"); |
---|
| 624 | for(int i = 0; i < index_f.length; i++) |
---|
| 625 | System.out.println("\trank " + (i + 1) + ": " + h_f[index_f[i]]); |
---|
| 626 | |
---|
| 627 | System.out.println("\n\t\t>>>>> rank " + rank + ": " + h_f[index_f[rank - 1]] + " <<<<<"); |
---|
| 628 | } |
---|
| 629 | |
---|
| 630 | return h_f[index_f[rank - 1]]; |
---|
| 631 | } |
---|
| 632 | |
---|
| 633 | /** |
---|
| 634 | * distance between two instances |
---|
| 635 | * @param first the first instance |
---|
| 636 | * @param second the other instance |
---|
| 637 | * @return the distance in double precision |
---|
| 638 | */ |
---|
| 639 | public double distance(Instance first, Instance second){ |
---|
| 640 | |
---|
| 641 | double sum = 0, diff; |
---|
| 642 | for(int i = 0; i < m_Attributes.numAttributes(); i++){ |
---|
| 643 | diff = (first.value(i) - m_Min[i])/ m_Diffs[i] - |
---|
| 644 | (second.value(i) - m_Min[i])/ m_Diffs[i]; |
---|
| 645 | sum += diff * diff; |
---|
| 646 | } |
---|
| 647 | return sum = Math.sqrt(sum); |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | /** |
---|
| 651 | * Computes the distribution for a given exemplar |
---|
| 652 | * |
---|
| 653 | * @param bag the exemplar for which distribution is computed |
---|
| 654 | * @return the distribution |
---|
| 655 | * @throws Exception if the distribution can't be computed successfully |
---|
| 656 | */ |
---|
| 657 | public double[] distributionForInstance(Instance bag) |
---|
| 658 | throws Exception { |
---|
| 659 | |
---|
| 660 | if(m_TrainBags.numInstances() == 0) |
---|
| 661 | throw new Exception("No training bags!"); |
---|
| 662 | |
---|
| 663 | updateNormalization(bag); |
---|
| 664 | |
---|
| 665 | //build references (R nearest neighbors) |
---|
| 666 | countBagReferences(bag); |
---|
| 667 | |
---|
| 668 | //build citers |
---|
| 669 | countBagCiters(bag); |
---|
| 670 | |
---|
| 671 | return makeDistribution(); |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | /** |
---|
| 675 | * Updates the normalization of each attribute. |
---|
| 676 | * |
---|
| 677 | * @param bag the exemplar to update the normalization for |
---|
| 678 | */ |
---|
| 679 | public void updateNormalization(Instance bag){ |
---|
| 680 | int i, k; |
---|
| 681 | double min, max; |
---|
| 682 | Instances instances; |
---|
| 683 | Instance instance; |
---|
| 684 | // compute the min/max of each feature |
---|
| 685 | for (i = 0; i < m_TrainBags.attribute(1).relation().numAttributes(); i++) { |
---|
| 686 | min = m_Min[i] / m_MinNorm; |
---|
| 687 | max = m_Max[i] / m_MaxNorm; |
---|
| 688 | |
---|
| 689 | instances = bag.relationalValue(1); |
---|
| 690 | for (k=0;k<instances.numInstances();k++) { |
---|
| 691 | instance = instances.instance(k); |
---|
| 692 | if(instance.value(i) < min) |
---|
| 693 | min = instance.value(i); |
---|
| 694 | if(instance.value(i) > max) |
---|
| 695 | max = instance.value(i); |
---|
| 696 | } |
---|
| 697 | m_Min[i] = min * m_MinNorm; |
---|
| 698 | m_Max[i] = max * m_MaxNorm; |
---|
| 699 | m_Diffs[i]= max * m_MaxNorm - min * m_MinNorm; |
---|
| 700 | } |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | /** |
---|
| 704 | * Wether the instances of two exemplars are or are not equal |
---|
| 705 | * @param exemplar1 first exemplar |
---|
| 706 | * @param exemplar2 second exemplar |
---|
| 707 | * @return if the instances of the exemplars are equal or not |
---|
| 708 | */ |
---|
| 709 | public boolean equalExemplars(Instance exemplar1, Instance exemplar2){ |
---|
| 710 | if(exemplar1.relationalValue(1).numInstances() == |
---|
| 711 | exemplar2.relationalValue(1).numInstances()){ |
---|
| 712 | Instances instances1 = exemplar1.relationalValue(1); |
---|
| 713 | Instances instances2 = exemplar2.relationalValue(1); |
---|
| 714 | for(int i = 0; i < instances1.numInstances(); i++){ |
---|
| 715 | Instance instance1 = instances1.instance(i); |
---|
| 716 | Instance instance2 = instances2.instance(i); |
---|
| 717 | for(int j = 0; j < instance1.numAttributes(); j++){ |
---|
| 718 | if(instance1.value(j) != instance2.value(j)){ |
---|
| 719 | return false; |
---|
| 720 | } |
---|
| 721 | } |
---|
| 722 | } |
---|
| 723 | return true; |
---|
| 724 | } |
---|
| 725 | return false; |
---|
| 726 | } |
---|
| 727 | |
---|
| 728 | /** |
---|
| 729 | * Turn the references and citers list into a probability distribution |
---|
| 730 | * |
---|
| 731 | * @return the probability distribution |
---|
| 732 | * @throws Exception if computation of distribution fails |
---|
| 733 | */ |
---|
| 734 | protected double[] makeDistribution() throws Exception { |
---|
| 735 | |
---|
| 736 | double total = 0; |
---|
| 737 | double[] distribution = new double[m_TrainBags.numClasses()]; |
---|
| 738 | boolean debug = false; |
---|
| 739 | |
---|
| 740 | total = (double)m_TrainBags.numClasses() / Math.max(1, m_TrainBags.numInstances()); |
---|
| 741 | |
---|
| 742 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
| 743 | distribution[i] = 1.0 / Math.max(1, m_TrainBags.numInstances()); |
---|
| 744 | if(debug) System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
| 745 | } |
---|
| 746 | |
---|
| 747 | if(debug)System.out.println("total: " + total); |
---|
| 748 | |
---|
| 749 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
| 750 | distribution[i] += m_References[i]; |
---|
| 751 | distribution[i] += m_Citers[i]; |
---|
| 752 | } |
---|
| 753 | |
---|
| 754 | total = 0; |
---|
| 755 | //total |
---|
| 756 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
| 757 | total += distribution[i]; |
---|
| 758 | if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
| 759 | } |
---|
| 760 | |
---|
| 761 | for(int i = 0; i < m_TrainBags.numClasses(); i++){ |
---|
| 762 | distribution[i] = distribution[i] / total; |
---|
| 763 | if(debug)System.out.println("distribution[" + i + "]: " + distribution[i]); |
---|
| 764 | |
---|
| 765 | } |
---|
| 766 | |
---|
| 767 | return distribution; |
---|
| 768 | } |
---|
| 769 | |
---|
| 770 | /** |
---|
| 771 | * Returns an enumeration of all the available options.. |
---|
| 772 | * |
---|
| 773 | * @return an enumeration of all available options. |
---|
| 774 | */ |
---|
| 775 | public Enumeration listOptions(){ |
---|
| 776 | Vector result = new Vector(); |
---|
| 777 | |
---|
| 778 | result.addElement(new Option( |
---|
| 779 | "\tNumber of Nearest References (default 1)", |
---|
| 780 | "R", 0, "-R <number of references>")); |
---|
| 781 | |
---|
| 782 | result.addElement(new Option( |
---|
| 783 | "\tNumber of Nearest Citers (default 1)", |
---|
| 784 | "C", 0, "-C <number of citers>")); |
---|
| 785 | |
---|
| 786 | result.addElement(new Option( |
---|
| 787 | "\tRank of the Hausdorff Distance (default 1)", |
---|
| 788 | "H", 0, "-H <rank>")); |
---|
| 789 | |
---|
| 790 | return result.elements(); |
---|
| 791 | } |
---|
| 792 | |
---|
| 793 | /** |
---|
| 794 | * Sets the OptionHandler's options using the given list. All options |
---|
| 795 | * will be set (or reset) during this call (i.e. incremental setting |
---|
| 796 | * of options is not possible). <p/> |
---|
| 797 | * |
---|
| 798 | <!-- options-start --> |
---|
| 799 | * Valid options are: <p/> |
---|
| 800 | * |
---|
| 801 | * <pre> -R <number of references> |
---|
| 802 | * Number of Nearest References (default 1)</pre> |
---|
| 803 | * |
---|
| 804 | * <pre> -C <number of citers> |
---|
| 805 | * Number of Nearest Citers (default 1)</pre> |
---|
| 806 | * |
---|
| 807 | * <pre> -H <rank> |
---|
| 808 | * Rank of the Hausdorff Distance (default 1)</pre> |
---|
| 809 | * |
---|
| 810 | <!-- options-end --> |
---|
| 811 | * |
---|
| 812 | * @param options the list of options as an array of strings |
---|
| 813 | * @throws Exception if an option is not supported |
---|
| 814 | */ |
---|
| 815 | public void setOptions(String[] options) throws Exception{ |
---|
| 816 | setDebug(Utils.getFlag('D', options)); |
---|
| 817 | |
---|
| 818 | String option = Utils.getOption('R', options); |
---|
| 819 | if(option.length() != 0) |
---|
| 820 | setNumReferences(Integer.parseInt(option)); |
---|
| 821 | else |
---|
| 822 | setNumReferences(1); |
---|
| 823 | |
---|
| 824 | option = Utils.getOption('C', options); |
---|
| 825 | if(option.length() != 0) |
---|
| 826 | setNumCiters(Integer.parseInt(option)); |
---|
| 827 | else |
---|
| 828 | setNumCiters(1); |
---|
| 829 | |
---|
| 830 | option = Utils.getOption('H', options); |
---|
| 831 | if(option.length() != 0) |
---|
| 832 | setHDRank(Integer.parseInt(option)); |
---|
| 833 | else |
---|
| 834 | setHDRank(1); |
---|
| 835 | } |
---|
| 836 | /** |
---|
| 837 | * Gets the current option settings for the OptionHandler. |
---|
| 838 | * |
---|
| 839 | * @return the list of current option settings as an array of strings |
---|
| 840 | */ |
---|
| 841 | public String[] getOptions() { |
---|
| 842 | Vector result; |
---|
| 843 | |
---|
| 844 | result = new Vector(); |
---|
| 845 | |
---|
| 846 | if (getDebug()) |
---|
| 847 | result.add("-D"); |
---|
| 848 | |
---|
| 849 | result.add("-R"); |
---|
| 850 | result.add("" + getNumReferences()); |
---|
| 851 | |
---|
| 852 | result.add("-C"); |
---|
| 853 | result.add("" + getNumCiters()); |
---|
| 854 | |
---|
| 855 | result.add("-H"); |
---|
| 856 | result.add("" + getHDRank()); |
---|
| 857 | |
---|
| 858 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 859 | } |
---|
| 860 | |
---|
| 861 | /** |
---|
| 862 | * returns a string representation of the classifier |
---|
| 863 | * |
---|
| 864 | * @return the string representation |
---|
| 865 | */ |
---|
| 866 | public String toString() { |
---|
| 867 | StringBuffer result; |
---|
| 868 | int i; |
---|
| 869 | |
---|
| 870 | result = new StringBuffer(); |
---|
| 871 | |
---|
| 872 | // title |
---|
| 873 | result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
| 874 | result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
| 875 | |
---|
| 876 | if (m_Citers == null) { |
---|
| 877 | result.append("no model built yet!\n"); |
---|
| 878 | } |
---|
| 879 | else { |
---|
| 880 | // internal representation |
---|
| 881 | result.append("Citers....: " + Utils.arrayToString(m_Citers) + "\n"); |
---|
| 882 | |
---|
| 883 | result.append("References: " + Utils.arrayToString(m_References) + "\n"); |
---|
| 884 | |
---|
| 885 | result.append("Min.......: "); |
---|
| 886 | for (i = 0; i < m_Min.length; i++) { |
---|
| 887 | if (i > 0) |
---|
| 888 | result.append(","); |
---|
| 889 | result.append(Utils.doubleToString(m_Min[i], 3)); |
---|
| 890 | } |
---|
| 891 | result.append("\n"); |
---|
| 892 | |
---|
| 893 | result.append("Max.......: "); |
---|
| 894 | for (i = 0; i < m_Max.length; i++) { |
---|
| 895 | if (i > 0) |
---|
| 896 | result.append(","); |
---|
| 897 | result.append(Utils.doubleToString(m_Max[i], 3)); |
---|
| 898 | } |
---|
| 899 | result.append("\n"); |
---|
| 900 | |
---|
| 901 | result.append("Diffs.....: "); |
---|
| 902 | for (i = 0; i < m_Diffs.length; i++) { |
---|
| 903 | if (i > 0) |
---|
| 904 | result.append(","); |
---|
| 905 | result.append(Utils.doubleToString(m_Diffs[i], 3)); |
---|
| 906 | } |
---|
| 907 | result.append("\n"); |
---|
| 908 | } |
---|
| 909 | |
---|
| 910 | return result.toString(); |
---|
| 911 | } |
---|
| 912 | |
---|
| 913 | /** |
---|
| 914 | * Returns the revision string. |
---|
| 915 | * |
---|
| 916 | * @return the revision |
---|
| 917 | */ |
---|
| 918 | public String getRevision() { |
---|
| 919 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 920 | } |
---|
| 921 | |
---|
| 922 | /** |
---|
| 923 | * Main method for testing this class. |
---|
| 924 | * |
---|
| 925 | * @param argv should contain the command line arguments to the |
---|
| 926 | * scheme (see Evaluation) |
---|
| 927 | */ |
---|
| 928 | public static void main(String[] argv) { |
---|
| 929 | runClassifier(new CitationKNN(), argv); |
---|
| 930 | } |
---|
| 931 | |
---|
| 932 | //######################################################################## |
---|
| 933 | //######################################################################## |
---|
| 934 | //######################################################################## |
---|
| 935 | //######################################################################## |
---|
| 936 | //######################################################################## |
---|
| 937 | |
---|
| 938 | /** |
---|
| 939 | * A class for storing data about a neighboring instance |
---|
| 940 | */ |
---|
| 941 | private class NeighborNode |
---|
| 942 | implements Serializable, RevisionHandler { |
---|
| 943 | |
---|
| 944 | /** for serialization */ |
---|
| 945 | static final long serialVersionUID = -3947320761906511289L; |
---|
| 946 | |
---|
| 947 | /** The neighbor bag */ |
---|
| 948 | private Instance mBag; |
---|
| 949 | |
---|
| 950 | /** The distance from the current instance to this neighbor */ |
---|
| 951 | private double mDistance; |
---|
| 952 | |
---|
| 953 | /** A link to the next neighbor instance */ |
---|
| 954 | private NeighborNode mNext; |
---|
| 955 | |
---|
| 956 | /** the position in the bag */ |
---|
| 957 | private int mBagPosition; |
---|
| 958 | |
---|
| 959 | /** |
---|
| 960 | * Create a new neighbor node. |
---|
| 961 | * |
---|
| 962 | * @param distance the distance to the neighbor |
---|
| 963 | * @param bag the bag instance |
---|
| 964 | * @param position the position in the bag |
---|
| 965 | * @param next the next neighbor node |
---|
| 966 | */ |
---|
| 967 | public NeighborNode(double distance, Instance bag, int position, NeighborNode next){ |
---|
| 968 | mDistance = distance; |
---|
| 969 | mBag = bag; |
---|
| 970 | mNext = next; |
---|
| 971 | mBagPosition = position; |
---|
| 972 | } |
---|
| 973 | |
---|
| 974 | /** |
---|
| 975 | * Create a new neighbor node that doesn't link to any other nodes. |
---|
| 976 | * |
---|
| 977 | * @param distance the distance to the neighbor |
---|
| 978 | * @param bag the neighbor instance |
---|
| 979 | * @param position the position in the bag |
---|
| 980 | */ |
---|
| 981 | public NeighborNode(double distance, Instance bag, int position) { |
---|
| 982 | this(distance, bag, position, null); |
---|
| 983 | } |
---|
| 984 | |
---|
| 985 | /** |
---|
| 986 | * Returns the revision string. |
---|
| 987 | * |
---|
| 988 | * @return the revision |
---|
| 989 | */ |
---|
| 990 | public String getRevision() { |
---|
| 991 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 992 | } |
---|
| 993 | } |
---|
| 994 | |
---|
| 995 | //################################################## |
---|
| 996 | /** |
---|
| 997 | * A class for a linked list to store the nearest k neighbours |
---|
| 998 | * to an instance. We use a list so that we can take care of |
---|
| 999 | * cases where multiple neighbours are the same distance away. |
---|
| 1000 | * i.e. the minimum length of the list is k. |
---|
| 1001 | */ |
---|
| 1002 | private class NeighborList |
---|
| 1003 | implements Serializable, RevisionHandler { |
---|
| 1004 | |
---|
| 1005 | /** for serialization */ |
---|
| 1006 | static final long serialVersionUID = 3432555644456217394L; |
---|
| 1007 | |
---|
| 1008 | /** The first node in the list */ |
---|
| 1009 | private NeighborNode mFirst; |
---|
| 1010 | /** The last node in the list */ |
---|
| 1011 | private NeighborNode mLast; |
---|
| 1012 | |
---|
| 1013 | /** The number of nodes to attempt to maintain in the list */ |
---|
| 1014 | private int mLength = 1; |
---|
| 1015 | |
---|
| 1016 | /** |
---|
| 1017 | * Creates the neighborlist with a desired length |
---|
| 1018 | * |
---|
| 1019 | * @param length the length of list to attempt to maintain |
---|
| 1020 | */ |
---|
| 1021 | public NeighborList(int length) { |
---|
| 1022 | mLength = length; |
---|
| 1023 | } |
---|
| 1024 | /** |
---|
| 1025 | * Gets whether the list is empty. |
---|
| 1026 | * |
---|
| 1027 | * @return true if so |
---|
| 1028 | */ |
---|
| 1029 | public boolean isEmpty() { |
---|
| 1030 | return (mFirst == null); |
---|
| 1031 | } |
---|
| 1032 | /** |
---|
| 1033 | * Gets the current length of the list. |
---|
| 1034 | * |
---|
| 1035 | * @return the current length of the list |
---|
| 1036 | */ |
---|
| 1037 | public int currentLength() { |
---|
| 1038 | |
---|
| 1039 | int i = 0; |
---|
| 1040 | NeighborNode current = mFirst; |
---|
| 1041 | while (current != null) { |
---|
| 1042 | i++; |
---|
| 1043 | current = current.mNext; |
---|
| 1044 | } |
---|
| 1045 | return i; |
---|
| 1046 | } |
---|
| 1047 | |
---|
| 1048 | /** |
---|
| 1049 | * Inserts an instance neighbor into the list, maintaining the list |
---|
| 1050 | * sorted by distance. |
---|
| 1051 | * |
---|
| 1052 | * @param distance the distance to the instance |
---|
| 1053 | * @param bag the neighboring instance |
---|
| 1054 | * @param position the position in the bag |
---|
| 1055 | */ |
---|
| 1056 | public void insertSorted(double distance, Instance bag, int position) { |
---|
| 1057 | |
---|
| 1058 | if (isEmpty()) { |
---|
| 1059 | mFirst = mLast = new NeighborNode(distance, bag, position); |
---|
| 1060 | } else { |
---|
| 1061 | NeighborNode current = mFirst; |
---|
| 1062 | if (distance < mFirst.mDistance) {// Insert at head |
---|
| 1063 | mFirst = new NeighborNode(distance, bag, position, mFirst); |
---|
| 1064 | } else { // Insert further down the list |
---|
| 1065 | for( ;(current.mNext != null) && |
---|
| 1066 | (current.mNext.mDistance < distance); |
---|
| 1067 | current = current.mNext); |
---|
| 1068 | current.mNext = new NeighborNode(distance, bag, position, current.mNext); |
---|
| 1069 | if (current.equals(mLast)) { |
---|
| 1070 | mLast = current.mNext; |
---|
| 1071 | } |
---|
| 1072 | } |
---|
| 1073 | |
---|
| 1074 | // Trip down the list until we've got k list elements (or more if the |
---|
| 1075 | // distance to the last elements is the same). |
---|
| 1076 | int valcount = 0; |
---|
| 1077 | for(current = mFirst; current.mNext != null; |
---|
| 1078 | current = current.mNext) { |
---|
| 1079 | valcount++; |
---|
| 1080 | if ((valcount >= mLength) && (current.mDistance != |
---|
| 1081 | current.mNext.mDistance)) { |
---|
| 1082 | mLast = current; |
---|
| 1083 | current.mNext = null; |
---|
| 1084 | break; |
---|
| 1085 | } |
---|
| 1086 | } |
---|
| 1087 | } |
---|
| 1088 | } |
---|
| 1089 | |
---|
| 1090 | /** |
---|
| 1091 | * Prunes the list to contain the k nearest neighbors. If there are |
---|
| 1092 | * multiple neighbors at the k'th distance, all will be kept. |
---|
| 1093 | * |
---|
| 1094 | * @param k the number of neighbors to keep in the list. |
---|
| 1095 | */ |
---|
| 1096 | public void pruneToK(int k) { |
---|
| 1097 | if (isEmpty()) |
---|
| 1098 | return; |
---|
| 1099 | if (k < 1) |
---|
| 1100 | k = 1; |
---|
| 1101 | |
---|
| 1102 | int currentK = 0; |
---|
| 1103 | double currentDist = mFirst.mDistance; |
---|
| 1104 | NeighborNode current = mFirst; |
---|
| 1105 | for(; current.mNext != null; current = current.mNext) { |
---|
| 1106 | currentK++; |
---|
| 1107 | currentDist = current.mDistance; |
---|
| 1108 | if ((currentK >= k) && (currentDist != current.mNext.mDistance)) { |
---|
| 1109 | mLast = current; |
---|
| 1110 | current.mNext = null; |
---|
| 1111 | break; |
---|
| 1112 | } |
---|
| 1113 | } |
---|
| 1114 | } |
---|
| 1115 | |
---|
| 1116 | /** |
---|
| 1117 | * Prints out the contents of the neighborlist |
---|
| 1118 | */ |
---|
| 1119 | public void printList() { |
---|
| 1120 | |
---|
| 1121 | if (isEmpty()) { |
---|
| 1122 | System.out.println("Empty list"); |
---|
| 1123 | } else { |
---|
| 1124 | NeighborNode current = mFirst; |
---|
| 1125 | while (current != null) { |
---|
| 1126 | System.out.print("Node: instance " + current.mBagPosition + "\n"); |
---|
| 1127 | System.out.println(current.mBag); |
---|
| 1128 | System.out.println(", distance " + current.mDistance); |
---|
| 1129 | current = current.mNext; |
---|
| 1130 | } |
---|
| 1131 | System.out.println(); |
---|
| 1132 | } |
---|
| 1133 | } |
---|
| 1134 | /** |
---|
| 1135 | * Prints out the contents of the neighborlist |
---|
| 1136 | */ |
---|
| 1137 | public void printReducedList() { |
---|
| 1138 | |
---|
| 1139 | if (isEmpty()) { |
---|
| 1140 | System.out.println("Empty list"); |
---|
| 1141 | } else { |
---|
| 1142 | NeighborNode current = mFirst; |
---|
| 1143 | while (current != null) { |
---|
| 1144 | System.out.print("Node: bag " + current.mBagPosition + " (" + current.mBag.relationalValue(1).numInstances() +"): "); |
---|
| 1145 | //for(int i = 0; i < current.mBag.getInstances().numInstances(); i++){ |
---|
| 1146 | //System.out.print(" " + (current.mBag).getInstances().instance(i)); |
---|
| 1147 | //} |
---|
| 1148 | System.out.print(" <" + current.mBag.classValue() + ">"); |
---|
| 1149 | System.out.println(" (d: " + current.mDistance + ")"); |
---|
| 1150 | current = current.mNext; |
---|
| 1151 | } |
---|
| 1152 | System.out.println(); |
---|
| 1153 | } |
---|
| 1154 | } |
---|
| 1155 | |
---|
| 1156 | /** |
---|
| 1157 | * Returns the revision string. |
---|
| 1158 | * |
---|
| 1159 | * @return the revision |
---|
| 1160 | */ |
---|
| 1161 | public String getRevision() { |
---|
| 1162 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 1163 | } |
---|
| 1164 | } |
---|
| 1165 | } |
---|