1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Vote.java |
---|
19 | * Copyright (C) 2000 University of Waikato |
---|
20 | * Copyright (C) 2006 Roberto Perdisci |
---|
21 | * |
---|
22 | */ |
---|
23 | |
---|
24 | package weka.classifiers.meta; |
---|
25 | |
---|
26 | import weka.classifiers.RandomizableMultipleClassifiersCombiner; |
---|
27 | import weka.core.Capabilities; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.SelectedTag; |
---|
33 | import weka.core.Tag; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Random; |
---|
43 | import java.util.Vector; |
---|
44 | |
---|
45 | /** |
---|
46 | <!-- globalinfo-start --> |
---|
47 | * Class for combining classifiers. Different combinations of probability estimates for classification are available.<br/> |
---|
48 | * <br/> |
---|
49 | * For more information see:<br/> |
---|
50 | * <br/> |
---|
51 | * Ludmila I. Kuncheva (2004). Combining Pattern Classifiers: Methods and Algorithms. John Wiley and Sons, Inc..<br/> |
---|
52 | * <br/> |
---|
53 | * J. Kittler, M. Hatef, Robert P.W. Duin, J. Matas (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(3):226-239. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- options-start --> |
---|
58 | * Valid options are: <p/> |
---|
59 | * |
---|
60 | * <pre> -S <num> |
---|
61 | * Random number seed. |
---|
62 | * (default 1)</pre> |
---|
63 | * |
---|
64 | * <pre> -B <classifier specification> |
---|
65 | * Full class name of classifier to include, followed |
---|
66 | * by scheme options. May be specified multiple times. |
---|
67 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
68 | * |
---|
69 | * <pre> -D |
---|
70 | * If set, classifier is run in debug mode and |
---|
71 | * may output additional info to the console</pre> |
---|
72 | * |
---|
73 | * <pre> -R <AVG|PROD|MAJ|MIN|MAX|MED> |
---|
74 | * The combination rule to use |
---|
75 | * (default: AVG)</pre> |
---|
76 | * |
---|
77 | <!-- options-end --> |
---|
78 | * |
---|
79 | <!-- technical-bibtex-start --> |
---|
80 | * BibTeX: |
---|
81 | * <pre> |
---|
82 | * @book{Kuncheva2004, |
---|
83 | * author = {Ludmila I. Kuncheva}, |
---|
84 | * publisher = {John Wiley and Sons, Inc.}, |
---|
85 | * title = {Combining Pattern Classifiers: Methods and Algorithms}, |
---|
86 | * year = {2004} |
---|
87 | * } |
---|
88 | * |
---|
89 | * @article{Kittler1998, |
---|
90 | * author = {J. Kittler and M. Hatef and Robert P.W. Duin and J. Matas}, |
---|
91 | * journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, |
---|
92 | * number = {3}, |
---|
93 | * pages = {226-239}, |
---|
94 | * title = {On combining classifiers}, |
---|
95 | * volume = {20}, |
---|
96 | * year = {1998} |
---|
97 | * } |
---|
98 | * </pre> |
---|
99 | * <p/> |
---|
100 | <!-- technical-bibtex-end --> |
---|
101 | * |
---|
102 | * @author Alexander K. Seewald (alex@seewald.at) |
---|
103 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
104 | * @author Roberto Perdisci (roberto.perdisci@gmail.com) |
---|
105 | * @version $Revision: 5987 $ |
---|
106 | */ |
---|
107 | public class Vote |
---|
108 | extends RandomizableMultipleClassifiersCombiner |
---|
109 | implements TechnicalInformationHandler { |
---|
110 | |
---|
111 | /** for serialization */ |
---|
112 | static final long serialVersionUID = -637891196294399624L; |
---|
113 | |
---|
114 | /** combination rule: Average of Probabilities */ |
---|
115 | public static final int AVERAGE_RULE = 1; |
---|
116 | /** combination rule: Product of Probabilities (only nominal classes) */ |
---|
117 | public static final int PRODUCT_RULE = 2; |
---|
118 | /** combination rule: Majority Voting (only nominal classes) */ |
---|
119 | public static final int MAJORITY_VOTING_RULE = 3; |
---|
120 | /** combination rule: Minimum Probability */ |
---|
121 | public static final int MIN_RULE = 4; |
---|
122 | /** combination rule: Maximum Probability */ |
---|
123 | public static final int MAX_RULE = 5; |
---|
124 | /** combination rule: Median Probability (only numeric class) */ |
---|
125 | public static final int MEDIAN_RULE = 6; |
---|
126 | /** combination rules */ |
---|
127 | public static final Tag[] TAGS_RULES = { |
---|
128 | new Tag(AVERAGE_RULE, "AVG", "Average of Probabilities"), |
---|
129 | new Tag(PRODUCT_RULE, "PROD", "Product of Probabilities"), |
---|
130 | new Tag(MAJORITY_VOTING_RULE, "MAJ", "Majority Voting"), |
---|
131 | new Tag(MIN_RULE, "MIN", "Minimum Probability"), |
---|
132 | new Tag(MAX_RULE, "MAX", "Maximum Probability"), |
---|
133 | new Tag(MEDIAN_RULE, "MED", "Median") |
---|
134 | }; |
---|
135 | |
---|
136 | /** Combination Rule variable */ |
---|
137 | protected int m_CombinationRule = AVERAGE_RULE; |
---|
138 | |
---|
139 | /** the random number generator used for breaking ties in majority voting |
---|
140 | * @see #distributionForInstanceMajorityVoting(Instance) */ |
---|
141 | protected Random m_Random; |
---|
142 | |
---|
143 | /** |
---|
144 | * Returns a string describing classifier |
---|
145 | * @return a description suitable for |
---|
146 | * displaying in the explorer/experimenter gui |
---|
147 | */ |
---|
148 | public String globalInfo() { |
---|
149 | return |
---|
150 | "Class for combining classifiers. Different combinations of " |
---|
151 | + "probability estimates for classification are available.\n\n" |
---|
152 | + "For more information see:\n\n" |
---|
153 | + getTechnicalInformation().toString(); |
---|
154 | } |
---|
155 | |
---|
156 | /** |
---|
157 | * Returns an enumeration describing the available options. |
---|
158 | * |
---|
159 | * @return an enumeration of all the available options. |
---|
160 | */ |
---|
161 | public Enumeration listOptions() { |
---|
162 | Enumeration enm; |
---|
163 | Vector result; |
---|
164 | |
---|
165 | result = new Vector(); |
---|
166 | |
---|
167 | enm = super.listOptions(); |
---|
168 | while (enm.hasMoreElements()) |
---|
169 | result.addElement(enm.nextElement()); |
---|
170 | |
---|
171 | result.addElement(new Option( |
---|
172 | "\tThe combination rule to use\n" |
---|
173 | + "\t(default: AVG)", |
---|
174 | "R", 1, "-R " + Tag.toOptionList(TAGS_RULES))); |
---|
175 | |
---|
176 | return result.elements(); |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * Gets the current settings of Vote. |
---|
181 | * |
---|
182 | * @return an array of strings suitable for passing to setOptions() |
---|
183 | */ |
---|
184 | public String [] getOptions() { |
---|
185 | int i; |
---|
186 | Vector result; |
---|
187 | String[] options; |
---|
188 | |
---|
189 | result = new Vector(); |
---|
190 | |
---|
191 | options = super.getOptions(); |
---|
192 | for (i = 0; i < options.length; i++) |
---|
193 | result.add(options[i]); |
---|
194 | |
---|
195 | result.add("-R"); |
---|
196 | result.add("" + getCombinationRule()); |
---|
197 | |
---|
198 | return (String[]) result.toArray(new String[result.size()]); |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Parses a given list of options. <p/> |
---|
203 | * |
---|
204 | <!-- options-start --> |
---|
205 | * Valid options are: <p/> |
---|
206 | * |
---|
207 | * <pre> -S <num> |
---|
208 | * Random number seed. |
---|
209 | * (default 1)</pre> |
---|
210 | * |
---|
211 | * <pre> -B <classifier specification> |
---|
212 | * Full class name of classifier to include, followed |
---|
213 | * by scheme options. May be specified multiple times. |
---|
214 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
215 | * |
---|
216 | * <pre> -D |
---|
217 | * If set, classifier is run in debug mode and |
---|
218 | * may output additional info to the console</pre> |
---|
219 | * |
---|
220 | * <pre> -R <AVG|PROD|MAJ|MIN|MAX|MED> |
---|
221 | * The combination rule to use |
---|
222 | * (default: AVG)</pre> |
---|
223 | * |
---|
224 | <!-- options-end --> |
---|
225 | * |
---|
226 | * @param options the list of options as an array of strings |
---|
227 | * @throws Exception if an option is not supported |
---|
228 | */ |
---|
229 | public void setOptions(String[] options) throws Exception { |
---|
230 | String tmpStr; |
---|
231 | |
---|
232 | tmpStr = Utils.getOption('R', options); |
---|
233 | if (tmpStr.length() != 0) |
---|
234 | setCombinationRule(new SelectedTag(tmpStr, TAGS_RULES)); |
---|
235 | else |
---|
236 | setCombinationRule(new SelectedTag(AVERAGE_RULE, TAGS_RULES)); |
---|
237 | |
---|
238 | super.setOptions(options); |
---|
239 | } |
---|
240 | |
---|
241 | /** |
---|
242 | * Returns an instance of a TechnicalInformation object, containing |
---|
243 | * detailed information about the technical background of this class, |
---|
244 | * e.g., paper reference or book this class is based on. |
---|
245 | * |
---|
246 | * @return the technical information about this class |
---|
247 | */ |
---|
248 | public TechnicalInformation getTechnicalInformation() { |
---|
249 | TechnicalInformation result; |
---|
250 | TechnicalInformation additional; |
---|
251 | |
---|
252 | result = new TechnicalInformation(Type.BOOK); |
---|
253 | result.setValue(Field.AUTHOR, "Ludmila I. Kuncheva"); |
---|
254 | result.setValue(Field.TITLE, "Combining Pattern Classifiers: Methods and Algorithms"); |
---|
255 | result.setValue(Field.YEAR, "2004"); |
---|
256 | result.setValue(Field.PUBLISHER, "John Wiley and Sons, Inc."); |
---|
257 | |
---|
258 | additional = result.add(Type.ARTICLE); |
---|
259 | additional.setValue(Field.AUTHOR, "J. Kittler and M. Hatef and Robert P.W. Duin and J. Matas"); |
---|
260 | additional.setValue(Field.YEAR, "1998"); |
---|
261 | additional.setValue(Field.TITLE, "On combining classifiers"); |
---|
262 | additional.setValue(Field.JOURNAL, "IEEE Transactions on Pattern Analysis and Machine Intelligence"); |
---|
263 | additional.setValue(Field.VOLUME, "20"); |
---|
264 | additional.setValue(Field.NUMBER, "3"); |
---|
265 | additional.setValue(Field.PAGES, "226-239"); |
---|
266 | |
---|
267 | return result; |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Returns default capabilities of the classifier. |
---|
272 | * |
---|
273 | * @return the capabilities of this classifier |
---|
274 | */ |
---|
275 | public Capabilities getCapabilities() { |
---|
276 | Capabilities result = super.getCapabilities(); |
---|
277 | |
---|
278 | // class |
---|
279 | if ( (m_CombinationRule == PRODUCT_RULE) |
---|
280 | || (m_CombinationRule == MAJORITY_VOTING_RULE) ) { |
---|
281 | result.disableAllClasses(); |
---|
282 | result.disableAllClassDependencies(); |
---|
283 | result.enable(Capability.NOMINAL_CLASS); |
---|
284 | result.enableDependency(Capability.NOMINAL_CLASS); |
---|
285 | } |
---|
286 | else if (m_CombinationRule == MEDIAN_RULE) { |
---|
287 | result.disableAllClasses(); |
---|
288 | result.disableAllClassDependencies(); |
---|
289 | result.enable(Capability.NUMERIC_CLASS); |
---|
290 | result.enableDependency(Capability.NUMERIC_CLASS); |
---|
291 | } |
---|
292 | |
---|
293 | return result; |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * Buildclassifier selects a classifier from the set of classifiers |
---|
298 | * by minimising error on the training data. |
---|
299 | * |
---|
300 | * @param data the training data to be used for generating the |
---|
301 | * boosted classifier. |
---|
302 | * @throws Exception if the classifier could not be built successfully |
---|
303 | */ |
---|
304 | public void buildClassifier(Instances data) throws Exception { |
---|
305 | |
---|
306 | // can classifier handle the data? |
---|
307 | getCapabilities().testWithFail(data); |
---|
308 | |
---|
309 | // remove instances with missing class |
---|
310 | Instances newData = new Instances(data); |
---|
311 | newData.deleteWithMissingClass(); |
---|
312 | |
---|
313 | m_Random = new Random(getSeed()); |
---|
314 | |
---|
315 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
316 | getClassifier(i).buildClassifier(newData); |
---|
317 | } |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * Classifies the given test instance. |
---|
322 | * |
---|
323 | * @param instance the instance to be classified |
---|
324 | * @return the predicted most likely class for the instance or |
---|
325 | * Utils.missingValue() if no prediction is made |
---|
326 | * @throws Exception if an error occurred during the prediction |
---|
327 | */ |
---|
328 | public double classifyInstance(Instance instance) throws Exception { |
---|
329 | double result; |
---|
330 | double[] dist; |
---|
331 | int index; |
---|
332 | |
---|
333 | switch (m_CombinationRule) { |
---|
334 | case AVERAGE_RULE: |
---|
335 | case PRODUCT_RULE: |
---|
336 | case MAJORITY_VOTING_RULE: |
---|
337 | case MIN_RULE: |
---|
338 | case MAX_RULE: |
---|
339 | dist = distributionForInstance(instance); |
---|
340 | if (instance.classAttribute().isNominal()) { |
---|
341 | index = Utils.maxIndex(dist); |
---|
342 | if (dist[index] == 0) |
---|
343 | result = Utils.missingValue(); |
---|
344 | else |
---|
345 | result = index; |
---|
346 | } |
---|
347 | else if (instance.classAttribute().isNumeric()){ |
---|
348 | result = dist[0]; |
---|
349 | } |
---|
350 | else { |
---|
351 | result = Utils.missingValue(); |
---|
352 | } |
---|
353 | break; |
---|
354 | case MEDIAN_RULE: |
---|
355 | result = classifyInstanceMedian(instance); |
---|
356 | break; |
---|
357 | default: |
---|
358 | throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!"); |
---|
359 | } |
---|
360 | |
---|
361 | return result; |
---|
362 | } |
---|
363 | |
---|
364 | /** |
---|
365 | * Classifies the given test instance, returning the median from all |
---|
366 | * classifiers. |
---|
367 | * |
---|
368 | * @param instance the instance to be classified |
---|
369 | * @return the predicted most likely class for the instance or |
---|
370 | * Utils.missingValue() if no prediction is made |
---|
371 | * @throws Exception if an error occurred during the prediction |
---|
372 | */ |
---|
373 | protected double classifyInstanceMedian(Instance instance) throws Exception { |
---|
374 | double[] results = new double[m_Classifiers.length]; |
---|
375 | double result; |
---|
376 | |
---|
377 | for (int i = 0; i < results.length; i++) |
---|
378 | results[i] = m_Classifiers[i].classifyInstance(instance); |
---|
379 | |
---|
380 | if (results.length == 0) |
---|
381 | result = 0; |
---|
382 | else if (results.length == 1) |
---|
383 | result = results[0]; |
---|
384 | else |
---|
385 | result = Utils.kthSmallestValue(results, results.length / 2); |
---|
386 | |
---|
387 | return result; |
---|
388 | } |
---|
389 | |
---|
390 | /** |
---|
391 | * Classifies a given instance using the selected combination rule. |
---|
392 | * |
---|
393 | * @param instance the instance to be classified |
---|
394 | * @return the distribution |
---|
395 | * @throws Exception if instance could not be classified |
---|
396 | * successfully |
---|
397 | */ |
---|
398 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
399 | double[] result = new double[instance.numClasses()]; |
---|
400 | |
---|
401 | switch (m_CombinationRule) { |
---|
402 | case AVERAGE_RULE: |
---|
403 | result = distributionForInstanceAverage(instance); |
---|
404 | break; |
---|
405 | case PRODUCT_RULE: |
---|
406 | result = distributionForInstanceProduct(instance); |
---|
407 | break; |
---|
408 | case MAJORITY_VOTING_RULE: |
---|
409 | result = distributionForInstanceMajorityVoting(instance); |
---|
410 | break; |
---|
411 | case MIN_RULE: |
---|
412 | result = distributionForInstanceMin(instance); |
---|
413 | break; |
---|
414 | case MAX_RULE: |
---|
415 | result = distributionForInstanceMax(instance); |
---|
416 | break; |
---|
417 | case MEDIAN_RULE: |
---|
418 | result[0] = classifyInstance(instance); |
---|
419 | break; |
---|
420 | default: |
---|
421 | throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!"); |
---|
422 | } |
---|
423 | |
---|
424 | if (!instance.classAttribute().isNumeric() && (Utils.sum(result) > 0)) |
---|
425 | Utils.normalize(result); |
---|
426 | |
---|
427 | return result; |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Classifies a given instance using the Average of Probabilities |
---|
432 | * combination rule. |
---|
433 | * |
---|
434 | * @param instance the instance to be classified |
---|
435 | * @return the distribution |
---|
436 | * @throws Exception if instance could not be classified |
---|
437 | * successfully |
---|
438 | */ |
---|
439 | protected double[] distributionForInstanceAverage(Instance instance) throws Exception { |
---|
440 | |
---|
441 | double[] probs = getClassifier(0).distributionForInstance(instance); |
---|
442 | for (int i = 1; i < m_Classifiers.length; i++) { |
---|
443 | double[] dist = getClassifier(i).distributionForInstance(instance); |
---|
444 | for (int j = 0; j < dist.length; j++) { |
---|
445 | probs[j] += dist[j]; |
---|
446 | } |
---|
447 | } |
---|
448 | for (int j = 0; j < probs.length; j++) { |
---|
449 | probs[j] /= (double)m_Classifiers.length; |
---|
450 | } |
---|
451 | return probs; |
---|
452 | } |
---|
453 | |
---|
454 | /** |
---|
455 | * Classifies a given instance using the Product of Probabilities |
---|
456 | * combination rule. |
---|
457 | * |
---|
458 | * @param instance the instance to be classified |
---|
459 | * @return the distribution |
---|
460 | * @throws Exception if instance could not be classified |
---|
461 | * successfully |
---|
462 | */ |
---|
463 | protected double[] distributionForInstanceProduct(Instance instance) throws Exception { |
---|
464 | |
---|
465 | double[] probs = getClassifier(0).distributionForInstance(instance); |
---|
466 | for (int i = 1; i < m_Classifiers.length; i++) { |
---|
467 | double[] dist = getClassifier(i).distributionForInstance(instance); |
---|
468 | for (int j = 0; j < dist.length; j++) { |
---|
469 | probs[j] *= dist[j]; |
---|
470 | } |
---|
471 | } |
---|
472 | |
---|
473 | return probs; |
---|
474 | } |
---|
475 | |
---|
476 | /** |
---|
477 | * Classifies a given instance using the Majority Voting combination rule. |
---|
478 | * |
---|
479 | * @param instance the instance to be classified |
---|
480 | * @return the distribution |
---|
481 | * @throws Exception if instance could not be classified |
---|
482 | * successfully |
---|
483 | */ |
---|
484 | protected double[] distributionForInstanceMajorityVoting(Instance instance) throws Exception { |
---|
485 | |
---|
486 | double[] probs = new double[instance.classAttribute().numValues()]; |
---|
487 | double[] votes = new double[probs.length]; |
---|
488 | |
---|
489 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
490 | probs = getClassifier(i).distributionForInstance(instance); |
---|
491 | int maxIndex = 0; |
---|
492 | for(int j = 0; j<probs.length; j++) { |
---|
493 | if(probs[j] > probs[maxIndex]) |
---|
494 | maxIndex = j; |
---|
495 | } |
---|
496 | |
---|
497 | // Consider the cases when multiple classes happen to have the same probability |
---|
498 | for (int j=0; j<probs.length; j++) { |
---|
499 | if (probs[j] == probs[maxIndex]) |
---|
500 | votes[j]++; |
---|
501 | } |
---|
502 | } |
---|
503 | |
---|
504 | int tmpMajorityIndex = 0; |
---|
505 | for (int k = 1; k < votes.length; k++) { |
---|
506 | if (votes[k] > votes[tmpMajorityIndex]) |
---|
507 | tmpMajorityIndex = k; |
---|
508 | } |
---|
509 | |
---|
510 | // Consider the cases when multiple classes receive the same amount of votes |
---|
511 | Vector<Integer> majorityIndexes = new Vector<Integer>(); |
---|
512 | for (int k = 0; k < votes.length; k++) { |
---|
513 | if (votes[k] == votes[tmpMajorityIndex]) |
---|
514 | majorityIndexes.add(k); |
---|
515 | } |
---|
516 | // Resolve the ties according to a uniform random distribution |
---|
517 | int majorityIndex = majorityIndexes.get(m_Random.nextInt(majorityIndexes.size())); |
---|
518 | |
---|
519 | //set probs to 0 |
---|
520 | for (int k = 0; k<probs.length; k++) |
---|
521 | probs[k] = 0; |
---|
522 | probs[majorityIndex] = 1; //the class that have been voted the most receives 1 |
---|
523 | |
---|
524 | return probs; |
---|
525 | } |
---|
526 | |
---|
527 | /** |
---|
528 | * Classifies a given instance using the Maximum Probability combination rule. |
---|
529 | * |
---|
530 | * @param instance the instance to be classified |
---|
531 | * @return the distribution |
---|
532 | * @throws Exception if instance could not be classified |
---|
533 | * successfully |
---|
534 | */ |
---|
535 | protected double[] distributionForInstanceMax(Instance instance) throws Exception { |
---|
536 | |
---|
537 | double[] max = getClassifier(0).distributionForInstance(instance); |
---|
538 | for (int i = 1; i < m_Classifiers.length; i++) { |
---|
539 | double[] dist = getClassifier(i).distributionForInstance(instance); |
---|
540 | for (int j = 0; j < dist.length; j++) { |
---|
541 | if(max[j]<dist[j]) |
---|
542 | max[j]=dist[j]; |
---|
543 | } |
---|
544 | } |
---|
545 | |
---|
546 | return max; |
---|
547 | } |
---|
548 | |
---|
549 | /** |
---|
550 | * Classifies a given instance using the Minimum Probability combination rule. |
---|
551 | * |
---|
552 | * @param instance the instance to be classified |
---|
553 | * @return the distribution |
---|
554 | * @throws Exception if instance could not be classified |
---|
555 | * successfully |
---|
556 | */ |
---|
557 | protected double[] distributionForInstanceMin(Instance instance) throws Exception { |
---|
558 | |
---|
559 | double[] min = getClassifier(0).distributionForInstance(instance); |
---|
560 | for (int i = 1; i < m_Classifiers.length; i++) { |
---|
561 | double[] dist = getClassifier(i).distributionForInstance(instance); |
---|
562 | for (int j = 0; j < dist.length; j++) { |
---|
563 | if(dist[j]<min[j]) |
---|
564 | min[j]=dist[j]; |
---|
565 | } |
---|
566 | } |
---|
567 | |
---|
568 | return min; |
---|
569 | } |
---|
570 | |
---|
571 | /** |
---|
572 | * Returns the tip text for this property |
---|
573 | * |
---|
574 | * @return tip text for this property suitable for |
---|
575 | * displaying in the explorer/experimenter gui |
---|
576 | */ |
---|
577 | public String combinationRuleTipText() { |
---|
578 | return "The combination rule used."; |
---|
579 | } |
---|
580 | |
---|
581 | /** |
---|
582 | * Gets the combination rule used |
---|
583 | * |
---|
584 | * @return the combination rule used |
---|
585 | */ |
---|
586 | public SelectedTag getCombinationRule() { |
---|
587 | return new SelectedTag(m_CombinationRule, TAGS_RULES); |
---|
588 | } |
---|
589 | |
---|
590 | /** |
---|
591 | * Sets the combination rule to use. Values other than |
---|
592 | * |
---|
593 | * @param newRule the combination rule method to use |
---|
594 | */ |
---|
595 | public void setCombinationRule(SelectedTag newRule) { |
---|
596 | if (newRule.getTags() == TAGS_RULES) |
---|
597 | m_CombinationRule = newRule.getSelectedTag().getID(); |
---|
598 | } |
---|
599 | |
---|
600 | /** |
---|
601 | * Output a representation of this classifier |
---|
602 | * |
---|
603 | * @return a string representation of the classifier |
---|
604 | */ |
---|
605 | public String toString() { |
---|
606 | |
---|
607 | if (m_Classifiers == null) { |
---|
608 | return "Vote: No model built yet."; |
---|
609 | } |
---|
610 | |
---|
611 | String result = "Vote combines"; |
---|
612 | result += " the probability distributions of these base learners:\n"; |
---|
613 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
614 | result += '\t' + getClassifierSpec(i) + '\n'; |
---|
615 | } |
---|
616 | result += "using the '"; |
---|
617 | |
---|
618 | switch (m_CombinationRule) { |
---|
619 | case AVERAGE_RULE: |
---|
620 | result += "Average of Probabilities"; |
---|
621 | break; |
---|
622 | |
---|
623 | case PRODUCT_RULE: |
---|
624 | result += "Product of Probabilities"; |
---|
625 | break; |
---|
626 | |
---|
627 | case MAJORITY_VOTING_RULE: |
---|
628 | result += "Majority Voting"; |
---|
629 | break; |
---|
630 | |
---|
631 | case MIN_RULE: |
---|
632 | result += "Minimum Probability"; |
---|
633 | break; |
---|
634 | |
---|
635 | case MAX_RULE: |
---|
636 | result += "Maximum Probability"; |
---|
637 | break; |
---|
638 | |
---|
639 | case MEDIAN_RULE: |
---|
640 | result += "Median Probability"; |
---|
641 | break; |
---|
642 | |
---|
643 | default: |
---|
644 | throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!"); |
---|
645 | } |
---|
646 | |
---|
647 | result += "' combination rule \n"; |
---|
648 | |
---|
649 | return result; |
---|
650 | } |
---|
651 | |
---|
652 | /** |
---|
653 | * Returns the revision string. |
---|
654 | * |
---|
655 | * @return the revision |
---|
656 | */ |
---|
657 | public String getRevision() { |
---|
658 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
659 | } |
---|
660 | |
---|
661 | /** |
---|
662 | * Main method for testing this class. |
---|
663 | * |
---|
664 | * @param argv should contain the following arguments: |
---|
665 | * -t training file [-T test file] [-c class index] |
---|
666 | */ |
---|
667 | public static void main(String [] argv) { |
---|
668 | runClassifier(new Vote(), argv); |
---|
669 | } |
---|
670 | } |
---|