[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Stacking.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.RandomizableMultipleClassifiersCombiner; |
---|
| 28 | import weka.classifiers.RandomizableParallelMultipleClassifiersCombiner; |
---|
| 29 | import weka.classifiers.rules.ZeroR; |
---|
| 30 | import weka.core.Attribute; |
---|
| 31 | import weka.core.Capabilities; |
---|
| 32 | import weka.core.FastVector; |
---|
| 33 | import weka.core.Instance; |
---|
| 34 | import weka.core.DenseInstance; |
---|
| 35 | import weka.core.Instances; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.OptionHandler; |
---|
| 38 | import weka.core.RevisionUtils; |
---|
| 39 | import weka.core.TechnicalInformation; |
---|
| 40 | import weka.core.TechnicalInformationHandler; |
---|
| 41 | import weka.core.Utils; |
---|
| 42 | import weka.core.TechnicalInformation.Field; |
---|
| 43 | import weka.core.TechnicalInformation.Type; |
---|
| 44 | |
---|
| 45 | import java.util.Enumeration; |
---|
| 46 | import java.util.Random; |
---|
| 47 | import java.util.Vector; |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | <!-- globalinfo-start --> |
---|
| 51 | * Combines several classifiers using the stacking method. Can do classification or regression.<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * For more information, see<br/> |
---|
| 54 | * <br/> |
---|
| 55 | * David H. Wolpert (1992). Stacked generalization. Neural Networks. 5:241-259. |
---|
| 56 | * <p/> |
---|
| 57 | <!-- globalinfo-end --> |
---|
| 58 | * |
---|
| 59 | <!-- technical-bibtex-start --> |
---|
| 60 | * BibTeX: |
---|
| 61 | * <pre> |
---|
| 62 | * @article{Wolpert1992, |
---|
| 63 | * author = {David H. Wolpert}, |
---|
| 64 | * journal = {Neural Networks}, |
---|
| 65 | * pages = {241-259}, |
---|
| 66 | * publisher = {Pergamon Press}, |
---|
| 67 | * title = {Stacked generalization}, |
---|
| 68 | * volume = {5}, |
---|
| 69 | * year = {1992} |
---|
| 70 | * } |
---|
| 71 | * </pre> |
---|
| 72 | * <p/> |
---|
| 73 | <!-- technical-bibtex-end --> |
---|
| 74 | * |
---|
| 75 | <!-- options-start --> |
---|
| 76 | * Valid options are: <p/> |
---|
| 77 | * |
---|
| 78 | * <pre> -M <scheme specification> |
---|
| 79 | * Full name of meta classifier, followed by options. |
---|
| 80 | * (default: "weka.classifiers.rules.Zero")</pre> |
---|
| 81 | * |
---|
| 82 | * <pre> -X <number of folds> |
---|
| 83 | * Sets the number of cross-validation folds.</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -S <num> |
---|
| 86 | * Random number seed. |
---|
| 87 | * (default 1)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -B <classifier specification> |
---|
| 90 | * Full class name of classifier to include, followed |
---|
| 91 | * by scheme options. May be specified multiple times. |
---|
| 92 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -D |
---|
| 95 | * If set, classifier is run in debug mode and |
---|
| 96 | * may output additional info to the console</pre> |
---|
| 97 | * |
---|
| 98 | <!-- options-end --> |
---|
| 99 | * |
---|
| 100 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 101 | * @version $Revision: 5987 $ |
---|
| 102 | */ |
---|
| 103 | public class Stacking |
---|
| 104 | extends RandomizableParallelMultipleClassifiersCombiner |
---|
| 105 | implements TechnicalInformationHandler { |
---|
| 106 | |
---|
| 107 | /** for serialization */ |
---|
| 108 | static final long serialVersionUID = 5134738557155845452L; |
---|
| 109 | |
---|
| 110 | /** The meta classifier */ |
---|
| 111 | protected Classifier m_MetaClassifier = new ZeroR(); |
---|
| 112 | |
---|
| 113 | /** Format for meta data */ |
---|
| 114 | protected Instances m_MetaFormat = null; |
---|
| 115 | |
---|
| 116 | /** Format for base data */ |
---|
| 117 | protected Instances m_BaseFormat = null; |
---|
| 118 | |
---|
| 119 | /** Set the number of folds for the cross-validation */ |
---|
| 120 | protected int m_NumFolds = 10; |
---|
| 121 | |
---|
| 122 | /** |
---|
| 123 | * Returns a string describing classifier |
---|
| 124 | * @return a description suitable for |
---|
| 125 | * displaying in the explorer/experimenter gui |
---|
| 126 | */ |
---|
| 127 | public String globalInfo() { |
---|
| 128 | |
---|
| 129 | return "Combines several classifiers using the stacking method. " |
---|
| 130 | + "Can do classification or regression.\n\n" |
---|
| 131 | + "For more information, see\n\n" |
---|
| 132 | + getTechnicalInformation().toString(); |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | /** |
---|
| 136 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 137 | * detailed information about the technical background of this class, |
---|
| 138 | * e.g., paper reference or book this class is based on. |
---|
| 139 | * |
---|
| 140 | * @return the technical information about this class |
---|
| 141 | */ |
---|
| 142 | public TechnicalInformation getTechnicalInformation() { |
---|
| 143 | TechnicalInformation result; |
---|
| 144 | |
---|
| 145 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 146 | result.setValue(Field.AUTHOR, "David H. Wolpert"); |
---|
| 147 | result.setValue(Field.YEAR, "1992"); |
---|
| 148 | result.setValue(Field.TITLE, "Stacked generalization"); |
---|
| 149 | result.setValue(Field.JOURNAL, "Neural Networks"); |
---|
| 150 | result.setValue(Field.VOLUME, "5"); |
---|
| 151 | result.setValue(Field.PAGES, "241-259"); |
---|
| 152 | result.setValue(Field.PUBLISHER, "Pergamon Press"); |
---|
| 153 | |
---|
| 154 | return result; |
---|
| 155 | } |
---|
| 156 | |
---|
| 157 | /** |
---|
| 158 | * Returns an enumeration describing the available options. |
---|
| 159 | * |
---|
| 160 | * @return an enumeration of all the available options. |
---|
| 161 | */ |
---|
| 162 | public Enumeration listOptions() { |
---|
| 163 | |
---|
| 164 | Vector newVector = new Vector(2); |
---|
| 165 | newVector.addElement(new Option( |
---|
| 166 | metaOption(), |
---|
| 167 | "M", 0, "-M <scheme specification>")); |
---|
| 168 | newVector.addElement(new Option( |
---|
| 169 | "\tSets the number of cross-validation folds.", |
---|
| 170 | "X", 1, "-X <number of folds>")); |
---|
| 171 | |
---|
| 172 | Enumeration enu = super.listOptions(); |
---|
| 173 | while (enu.hasMoreElements()) { |
---|
| 174 | newVector.addElement(enu.nextElement()); |
---|
| 175 | } |
---|
| 176 | return newVector.elements(); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | /** |
---|
| 180 | * String describing option for setting meta classifier |
---|
| 181 | * |
---|
| 182 | * @return the string describing the option |
---|
| 183 | */ |
---|
| 184 | protected String metaOption() { |
---|
| 185 | |
---|
| 186 | return "\tFull name of meta classifier, followed by options.\n" + |
---|
| 187 | "\t(default: \"weka.classifiers.rules.Zero\")"; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /** |
---|
| 191 | * Parses a given list of options. <p/> |
---|
| 192 | * |
---|
| 193 | <!-- options-start --> |
---|
| 194 | * Valid options are: <p/> |
---|
| 195 | * |
---|
| 196 | * <pre> -M <scheme specification> |
---|
| 197 | * Full name of meta classifier, followed by options. |
---|
| 198 | * (default: "weka.classifiers.rules.Zero")</pre> |
---|
| 199 | * |
---|
| 200 | * <pre> -X <number of folds> |
---|
| 201 | * Sets the number of cross-validation folds.</pre> |
---|
| 202 | * |
---|
| 203 | * <pre> -S <num> |
---|
| 204 | * Random number seed. |
---|
| 205 | * (default 1)</pre> |
---|
| 206 | * |
---|
| 207 | * <pre> -B <classifier specification> |
---|
| 208 | * Full class name of classifier to include, followed |
---|
| 209 | * by scheme options. May be specified multiple times. |
---|
| 210 | * (default: "weka.classifiers.rules.ZeroR")</pre> |
---|
| 211 | * |
---|
| 212 | * <pre> -D |
---|
| 213 | * If set, classifier is run in debug mode and |
---|
| 214 | * may output additional info to the console</pre> |
---|
| 215 | * |
---|
| 216 | <!-- options-end --> |
---|
| 217 | * |
---|
| 218 | * @param options the list of options as an array of strings |
---|
| 219 | * @throws Exception if an option is not supported |
---|
| 220 | */ |
---|
| 221 | public void setOptions(String[] options) throws Exception { |
---|
| 222 | |
---|
| 223 | String numFoldsString = Utils.getOption('X', options); |
---|
| 224 | if (numFoldsString.length() != 0) { |
---|
| 225 | setNumFolds(Integer.parseInt(numFoldsString)); |
---|
| 226 | } else { |
---|
| 227 | setNumFolds(10); |
---|
| 228 | } |
---|
| 229 | processMetaOptions(options); |
---|
| 230 | super.setOptions(options); |
---|
| 231 | } |
---|
| 232 | |
---|
| 233 | /** |
---|
| 234 | * Process options setting meta classifier. |
---|
| 235 | * |
---|
| 236 | * @param options the options to parse |
---|
| 237 | * @throws Exception if the parsing fails |
---|
| 238 | */ |
---|
| 239 | protected void processMetaOptions(String[] options) throws Exception { |
---|
| 240 | |
---|
| 241 | String classifierString = Utils.getOption('M', options); |
---|
| 242 | String [] classifierSpec = Utils.splitOptions(classifierString); |
---|
| 243 | String classifierName; |
---|
| 244 | if (classifierSpec.length == 0) { |
---|
| 245 | classifierName = "weka.classifiers.rules.ZeroR"; |
---|
| 246 | } else { |
---|
| 247 | classifierName = classifierSpec[0]; |
---|
| 248 | classifierSpec[0] = ""; |
---|
| 249 | } |
---|
| 250 | setMetaClassifier(AbstractClassifier.forName(classifierName, classifierSpec)); |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Gets the current settings of the Classifier. |
---|
| 255 | * |
---|
| 256 | * @return an array of strings suitable for passing to setOptions |
---|
| 257 | */ |
---|
| 258 | public String [] getOptions() { |
---|
| 259 | |
---|
| 260 | String [] superOptions = super.getOptions(); |
---|
| 261 | String [] options = new String [superOptions.length + 4]; |
---|
| 262 | |
---|
| 263 | int current = 0; |
---|
| 264 | options[current++] = "-X"; options[current++] = "" + getNumFolds(); |
---|
| 265 | options[current++] = "-M"; |
---|
| 266 | options[current++] = getMetaClassifier().getClass().getName() + " " |
---|
| 267 | + Utils.joinOptions(((OptionHandler)getMetaClassifier()).getOptions()); |
---|
| 268 | |
---|
| 269 | System.arraycopy(superOptions, 0, options, current, |
---|
| 270 | superOptions.length); |
---|
| 271 | return options; |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | /** |
---|
| 275 | * Returns the tip text for this property |
---|
| 276 | * @return tip text for this property suitable for |
---|
| 277 | * displaying in the explorer/experimenter gui |
---|
| 278 | */ |
---|
| 279 | public String numFoldsTipText() { |
---|
| 280 | return "The number of folds used for cross-validation."; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** |
---|
| 284 | * Gets the number of folds for the cross-validation. |
---|
| 285 | * |
---|
| 286 | * @return the number of folds for the cross-validation |
---|
| 287 | */ |
---|
| 288 | public int getNumFolds() { |
---|
| 289 | |
---|
| 290 | return m_NumFolds; |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | /** |
---|
| 294 | * Sets the number of folds for the cross-validation. |
---|
| 295 | * |
---|
| 296 | * @param numFolds the number of folds for the cross-validation |
---|
| 297 | * @throws Exception if parameter illegal |
---|
| 298 | */ |
---|
| 299 | public void setNumFolds(int numFolds) throws Exception { |
---|
| 300 | |
---|
| 301 | if (numFolds < 0) { |
---|
| 302 | throw new IllegalArgumentException("Stacking: Number of cross-validation " + |
---|
| 303 | "folds must be positive."); |
---|
| 304 | } |
---|
| 305 | m_NumFolds = numFolds; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | /** |
---|
| 309 | * Returns the tip text for this property |
---|
| 310 | * @return tip text for this property suitable for |
---|
| 311 | * displaying in the explorer/experimenter gui |
---|
| 312 | */ |
---|
| 313 | public String metaClassifierTipText() { |
---|
| 314 | return "The meta classifiers to be used."; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * Adds meta classifier |
---|
| 319 | * |
---|
| 320 | * @param classifier the classifier with all options set. |
---|
| 321 | */ |
---|
| 322 | public void setMetaClassifier(Classifier classifier) { |
---|
| 323 | |
---|
| 324 | m_MetaClassifier = classifier; |
---|
| 325 | } |
---|
| 326 | |
---|
| 327 | /** |
---|
| 328 | * Gets the meta classifier. |
---|
| 329 | * |
---|
| 330 | * @return the meta classifier |
---|
| 331 | */ |
---|
| 332 | public Classifier getMetaClassifier() { |
---|
| 333 | |
---|
| 334 | return m_MetaClassifier; |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * Returns combined capabilities of the base classifiers, i.e., the |
---|
| 339 | * capabilities all of them have in common. |
---|
| 340 | * |
---|
| 341 | * @return the capabilities of the base classifiers |
---|
| 342 | */ |
---|
| 343 | public Capabilities getCapabilities() { |
---|
| 344 | Capabilities result; |
---|
| 345 | |
---|
| 346 | result = super.getCapabilities(); |
---|
| 347 | result.setMinimumNumberInstances(getNumFolds()); |
---|
| 348 | |
---|
| 349 | return result; |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /** |
---|
| 353 | * Buildclassifier selects a classifier from the set of classifiers |
---|
| 354 | * by minimising error on the training data. |
---|
| 355 | * |
---|
| 356 | * @param data the training data to be used for generating the |
---|
| 357 | * boosted classifier. |
---|
| 358 | * @throws Exception if the classifier could not be built successfully |
---|
| 359 | */ |
---|
| 360 | public void buildClassifier(Instances data) throws Exception { |
---|
| 361 | |
---|
| 362 | if (m_MetaClassifier == null) { |
---|
| 363 | throw new IllegalArgumentException("No meta classifier has been set"); |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | // can classifier handle the data? |
---|
| 367 | getCapabilities().testWithFail(data); |
---|
| 368 | |
---|
| 369 | // remove instances with missing class |
---|
| 370 | Instances newData = new Instances(data); |
---|
| 371 | m_BaseFormat = new Instances(data, 0); |
---|
| 372 | newData.deleteWithMissingClass(); |
---|
| 373 | |
---|
| 374 | Random random = new Random(m_Seed); |
---|
| 375 | newData.randomize(random); |
---|
| 376 | if (newData.classAttribute().isNominal()) { |
---|
| 377 | newData.stratify(m_NumFolds); |
---|
| 378 | } |
---|
| 379 | |
---|
| 380 | // Create meta level |
---|
| 381 | generateMetaLevel(newData, random); |
---|
| 382 | |
---|
| 383 | // restart the executor pool because at the end of processing |
---|
| 384 | // a set of classifiers it gets shutdown to prevent the program |
---|
| 385 | // executing as a server |
---|
| 386 | super.buildClassifier(newData); |
---|
| 387 | |
---|
| 388 | // Rebuild all the base classifiers on the full training data |
---|
| 389 | buildClassifiers(newData); |
---|
| 390 | } |
---|
| 391 | |
---|
| 392 | /** |
---|
| 393 | * Generates the meta data |
---|
| 394 | * |
---|
| 395 | * @param newData the data to work on |
---|
| 396 | * @param random the random number generator to use for cross-validation |
---|
| 397 | * @throws Exception if generation fails |
---|
| 398 | */ |
---|
| 399 | protected void generateMetaLevel(Instances newData, Random random) |
---|
| 400 | throws Exception { |
---|
| 401 | |
---|
| 402 | Instances metaData = metaFormat(newData); |
---|
| 403 | m_MetaFormat = new Instances(metaData, 0); |
---|
| 404 | for (int j = 0; j < m_NumFolds; j++) { |
---|
| 405 | Instances train = newData.trainCV(m_NumFolds, j, random); |
---|
| 406 | |
---|
| 407 | // start the executor pool (if necessary) |
---|
| 408 | // has to be done after each set of classifiers as the |
---|
| 409 | // executor pool gets shut down in order to prevent the |
---|
| 410 | // program executing as a server (and not returning to |
---|
| 411 | // the command prompt when run from the command line |
---|
| 412 | super.buildClassifier(train); |
---|
| 413 | |
---|
| 414 | // construct the actual classifiers |
---|
| 415 | buildClassifiers(train); |
---|
| 416 | |
---|
| 417 | // Classify test instances and add to meta data |
---|
| 418 | Instances test = newData.testCV(m_NumFolds, j); |
---|
| 419 | for (int i = 0; i < test.numInstances(); i++) { |
---|
| 420 | metaData.add(metaInstance(test.instance(i))); |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | m_MetaClassifier.buildClassifier(metaData); |
---|
| 425 | } |
---|
| 426 | |
---|
| 427 | /** |
---|
| 428 | * Returns class probabilities. |
---|
| 429 | * |
---|
| 430 | * @param instance the instance to be classified |
---|
| 431 | * @return the distribution |
---|
| 432 | * @throws Exception if instance could not be classified |
---|
| 433 | * successfully |
---|
| 434 | */ |
---|
| 435 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 436 | |
---|
| 437 | return m_MetaClassifier.distributionForInstance(metaInstance(instance)); |
---|
| 438 | } |
---|
| 439 | |
---|
| 440 | /** |
---|
| 441 | * Output a representation of this classifier |
---|
| 442 | * |
---|
| 443 | * @return a string representation of the classifier |
---|
| 444 | */ |
---|
| 445 | public String toString() { |
---|
| 446 | |
---|
| 447 | if (m_Classifiers.length == 0) { |
---|
| 448 | return "Stacking: No base schemes entered."; |
---|
| 449 | } |
---|
| 450 | if (m_MetaClassifier == null) { |
---|
| 451 | return "Stacking: No meta scheme selected."; |
---|
| 452 | } |
---|
| 453 | if (m_MetaFormat == null) { |
---|
| 454 | return "Stacking: No model built yet."; |
---|
| 455 | } |
---|
| 456 | String result = "Stacking\n\nBase classifiers\n\n"; |
---|
| 457 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 458 | result += getClassifier(i).toString() +"\n\n"; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | result += "\n\nMeta classifier\n\n"; |
---|
| 462 | result += m_MetaClassifier.toString(); |
---|
| 463 | |
---|
| 464 | return result; |
---|
| 465 | } |
---|
| 466 | |
---|
| 467 | /** |
---|
| 468 | * Makes the format for the level-1 data. |
---|
| 469 | * |
---|
| 470 | * @param instances the level-0 format |
---|
| 471 | * @return the format for the meta data |
---|
| 472 | * @throws Exception if the format generation fails |
---|
| 473 | */ |
---|
| 474 | protected Instances metaFormat(Instances instances) throws Exception { |
---|
| 475 | |
---|
| 476 | FastVector attributes = new FastVector(); |
---|
| 477 | Instances metaFormat; |
---|
| 478 | |
---|
| 479 | for (int k = 0; k < m_Classifiers.length; k++) { |
---|
| 480 | Classifier classifier = (Classifier) getClassifier(k); |
---|
| 481 | String name = classifier.getClass().getName(); |
---|
| 482 | if (m_BaseFormat.classAttribute().isNumeric()) { |
---|
| 483 | attributes.addElement(new Attribute(name)); |
---|
| 484 | } else { |
---|
| 485 | for (int j = 0; j < m_BaseFormat.classAttribute().numValues(); j++) { |
---|
| 486 | attributes.addElement(new Attribute(name + ":" + |
---|
| 487 | m_BaseFormat |
---|
| 488 | .classAttribute().value(j))); |
---|
| 489 | } |
---|
| 490 | } |
---|
| 491 | } |
---|
| 492 | attributes.addElement(m_BaseFormat.classAttribute().copy()); |
---|
| 493 | metaFormat = new Instances("Meta format", attributes, 0); |
---|
| 494 | metaFormat.setClassIndex(metaFormat.numAttributes() - 1); |
---|
| 495 | return metaFormat; |
---|
| 496 | } |
---|
| 497 | |
---|
| 498 | /** |
---|
| 499 | * Makes a level-1 instance from the given instance. |
---|
| 500 | * |
---|
| 501 | * @param instance the instance to be transformed |
---|
| 502 | * @return the level-1 instance |
---|
| 503 | * @throws Exception if the instance generation fails |
---|
| 504 | */ |
---|
| 505 | protected Instance metaInstance(Instance instance) throws Exception { |
---|
| 506 | |
---|
| 507 | double[] values = new double[m_MetaFormat.numAttributes()]; |
---|
| 508 | Instance metaInstance; |
---|
| 509 | int i = 0; |
---|
| 510 | for (int k = 0; k < m_Classifiers.length; k++) { |
---|
| 511 | Classifier classifier = getClassifier(k); |
---|
| 512 | if (m_BaseFormat.classAttribute().isNumeric()) { |
---|
| 513 | values[i++] = classifier.classifyInstance(instance); |
---|
| 514 | } else { |
---|
| 515 | double[] dist = classifier.distributionForInstance(instance); |
---|
| 516 | for (int j = 0; j < dist.length; j++) { |
---|
| 517 | values[i++] = dist[j]; |
---|
| 518 | } |
---|
| 519 | } |
---|
| 520 | } |
---|
| 521 | values[i] = instance.classValue(); |
---|
| 522 | metaInstance = new DenseInstance(1, values); |
---|
| 523 | metaInstance.setDataset(m_MetaFormat); |
---|
| 524 | return metaInstance; |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | /** |
---|
| 528 | * Returns the revision string. |
---|
| 529 | * |
---|
| 530 | * @return the revision |
---|
| 531 | */ |
---|
| 532 | public String getRevision() { |
---|
| 533 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * Main method for testing this class. |
---|
| 538 | * |
---|
| 539 | * @param argv should contain the following arguments: |
---|
| 540 | * -t training file [-T test file] [-c class index] |
---|
| 541 | */ |
---|
| 542 | public static void main(String [] argv) { |
---|
| 543 | runClassifier(new Stacking(), argv); |
---|
| 544 | } |
---|
| 545 | } |
---|