1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RandomCommittee.java |
---|
19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
28 | import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Randomizable; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.WeightedInstancesHandler; |
---|
35 | |
---|
36 | import java.util.Random; |
---|
37 | |
---|
38 | /** |
---|
39 | <!-- globalinfo-start --> |
---|
40 | * Class for building an ensemble of randomizable base classifiers. Each base classifiers is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. |
---|
41 | * <p/> |
---|
42 | <!-- globalinfo-end --> |
---|
43 | * |
---|
44 | <!-- options-start --> |
---|
45 | * Valid options are: <p/> |
---|
46 | * |
---|
47 | * <pre> -S <num> |
---|
48 | * Random number seed. |
---|
49 | * (default 1)</pre> |
---|
50 | * |
---|
51 | * <pre> -I <num> |
---|
52 | * Number of iterations. |
---|
53 | * (default 10)</pre> |
---|
54 | * |
---|
55 | * <pre> -D |
---|
56 | * If set, classifier is run in debug mode and |
---|
57 | * may output additional info to the console</pre> |
---|
58 | * |
---|
59 | * <pre> -W |
---|
60 | * Full name of base classifier. |
---|
61 | * (default: weka.classifiers.trees.RandomTree)</pre> |
---|
62 | * |
---|
63 | * <pre> |
---|
64 | * Options specific to classifier weka.classifiers.trees.RandomTree: |
---|
65 | * </pre> |
---|
66 | * |
---|
67 | * <pre> -K <number of attributes> |
---|
68 | * Number of attributes to randomly investigate |
---|
69 | * (<1 = int(log(#attributes)+1)).</pre> |
---|
70 | * |
---|
71 | * <pre> -M <minimum number of instances> |
---|
72 | * Set minimum number of instances per leaf.</pre> |
---|
73 | * |
---|
74 | * <pre> -S <num> |
---|
75 | * Seed for random number generator. |
---|
76 | * (default 1)</pre> |
---|
77 | * |
---|
78 | * <pre> -depth <num> |
---|
79 | * The maximum depth of the tree, 0 for unlimited. |
---|
80 | * (default 0)</pre> |
---|
81 | * |
---|
82 | * <pre> -D |
---|
83 | * If set, classifier is run in debug mode and |
---|
84 | * may output additional info to the console</pre> |
---|
85 | * |
---|
86 | <!-- options-end --> |
---|
87 | * |
---|
88 | * Options after -- are passed to the designated classifier.<p> |
---|
89 | * |
---|
90 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
91 | * @version $Revision: 5928 $ |
---|
92 | */ |
---|
93 | public class RandomCommittee |
---|
94 | extends RandomizableParallelIteratedSingleClassifierEnhancer |
---|
95 | implements WeightedInstancesHandler { |
---|
96 | |
---|
97 | /** for serialization */ |
---|
98 | static final long serialVersionUID = -9204394360557300092L; |
---|
99 | |
---|
100 | /** training data */ |
---|
101 | protected Instances m_data; |
---|
102 | |
---|
103 | /** |
---|
104 | * Constructor. |
---|
105 | */ |
---|
106 | public RandomCommittee() { |
---|
107 | |
---|
108 | m_Classifier = new weka.classifiers.trees.RandomTree(); |
---|
109 | } |
---|
110 | |
---|
111 | /** |
---|
112 | * String describing default classifier. |
---|
113 | * |
---|
114 | * @return the default classifier classname |
---|
115 | */ |
---|
116 | protected String defaultClassifierString() { |
---|
117 | |
---|
118 | return "weka.classifiers.trees.RandomTree"; |
---|
119 | } |
---|
120 | |
---|
121 | /** |
---|
122 | * Returns a string describing classifier |
---|
123 | * @return a description suitable for |
---|
124 | * displaying in the explorer/experimenter gui |
---|
125 | */ |
---|
126 | public String globalInfo() { |
---|
127 | |
---|
128 | return "Class for building an ensemble of randomizable base classifiers. Each " |
---|
129 | + "base classifiers is built using a different random number seed (but based " |
---|
130 | + "one the same data). The final prediction is a straight average of the " |
---|
131 | + "predictions generated by the individual base classifiers."; |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Builds the committee of randomizable classifiers. |
---|
136 | * |
---|
137 | * @param data the training data to be used for generating the |
---|
138 | * bagged classifier. |
---|
139 | * @exception Exception if the classifier could not be built successfully |
---|
140 | */ |
---|
141 | public void buildClassifier(Instances data) throws Exception { |
---|
142 | |
---|
143 | // can classifier handle the data? |
---|
144 | getCapabilities().testWithFail(data); |
---|
145 | |
---|
146 | // remove instances with missing class |
---|
147 | m_data = new Instances(data); |
---|
148 | m_data.deleteWithMissingClass(); |
---|
149 | super.buildClassifier(m_data); |
---|
150 | |
---|
151 | if (!(m_Classifier instanceof Randomizable)) { |
---|
152 | throw new IllegalArgumentException("Base learner must implement Randomizable!"); |
---|
153 | } |
---|
154 | |
---|
155 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations); |
---|
156 | |
---|
157 | Random random = m_data.getRandomNumberGenerator(m_Seed); |
---|
158 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
159 | |
---|
160 | // Set the random number seed for the current classifier. |
---|
161 | ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt()); |
---|
162 | |
---|
163 | // Build the classifier. |
---|
164 | // m_Classifiers[j].buildClassifier(m_data); |
---|
165 | } |
---|
166 | |
---|
167 | buildClassifiers(); |
---|
168 | |
---|
169 | // save memory |
---|
170 | m_data = null; |
---|
171 | } |
---|
172 | |
---|
173 | /** |
---|
174 | * Returns a training set for a particular iteration. |
---|
175 | * |
---|
176 | * @param iteration the number of the iteration for the requested training set. |
---|
177 | * @return the training set for the supplied iteration number |
---|
178 | * @throws Exception if something goes wrong when generating a training set. |
---|
179 | */ |
---|
180 | protected synchronized Instances getTrainingSet(int iteration) throws Exception { |
---|
181 | |
---|
182 | // we don't manipulate the training data in any way. |
---|
183 | return m_data; |
---|
184 | } |
---|
185 | |
---|
186 | /** |
---|
187 | * Calculates the class membership probabilities for the given test |
---|
188 | * instance. |
---|
189 | * |
---|
190 | * @param instance the instance to be classified |
---|
191 | * @return preedicted class probability distribution |
---|
192 | * @exception Exception if distribution can't be computed successfully |
---|
193 | */ |
---|
194 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
195 | |
---|
196 | double [] sums = new double [instance.numClasses()], newProbs; |
---|
197 | |
---|
198 | for (int i = 0; i < m_NumIterations; i++) { |
---|
199 | if (instance.classAttribute().isNumeric() == true) { |
---|
200 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
---|
201 | } else { |
---|
202 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
---|
203 | for (int j = 0; j < newProbs.length; j++) |
---|
204 | sums[j] += newProbs[j]; |
---|
205 | } |
---|
206 | } |
---|
207 | if (instance.classAttribute().isNumeric() == true) { |
---|
208 | sums[0] /= (double)m_NumIterations; |
---|
209 | return sums; |
---|
210 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
---|
211 | return sums; |
---|
212 | } else { |
---|
213 | Utils.normalize(sums); |
---|
214 | return sums; |
---|
215 | } |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Returns description of the committee. |
---|
220 | * |
---|
221 | * @return description of the committee as a string |
---|
222 | */ |
---|
223 | public String toString() { |
---|
224 | |
---|
225 | if (m_Classifiers == null) { |
---|
226 | return "RandomCommittee: No model built yet."; |
---|
227 | } |
---|
228 | StringBuffer text = new StringBuffer(); |
---|
229 | text.append("All the base classifiers: \n\n"); |
---|
230 | for (int i = 0; i < m_Classifiers.length; i++) |
---|
231 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
232 | |
---|
233 | return text.toString(); |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Returns the revision string. |
---|
238 | * |
---|
239 | * @return the revision |
---|
240 | */ |
---|
241 | public String getRevision() { |
---|
242 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * Main method for testing this class. |
---|
247 | * |
---|
248 | * @param argv the options |
---|
249 | */ |
---|
250 | public static void main(String [] argv) { |
---|
251 | runClassifier(new RandomCommittee(), argv); |
---|
252 | } |
---|
253 | } |
---|
254 | |
---|