[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * MultiClassClassifier.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
| 28 | import weka.classifiers.rules.ZeroR; |
---|
| 29 | import weka.core.Attribute; |
---|
| 30 | import weka.core.Capabilities; |
---|
| 31 | import weka.core.FastVector; |
---|
| 32 | import weka.core.Instance; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.Range; |
---|
| 37 | import weka.core.RevisionHandler; |
---|
| 38 | import weka.core.RevisionUtils; |
---|
| 39 | import weka.core.SelectedTag; |
---|
| 40 | import weka.core.Tag; |
---|
| 41 | import weka.core.Utils; |
---|
| 42 | import weka.core.Capabilities.Capability; |
---|
| 43 | import weka.filters.Filter; |
---|
| 44 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
| 45 | import weka.filters.unsupervised.instance.RemoveWithValues; |
---|
| 46 | |
---|
| 47 | import java.io.Serializable; |
---|
| 48 | import java.util.Enumeration; |
---|
| 49 | import java.util.Random; |
---|
| 50 | import java.util.Vector; |
---|
| 51 | |
---|
| 52 | /** |
---|
| 53 | <!-- globalinfo-start --> |
---|
| 54 | * A metaclassifier for handling multi-class datasets with 2-class classifiers. This classifier is also capable of applying error correcting output codes for increased accuracy. |
---|
| 55 | * <p/> |
---|
| 56 | <!-- globalinfo-end --> |
---|
| 57 | * |
---|
| 58 | <!-- options-start --> |
---|
| 59 | * Valid options are: <p/> |
---|
| 60 | * |
---|
| 61 | * <pre> -M <num> |
---|
| 62 | * Sets the method to use. Valid values are 0 (1-against-all), |
---|
| 63 | * 1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) |
---|
| 64 | * </pre> |
---|
| 65 | * |
---|
| 66 | * <pre> -R <num> |
---|
| 67 | * Sets the multiplier when using random codes. (default 2.0)</pre> |
---|
| 68 | * |
---|
| 69 | * <pre> -P |
---|
| 70 | * Use pairwise coupling (only has an effect for 1-against1)</pre> |
---|
| 71 | * |
---|
| 72 | * <pre> -S <num> |
---|
| 73 | * Random number seed. |
---|
| 74 | * (default 1)</pre> |
---|
| 75 | * |
---|
| 76 | * <pre> -D |
---|
| 77 | * If set, classifier is run in debug mode and |
---|
| 78 | * may output additional info to the console</pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -W |
---|
| 81 | * Full name of base classifier. |
---|
| 82 | * (default: weka.classifiers.functions.Logistic)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> |
---|
| 85 | * Options specific to classifier weka.classifiers.functions.Logistic: |
---|
| 86 | * </pre> |
---|
| 87 | * |
---|
| 88 | * <pre> -D |
---|
| 89 | * Turn on debugging output.</pre> |
---|
| 90 | * |
---|
| 91 | * <pre> -R <ridge> |
---|
| 92 | * Set the ridge in the log-likelihood.</pre> |
---|
| 93 | * |
---|
| 94 | * <pre> -M <number> |
---|
| 95 | * Set the maximum number of iterations (default -1, until convergence).</pre> |
---|
| 96 | * |
---|
| 97 | <!-- options-end --> |
---|
| 98 | * |
---|
| 99 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 100 | * @author Len Trigg (len@reeltwo.com) |
---|
| 101 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
| 102 | * @version $Revision: 5928 $ |
---|
| 103 | */ |
---|
| 104 | public class MultiClassClassifier |
---|
| 105 | extends RandomizableSingleClassifierEnhancer |
---|
| 106 | implements OptionHandler { |
---|
| 107 | |
---|
| 108 | /** for serialization */ |
---|
| 109 | static final long serialVersionUID = -3879602011542849141L; |
---|
| 110 | |
---|
| 111 | /** The classifiers. */ |
---|
| 112 | private Classifier [] m_Classifiers; |
---|
| 113 | |
---|
| 114 | /** Use pairwise coupling with 1-vs-1 */ |
---|
| 115 | private boolean m_pairwiseCoupling = false; |
---|
| 116 | |
---|
| 117 | /** Needed for pairwise coupling */ |
---|
| 118 | private double [] m_SumOfWeights; |
---|
| 119 | |
---|
| 120 | /** The filters used to transform the class. */ |
---|
| 121 | private Filter[] m_ClassFilters; |
---|
| 122 | |
---|
| 123 | /** ZeroR classifier for when all base classifier return zero probability. */ |
---|
| 124 | private ZeroR m_ZeroR; |
---|
| 125 | |
---|
| 126 | /** Internal copy of the class attribute for output purposes */ |
---|
| 127 | private Attribute m_ClassAttribute; |
---|
| 128 | |
---|
| 129 | /** A transformed dataset header used by the 1-against-1 method */ |
---|
| 130 | private Instances m_TwoClassDataset; |
---|
| 131 | |
---|
| 132 | /** |
---|
| 133 | * The multiplier when generating random codes. Will generate |
---|
| 134 | * numClasses * m_RandomWidthFactor codes |
---|
| 135 | */ |
---|
| 136 | private double m_RandomWidthFactor = 2.0; |
---|
| 137 | |
---|
| 138 | /** The multiclass method to use */ |
---|
| 139 | private int m_Method = METHOD_1_AGAINST_ALL; |
---|
| 140 | |
---|
| 141 | /** 1-against-all */ |
---|
| 142 | public static final int METHOD_1_AGAINST_ALL = 0; |
---|
| 143 | /** random correction code */ |
---|
| 144 | public static final int METHOD_ERROR_RANDOM = 1; |
---|
| 145 | /** exhaustive correction code */ |
---|
| 146 | public static final int METHOD_ERROR_EXHAUSTIVE = 2; |
---|
| 147 | /** 1-against-1 */ |
---|
| 148 | public static final int METHOD_1_AGAINST_1 = 3; |
---|
| 149 | /** The error correction modes */ |
---|
| 150 | public static final Tag [] TAGS_METHOD = { |
---|
| 151 | new Tag(METHOD_1_AGAINST_ALL, "1-against-all"), |
---|
| 152 | new Tag(METHOD_ERROR_RANDOM, "Random correction code"), |
---|
| 153 | new Tag(METHOD_ERROR_EXHAUSTIVE, "Exhaustive correction code"), |
---|
| 154 | new Tag(METHOD_1_AGAINST_1, "1-against-1") |
---|
| 155 | }; |
---|
| 156 | |
---|
| 157 | /** |
---|
| 158 | * Constructor. |
---|
| 159 | */ |
---|
| 160 | public MultiClassClassifier() { |
---|
| 161 | |
---|
| 162 | m_Classifier = new weka.classifiers.functions.Logistic(); |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * String describing default classifier. |
---|
| 167 | * |
---|
| 168 | * @return the default classifier classname |
---|
| 169 | */ |
---|
| 170 | protected String defaultClassifierString() { |
---|
| 171 | |
---|
| 172 | return "weka.classifiers.functions.Logistic"; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * Interface for the code constructors |
---|
| 177 | */ |
---|
| 178 | private abstract class Code |
---|
| 179 | implements Serializable, RevisionHandler { |
---|
| 180 | |
---|
| 181 | /** for serialization */ |
---|
| 182 | static final long serialVersionUID = 418095077487120846L; |
---|
| 183 | |
---|
| 184 | /** |
---|
| 185 | * Subclasses must allocate and fill these. |
---|
| 186 | * First dimension is number of codes. |
---|
| 187 | * Second dimension is number of classes. |
---|
| 188 | */ |
---|
| 189 | protected boolean [][]m_Codebits; |
---|
| 190 | |
---|
| 191 | /** |
---|
| 192 | * Returns the number of codes. |
---|
| 193 | * @return the number of codes |
---|
| 194 | */ |
---|
| 195 | public int size() { |
---|
| 196 | return m_Codebits.length; |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | /** |
---|
| 200 | * Returns the indices of the values set to true for this code, |
---|
| 201 | * using 1-based indexing (for input to Range). |
---|
| 202 | * |
---|
| 203 | * @param which the index |
---|
| 204 | * @return the 1-based indices |
---|
| 205 | */ |
---|
| 206 | public String getIndices(int which) { |
---|
| 207 | StringBuffer sb = new StringBuffer(); |
---|
| 208 | for (int i = 0; i < m_Codebits[which].length; i++) { |
---|
| 209 | if (m_Codebits[which][i]) { |
---|
| 210 | if (sb.length() != 0) { |
---|
| 211 | sb.append(','); |
---|
| 212 | } |
---|
| 213 | sb.append(i + 1); |
---|
| 214 | } |
---|
| 215 | } |
---|
| 216 | return sb.toString(); |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Returns a human-readable representation of the codes. |
---|
| 221 | * @return a string representation of the codes |
---|
| 222 | */ |
---|
| 223 | public String toString() { |
---|
| 224 | StringBuffer sb = new StringBuffer(); |
---|
| 225 | for(int i = 0; i < m_Codebits[0].length; i++) { |
---|
| 226 | for (int j = 0; j < m_Codebits.length; j++) { |
---|
| 227 | sb.append(m_Codebits[j][i] ? " 1" : " 0"); |
---|
| 228 | } |
---|
| 229 | sb.append('\n'); |
---|
| 230 | } |
---|
| 231 | return sb.toString(); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | /** |
---|
| 235 | * Returns the revision string. |
---|
| 236 | * |
---|
| 237 | * @return the revision |
---|
| 238 | */ |
---|
| 239 | public String getRevision() { |
---|
| 240 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | /** |
---|
| 245 | * Constructs a code with no error correction |
---|
| 246 | */ |
---|
| 247 | private class StandardCode |
---|
| 248 | extends Code { |
---|
| 249 | |
---|
| 250 | /** for serialization */ |
---|
| 251 | static final long serialVersionUID = 3707829689461467358L; |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * constructor |
---|
| 255 | * |
---|
| 256 | * @param numClasses the number of classes |
---|
| 257 | */ |
---|
| 258 | public StandardCode(int numClasses) { |
---|
| 259 | m_Codebits = new boolean[numClasses][numClasses]; |
---|
| 260 | for (int i = 0; i < numClasses; i++) { |
---|
| 261 | m_Codebits[i][i] = true; |
---|
| 262 | } |
---|
| 263 | //System.err.println("Code:\n" + this); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Returns the revision string. |
---|
| 268 | * |
---|
| 269 | * @return the revision |
---|
| 270 | */ |
---|
| 271 | public String getRevision() { |
---|
| 272 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 273 | } |
---|
| 274 | } |
---|
| 275 | |
---|
| 276 | /** |
---|
| 277 | * Constructs a random code assignment |
---|
| 278 | */ |
---|
| 279 | private class RandomCode |
---|
| 280 | extends Code { |
---|
| 281 | |
---|
| 282 | /** for serialization */ |
---|
| 283 | static final long serialVersionUID = 4413410540703926563L; |
---|
| 284 | |
---|
| 285 | /** random number generator */ |
---|
| 286 | Random r = null; |
---|
| 287 | |
---|
| 288 | /** |
---|
| 289 | * constructor |
---|
| 290 | * |
---|
| 291 | * @param numClasses the number of classes |
---|
| 292 | * @param numCodes the number of codes |
---|
| 293 | * @param data the data to use |
---|
| 294 | */ |
---|
| 295 | public RandomCode(int numClasses, int numCodes, Instances data) { |
---|
| 296 | r = data.getRandomNumberGenerator(m_Seed); |
---|
| 297 | numCodes = Math.max(2, numCodes); // Need at least two classes |
---|
| 298 | m_Codebits = new boolean[numCodes][numClasses]; |
---|
| 299 | int i = 0; |
---|
| 300 | do { |
---|
| 301 | randomize(); |
---|
| 302 | //System.err.println(this); |
---|
| 303 | } while (!good() && (i++ < 100)); |
---|
| 304 | //System.err.println("Code:\n" + this); |
---|
| 305 | } |
---|
| 306 | |
---|
| 307 | private boolean good() { |
---|
| 308 | boolean [] ninClass = new boolean[m_Codebits[0].length]; |
---|
| 309 | boolean [] ainClass = new boolean[m_Codebits[0].length]; |
---|
| 310 | for (int i = 0; i < ainClass.length; i++) { |
---|
| 311 | ainClass[i] = true; |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | for (int i = 0; i < m_Codebits.length; i++) { |
---|
| 315 | boolean ninCode = false; |
---|
| 316 | boolean ainCode = true; |
---|
| 317 | for (int j = 0; j < m_Codebits[i].length; j++) { |
---|
| 318 | boolean current = m_Codebits[i][j]; |
---|
| 319 | ninCode = ninCode || current; |
---|
| 320 | ainCode = ainCode && current; |
---|
| 321 | ninClass[j] = ninClass[j] || current; |
---|
| 322 | ainClass[j] = ainClass[j] && current; |
---|
| 323 | } |
---|
| 324 | if (!ninCode || ainCode) { |
---|
| 325 | return false; |
---|
| 326 | } |
---|
| 327 | } |
---|
| 328 | for (int j = 0; j < ninClass.length; j++) { |
---|
| 329 | if (!ninClass[j] || ainClass[j]) { |
---|
| 330 | return false; |
---|
| 331 | } |
---|
| 332 | } |
---|
| 333 | return true; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | /** |
---|
| 337 | * randomizes |
---|
| 338 | */ |
---|
| 339 | private void randomize() { |
---|
| 340 | for (int i = 0; i < m_Codebits.length; i++) { |
---|
| 341 | for (int j = 0; j < m_Codebits[i].length; j++) { |
---|
| 342 | double temp = r.nextDouble(); |
---|
| 343 | m_Codebits[i][j] = (temp < 0.5) ? false : true; |
---|
| 344 | } |
---|
| 345 | } |
---|
| 346 | } |
---|
| 347 | |
---|
| 348 | /** |
---|
| 349 | * Returns the revision string. |
---|
| 350 | * |
---|
| 351 | * @return the revision |
---|
| 352 | */ |
---|
| 353 | public String getRevision() { |
---|
| 354 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 355 | } |
---|
| 356 | } |
---|
| 357 | |
---|
| 358 | /* |
---|
| 359 | * TODO: Constructs codes as per: |
---|
| 360 | * Bose, R.C., Ray Chaudhuri (1960), On a class of error-correcting |
---|
| 361 | * binary group codes, Information and Control, 3, 68-79. |
---|
| 362 | * Hocquenghem, A. (1959) Codes corecteurs d'erreurs, Chiffres, 2, 147-156. |
---|
| 363 | */ |
---|
| 364 | //private class BCHCode extends Code {...} |
---|
| 365 | |
---|
| 366 | /** Constructs an exhaustive code assignment */ |
---|
| 367 | private class ExhaustiveCode |
---|
| 368 | extends Code { |
---|
| 369 | |
---|
| 370 | /** for serialization */ |
---|
| 371 | static final long serialVersionUID = 8090991039670804047L; |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * constructor |
---|
| 375 | * |
---|
| 376 | * @param numClasses the number of classes |
---|
| 377 | */ |
---|
| 378 | public ExhaustiveCode(int numClasses) { |
---|
| 379 | int width = (int)Math.pow(2, numClasses - 1) - 1; |
---|
| 380 | m_Codebits = new boolean[width][numClasses]; |
---|
| 381 | for (int j = 0; j < width; j++) { |
---|
| 382 | m_Codebits[j][0] = true; |
---|
| 383 | } |
---|
| 384 | for (int i = 1; i < numClasses; i++) { |
---|
| 385 | int skip = (int) Math.pow(2, numClasses - (i + 1)); |
---|
| 386 | for(int j = 0; j < width; j++) { |
---|
| 387 | m_Codebits[j][i] = ((j / skip) % 2 != 0); |
---|
| 388 | } |
---|
| 389 | } |
---|
| 390 | //System.err.println("Code:\n" + this); |
---|
| 391 | } |
---|
| 392 | |
---|
| 393 | /** |
---|
| 394 | * Returns the revision string. |
---|
| 395 | * |
---|
| 396 | * @return the revision |
---|
| 397 | */ |
---|
| 398 | public String getRevision() { |
---|
| 399 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | /** |
---|
| 404 | * Returns default capabilities of the classifier. |
---|
| 405 | * |
---|
| 406 | * @return the capabilities of this classifier |
---|
| 407 | */ |
---|
| 408 | public Capabilities getCapabilities() { |
---|
| 409 | Capabilities result = super.getCapabilities(); |
---|
| 410 | |
---|
| 411 | // class |
---|
| 412 | result.disableAllClasses(); |
---|
| 413 | result.disableAllClassDependencies(); |
---|
| 414 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 415 | |
---|
| 416 | return result; |
---|
| 417 | } |
---|
| 418 | |
---|
| 419 | /** |
---|
| 420 | * Builds the classifiers. |
---|
| 421 | * |
---|
| 422 | * @param insts the training data. |
---|
| 423 | * @throws Exception if a classifier can't be built |
---|
| 424 | */ |
---|
| 425 | public void buildClassifier(Instances insts) throws Exception { |
---|
| 426 | |
---|
| 427 | Instances newInsts; |
---|
| 428 | |
---|
| 429 | // can classifier handle the data? |
---|
| 430 | getCapabilities().testWithFail(insts); |
---|
| 431 | |
---|
| 432 | // remove instances with missing class |
---|
| 433 | insts = new Instances(insts); |
---|
| 434 | insts.deleteWithMissingClass(); |
---|
| 435 | |
---|
| 436 | if (m_Classifier == null) { |
---|
| 437 | throw new Exception("No base classifier has been set!"); |
---|
| 438 | } |
---|
| 439 | m_ZeroR = new ZeroR(); |
---|
| 440 | m_ZeroR.buildClassifier(insts); |
---|
| 441 | |
---|
| 442 | m_TwoClassDataset = null; |
---|
| 443 | |
---|
| 444 | int numClassifiers = insts.numClasses(); |
---|
| 445 | if (numClassifiers <= 2) { |
---|
| 446 | |
---|
| 447 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, 1); |
---|
| 448 | m_Classifiers[0].buildClassifier(insts); |
---|
| 449 | |
---|
| 450 | m_ClassFilters = null; |
---|
| 451 | |
---|
| 452 | } else if (m_Method == METHOD_1_AGAINST_1) { |
---|
| 453 | // generate fastvector of pairs |
---|
| 454 | FastVector pairs = new FastVector(); |
---|
| 455 | for (int i=0; i<insts.numClasses(); i++) { |
---|
| 456 | for (int j=0; j<insts.numClasses(); j++) { |
---|
| 457 | if (j<=i) continue; |
---|
| 458 | int[] pair = new int[2]; |
---|
| 459 | pair[0] = i; pair[1] = j; |
---|
| 460 | pairs.addElement(pair); |
---|
| 461 | } |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | numClassifiers = pairs.size(); |
---|
| 465 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, numClassifiers); |
---|
| 466 | m_ClassFilters = new Filter[numClassifiers]; |
---|
| 467 | m_SumOfWeights = new double[numClassifiers]; |
---|
| 468 | |
---|
| 469 | // generate the classifiers |
---|
| 470 | for (int i=0; i<numClassifiers; i++) { |
---|
| 471 | RemoveWithValues classFilter = new RemoveWithValues(); |
---|
| 472 | classFilter.setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
| 473 | classFilter.setModifyHeader(true); |
---|
| 474 | classFilter.setInvertSelection(true); |
---|
| 475 | classFilter.setNominalIndicesArr((int[])pairs.elementAt(i)); |
---|
| 476 | Instances tempInstances = new Instances(insts, 0); |
---|
| 477 | tempInstances.setClassIndex(-1); |
---|
| 478 | classFilter.setInputFormat(tempInstances); |
---|
| 479 | newInsts = Filter.useFilter(insts, classFilter); |
---|
| 480 | if (newInsts.numInstances() > 0) { |
---|
| 481 | newInsts.setClassIndex(insts.classIndex()); |
---|
| 482 | m_Classifiers[i].buildClassifier(newInsts); |
---|
| 483 | m_ClassFilters[i] = classFilter; |
---|
| 484 | m_SumOfWeights[i] = newInsts.sumOfWeights(); |
---|
| 485 | } else { |
---|
| 486 | m_Classifiers[i] = null; |
---|
| 487 | m_ClassFilters[i] = null; |
---|
| 488 | } |
---|
| 489 | } |
---|
| 490 | |
---|
| 491 | // construct a two-class header version of the dataset |
---|
| 492 | m_TwoClassDataset = new Instances(insts, 0); |
---|
| 493 | int classIndex = m_TwoClassDataset.classIndex(); |
---|
| 494 | m_TwoClassDataset.setClassIndex(-1); |
---|
| 495 | m_TwoClassDataset.deleteAttributeAt(classIndex); |
---|
| 496 | FastVector classLabels = new FastVector(); |
---|
| 497 | classLabels.addElement("class0"); |
---|
| 498 | classLabels.addElement("class1"); |
---|
| 499 | m_TwoClassDataset.insertAttributeAt(new Attribute("class", classLabels), |
---|
| 500 | classIndex); |
---|
| 501 | m_TwoClassDataset.setClassIndex(classIndex); |
---|
| 502 | |
---|
| 503 | } else { // use error correcting code style methods |
---|
| 504 | Code code = null; |
---|
| 505 | switch (m_Method) { |
---|
| 506 | case METHOD_ERROR_EXHAUSTIVE: |
---|
| 507 | code = new ExhaustiveCode(numClassifiers); |
---|
| 508 | break; |
---|
| 509 | case METHOD_ERROR_RANDOM: |
---|
| 510 | code = new RandomCode(numClassifiers, |
---|
| 511 | (int)(numClassifiers * m_RandomWidthFactor), |
---|
| 512 | insts); |
---|
| 513 | break; |
---|
| 514 | case METHOD_1_AGAINST_ALL: |
---|
| 515 | code = new StandardCode(numClassifiers); |
---|
| 516 | break; |
---|
| 517 | default: |
---|
| 518 | throw new Exception("Unrecognized correction code type"); |
---|
| 519 | } |
---|
| 520 | numClassifiers = code.size(); |
---|
| 521 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, numClassifiers); |
---|
| 522 | m_ClassFilters = new MakeIndicator[numClassifiers]; |
---|
| 523 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 524 | m_ClassFilters[i] = new MakeIndicator(); |
---|
| 525 | MakeIndicator classFilter = (MakeIndicator) m_ClassFilters[i]; |
---|
| 526 | classFilter.setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
| 527 | classFilter.setValueIndices(code.getIndices(i)); |
---|
| 528 | classFilter.setNumeric(false); |
---|
| 529 | classFilter.setInputFormat(insts); |
---|
| 530 | newInsts = Filter.useFilter(insts, m_ClassFilters[i]); |
---|
| 531 | m_Classifiers[i].buildClassifier(newInsts); |
---|
| 532 | } |
---|
| 533 | } |
---|
| 534 | m_ClassAttribute = insts.classAttribute(); |
---|
| 535 | } |
---|
| 536 | |
---|
| 537 | /** |
---|
| 538 | * Returns the individual predictions of the base classifiers |
---|
| 539 | * for an instance. Used by StackedMultiClassClassifier. |
---|
| 540 | * Returns the probability for the second "class" predicted |
---|
| 541 | * by each base classifier. |
---|
| 542 | * |
---|
| 543 | * @param inst the instance to get the prediction for |
---|
| 544 | * @return the individual predictions |
---|
| 545 | * @throws Exception if the predictions can't be computed successfully |
---|
| 546 | */ |
---|
| 547 | public double[] individualPredictions(Instance inst) throws Exception { |
---|
| 548 | |
---|
| 549 | double[] result = null; |
---|
| 550 | |
---|
| 551 | if (m_Classifiers.length == 1) { |
---|
| 552 | result = new double[1]; |
---|
| 553 | result[0] = m_Classifiers[0].distributionForInstance(inst)[1]; |
---|
| 554 | } else { |
---|
| 555 | result = new double[m_ClassFilters.length]; |
---|
| 556 | for(int i = 0; i < m_ClassFilters.length; i++) { |
---|
| 557 | if (m_Classifiers[i] != null) { |
---|
| 558 | if (m_Method == METHOD_1_AGAINST_1) { |
---|
| 559 | Instance tempInst = (Instance)inst.copy(); |
---|
| 560 | tempInst.setDataset(m_TwoClassDataset); |
---|
| 561 | result[i] = m_Classifiers[i].distributionForInstance(tempInst)[1]; |
---|
| 562 | } else { |
---|
| 563 | m_ClassFilters[i].input(inst); |
---|
| 564 | m_ClassFilters[i].batchFinished(); |
---|
| 565 | result[i] = m_Classifiers[i]. |
---|
| 566 | distributionForInstance(m_ClassFilters[i].output())[1]; |
---|
| 567 | } |
---|
| 568 | } |
---|
| 569 | } |
---|
| 570 | } |
---|
| 571 | return result; |
---|
| 572 | } |
---|
| 573 | |
---|
| 574 | /** |
---|
| 575 | * Returns the distribution for an instance. |
---|
| 576 | * |
---|
| 577 | * @param inst the instance to get the distribution for |
---|
| 578 | * @return the distribution |
---|
| 579 | * @throws Exception if the distribution can't be computed successfully |
---|
| 580 | */ |
---|
| 581 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
| 582 | |
---|
| 583 | if (m_Classifiers.length == 1) { |
---|
| 584 | return m_Classifiers[0].distributionForInstance(inst); |
---|
| 585 | } |
---|
| 586 | |
---|
| 587 | double[] probs = new double[inst.numClasses()]; |
---|
| 588 | |
---|
| 589 | if (m_Method == METHOD_1_AGAINST_1) { |
---|
| 590 | double[][] r = new double[inst.numClasses()][inst.numClasses()]; |
---|
| 591 | double[][] n = new double[inst.numClasses()][inst.numClasses()]; |
---|
| 592 | |
---|
| 593 | for(int i = 0; i < m_ClassFilters.length; i++) { |
---|
| 594 | if (m_Classifiers[i] != null) { |
---|
| 595 | Instance tempInst = (Instance)inst.copy(); |
---|
| 596 | tempInst.setDataset(m_TwoClassDataset); |
---|
| 597 | double [] current = m_Classifiers[i].distributionForInstance(tempInst); |
---|
| 598 | Range range = new Range(((RemoveWithValues)m_ClassFilters[i]) |
---|
| 599 | .getNominalIndices()); |
---|
| 600 | range.setUpper(m_ClassAttribute.numValues()); |
---|
| 601 | int[] pair = range.getSelection(); |
---|
| 602 | if (m_pairwiseCoupling && inst.numClasses() > 2) { |
---|
| 603 | r[pair[0]][pair[1]] = current[0]; |
---|
| 604 | n[pair[0]][pair[1]] = m_SumOfWeights[i]; |
---|
| 605 | } else { |
---|
| 606 | if (current[0] > current[1]) { |
---|
| 607 | probs[pair[0]] += 1.0; |
---|
| 608 | } else { |
---|
| 609 | probs[pair[1]] += 1.0; |
---|
| 610 | } |
---|
| 611 | } |
---|
| 612 | } |
---|
| 613 | } |
---|
| 614 | if (m_pairwiseCoupling && inst.numClasses() > 2) { |
---|
| 615 | return pairwiseCoupling(n, r); |
---|
| 616 | } |
---|
| 617 | } else { |
---|
| 618 | // error correcting style methods |
---|
| 619 | for(int i = 0; i < m_ClassFilters.length; i++) { |
---|
| 620 | m_ClassFilters[i].input(inst); |
---|
| 621 | m_ClassFilters[i].batchFinished(); |
---|
| 622 | double [] current = m_Classifiers[i]. |
---|
| 623 | distributionForInstance(m_ClassFilters[i].output()); |
---|
| 624 | for (int j = 0; j < m_ClassAttribute.numValues(); j++) { |
---|
| 625 | if (((MakeIndicator)m_ClassFilters[i]).getValueRange().isInRange(j)) { |
---|
| 626 | probs[j] += current[1]; |
---|
| 627 | } else { |
---|
| 628 | probs[j] += current[0]; |
---|
| 629 | } |
---|
| 630 | } |
---|
| 631 | } |
---|
| 632 | } |
---|
| 633 | |
---|
| 634 | if (Utils.gr(Utils.sum(probs), 0)) { |
---|
| 635 | Utils.normalize(probs); |
---|
| 636 | return probs; |
---|
| 637 | } else { |
---|
| 638 | return m_ZeroR.distributionForInstance(inst); |
---|
| 639 | } |
---|
| 640 | } |
---|
| 641 | |
---|
| 642 | /** |
---|
| 643 | * Prints the classifiers. |
---|
| 644 | * |
---|
| 645 | * @return a string representation of the classifier |
---|
| 646 | */ |
---|
| 647 | public String toString() { |
---|
| 648 | |
---|
| 649 | if (m_Classifiers == null) { |
---|
| 650 | return "MultiClassClassifier: No model built yet."; |
---|
| 651 | } |
---|
| 652 | StringBuffer text = new StringBuffer(); |
---|
| 653 | text.append("MultiClassClassifier\n\n"); |
---|
| 654 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
| 655 | text.append("Classifier ").append(i + 1); |
---|
| 656 | if (m_Classifiers[i] != null) { |
---|
| 657 | if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) { |
---|
| 658 | if (m_ClassFilters[i] instanceof RemoveWithValues) { |
---|
| 659 | Range range = new Range(((RemoveWithValues)m_ClassFilters[i]) |
---|
| 660 | .getNominalIndices()); |
---|
| 661 | range.setUpper(m_ClassAttribute.numValues()); |
---|
| 662 | int[] pair = range.getSelection(); |
---|
| 663 | text.append(", " + (pair[0]+1) + " vs " + (pair[1]+1)); |
---|
| 664 | } else if (m_ClassFilters[i] instanceof MakeIndicator) { |
---|
| 665 | text.append(", using indicator values: "); |
---|
| 666 | text.append(((MakeIndicator)m_ClassFilters[i]).getValueRange()); |
---|
| 667 | } |
---|
| 668 | } |
---|
| 669 | text.append('\n'); |
---|
| 670 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
| 671 | } else { |
---|
| 672 | text.append(" Skipped (no training examples)\n"); |
---|
| 673 | } |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | return text.toString(); |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | /** |
---|
| 680 | * Returns an enumeration describing the available options |
---|
| 681 | * |
---|
| 682 | * @return an enumeration of all the available options |
---|
| 683 | */ |
---|
| 684 | public Enumeration listOptions() { |
---|
| 685 | |
---|
| 686 | Vector vec = new Vector(4); |
---|
| 687 | |
---|
| 688 | vec.addElement(new Option( |
---|
| 689 | "\tSets the method to use. Valid values are 0 (1-against-all),\n" |
---|
| 690 | +"\t1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0)\n", |
---|
| 691 | "M", 1, "-M <num>")); |
---|
| 692 | vec.addElement(new Option( |
---|
| 693 | "\tSets the multiplier when using random codes. (default 2.0)", |
---|
| 694 | "R", 1, "-R <num>")); |
---|
| 695 | vec.addElement(new Option( |
---|
| 696 | "\tUse pairwise coupling (only has an effect for 1-against1)", |
---|
| 697 | "P", 0, "-P")); |
---|
| 698 | |
---|
| 699 | Enumeration enu = super.listOptions(); |
---|
| 700 | while (enu.hasMoreElements()) { |
---|
| 701 | vec.addElement(enu.nextElement()); |
---|
| 702 | } |
---|
| 703 | return vec.elements(); |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | /** |
---|
| 707 | * Parses a given list of options. <p/> |
---|
| 708 | * |
---|
| 709 | <!-- options-start --> |
---|
| 710 | * Valid options are: <p/> |
---|
| 711 | * |
---|
| 712 | * <pre> -M <num> |
---|
| 713 | * Sets the method to use. Valid values are 0 (1-against-all), |
---|
| 714 | * 1 (random codes), 2 (exhaustive code), and 3 (1-against-1). (default 0) |
---|
| 715 | * </pre> |
---|
| 716 | * |
---|
| 717 | * <pre> -R <num> |
---|
| 718 | * Sets the multiplier when using random codes. (default 2.0)</pre> |
---|
| 719 | * |
---|
| 720 | * <pre> -P |
---|
| 721 | * Use pairwise coupling (only has an effect for 1-against1)</pre> |
---|
| 722 | * |
---|
| 723 | * <pre> -S <num> |
---|
| 724 | * Random number seed. |
---|
| 725 | * (default 1)</pre> |
---|
| 726 | * |
---|
| 727 | * <pre> -D |
---|
| 728 | * If set, classifier is run in debug mode and |
---|
| 729 | * may output additional info to the console</pre> |
---|
| 730 | * |
---|
| 731 | * <pre> -W |
---|
| 732 | * Full name of base classifier. |
---|
| 733 | * (default: weka.classifiers.functions.Logistic)</pre> |
---|
| 734 | * |
---|
| 735 | * <pre> |
---|
| 736 | * Options specific to classifier weka.classifiers.functions.Logistic: |
---|
| 737 | * </pre> |
---|
| 738 | * |
---|
| 739 | * <pre> -D |
---|
| 740 | * Turn on debugging output.</pre> |
---|
| 741 | * |
---|
| 742 | * <pre> -R <ridge> |
---|
| 743 | * Set the ridge in the log-likelihood.</pre> |
---|
| 744 | * |
---|
| 745 | * <pre> -M <number> |
---|
| 746 | * Set the maximum number of iterations (default -1, until convergence).</pre> |
---|
| 747 | * |
---|
| 748 | <!-- options-end --> |
---|
| 749 | * |
---|
| 750 | * @param options the list of options as an array of strings |
---|
| 751 | * @throws Exception if an option is not supported |
---|
| 752 | */ |
---|
| 753 | public void setOptions(String[] options) throws Exception { |
---|
| 754 | |
---|
| 755 | String errorString = Utils.getOption('M', options); |
---|
| 756 | if (errorString.length() != 0) { |
---|
| 757 | setMethod(new SelectedTag(Integer.parseInt(errorString), |
---|
| 758 | TAGS_METHOD)); |
---|
| 759 | } else { |
---|
| 760 | setMethod(new SelectedTag(METHOD_1_AGAINST_ALL, TAGS_METHOD)); |
---|
| 761 | } |
---|
| 762 | |
---|
| 763 | String rfactorString = Utils.getOption('R', options); |
---|
| 764 | if (rfactorString.length() != 0) { |
---|
| 765 | setRandomWidthFactor((new Double(rfactorString)).doubleValue()); |
---|
| 766 | } else { |
---|
| 767 | setRandomWidthFactor(2.0); |
---|
| 768 | } |
---|
| 769 | |
---|
| 770 | setUsePairwiseCoupling(Utils.getFlag('P', options)); |
---|
| 771 | |
---|
| 772 | super.setOptions(options); |
---|
| 773 | } |
---|
| 774 | |
---|
| 775 | /** |
---|
| 776 | * Gets the current settings of the Classifier. |
---|
| 777 | * |
---|
| 778 | * @return an array of strings suitable for passing to setOptions |
---|
| 779 | */ |
---|
| 780 | public String [] getOptions() { |
---|
| 781 | |
---|
| 782 | String [] superOptions = super.getOptions(); |
---|
| 783 | String [] options = new String [superOptions.length + 5]; |
---|
| 784 | |
---|
| 785 | int current = 0; |
---|
| 786 | |
---|
| 787 | |
---|
| 788 | options[current++] = "-M"; |
---|
| 789 | options[current++] = "" + m_Method; |
---|
| 790 | |
---|
| 791 | if (getUsePairwiseCoupling()) { |
---|
| 792 | options[current++] = "-P"; |
---|
| 793 | } |
---|
| 794 | |
---|
| 795 | options[current++] = "-R"; |
---|
| 796 | options[current++] = "" + m_RandomWidthFactor; |
---|
| 797 | |
---|
| 798 | System.arraycopy(superOptions, 0, options, current, |
---|
| 799 | superOptions.length); |
---|
| 800 | |
---|
| 801 | current += superOptions.length; |
---|
| 802 | while (current < options.length) { |
---|
| 803 | options[current++] = ""; |
---|
| 804 | } |
---|
| 805 | return options; |
---|
| 806 | } |
---|
| 807 | |
---|
| 808 | /** |
---|
| 809 | * @return a description of the classifier suitable for |
---|
| 810 | * displaying in the explorer/experimenter gui |
---|
| 811 | */ |
---|
| 812 | public String globalInfo() { |
---|
| 813 | |
---|
| 814 | return "A metaclassifier for handling multi-class datasets with 2-class " |
---|
| 815 | + "classifiers. This classifier is also capable of " |
---|
| 816 | + "applying error correcting output codes for increased accuracy."; |
---|
| 817 | } |
---|
| 818 | |
---|
| 819 | /** |
---|
| 820 | * @return tip text for this property suitable for |
---|
| 821 | * displaying in the explorer/experimenter gui |
---|
| 822 | */ |
---|
| 823 | public String randomWidthFactorTipText() { |
---|
| 824 | |
---|
| 825 | return "Sets the width multiplier when using random codes. The number " |
---|
| 826 | + "of codes generated will be thus number multiplied by the number of " |
---|
| 827 | + "classes."; |
---|
| 828 | } |
---|
| 829 | |
---|
| 830 | /** |
---|
| 831 | * Gets the multiplier when generating random codes. Will generate |
---|
| 832 | * numClasses * m_RandomWidthFactor codes. |
---|
| 833 | * |
---|
| 834 | * @return the width multiplier |
---|
| 835 | */ |
---|
| 836 | public double getRandomWidthFactor() { |
---|
| 837 | |
---|
| 838 | return m_RandomWidthFactor; |
---|
| 839 | } |
---|
| 840 | |
---|
| 841 | /** |
---|
| 842 | * Sets the multiplier when generating random codes. Will generate |
---|
| 843 | * numClasses * m_RandomWidthFactor codes. |
---|
| 844 | * |
---|
| 845 | * @param newRandomWidthFactor the new width multiplier |
---|
| 846 | */ |
---|
| 847 | public void setRandomWidthFactor(double newRandomWidthFactor) { |
---|
| 848 | |
---|
| 849 | m_RandomWidthFactor = newRandomWidthFactor; |
---|
| 850 | } |
---|
| 851 | |
---|
| 852 | /** |
---|
| 853 | * @return tip text for this property suitable for |
---|
| 854 | * displaying in the explorer/experimenter gui |
---|
| 855 | */ |
---|
| 856 | public String methodTipText() { |
---|
| 857 | return "Sets the method to use for transforming the multi-class problem into " |
---|
| 858 | + "several 2-class ones."; |
---|
| 859 | } |
---|
| 860 | |
---|
| 861 | /** |
---|
| 862 | * Gets the method used. Will be one of METHOD_1_AGAINST_ALL, |
---|
| 863 | * METHOD_ERROR_RANDOM, METHOD_ERROR_EXHAUSTIVE, or METHOD_1_AGAINST_1. |
---|
| 864 | * |
---|
| 865 | * @return the current method. |
---|
| 866 | */ |
---|
| 867 | public SelectedTag getMethod() { |
---|
| 868 | |
---|
| 869 | return new SelectedTag(m_Method, TAGS_METHOD); |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | /** |
---|
| 873 | * Sets the method used. Will be one of METHOD_1_AGAINST_ALL, |
---|
| 874 | * METHOD_ERROR_RANDOM, METHOD_ERROR_EXHAUSTIVE, or METHOD_1_AGAINST_1. |
---|
| 875 | * |
---|
| 876 | * @param newMethod the new method. |
---|
| 877 | */ |
---|
| 878 | public void setMethod(SelectedTag newMethod) { |
---|
| 879 | |
---|
| 880 | if (newMethod.getTags() == TAGS_METHOD) { |
---|
| 881 | m_Method = newMethod.getSelectedTag().getID(); |
---|
| 882 | } |
---|
| 883 | } |
---|
| 884 | |
---|
| 885 | /** |
---|
| 886 | * Set whether to use pairwise coupling with 1-vs-1 |
---|
| 887 | * classification to improve probability estimates. |
---|
| 888 | * |
---|
| 889 | * @param p true if pairwise coupling is to be used |
---|
| 890 | */ |
---|
| 891 | public void setUsePairwiseCoupling(boolean p) { |
---|
| 892 | m_pairwiseCoupling = p; |
---|
| 893 | } |
---|
| 894 | |
---|
| 895 | /** |
---|
| 896 | * Gets whether to use pairwise coupling with 1-vs-1 |
---|
| 897 | * classification to improve probability estimates. |
---|
| 898 | * |
---|
| 899 | * @return true if pairwise coupling is to be used |
---|
| 900 | */ |
---|
| 901 | public boolean getUsePairwiseCoupling() { |
---|
| 902 | return m_pairwiseCoupling; |
---|
| 903 | } |
---|
| 904 | |
---|
| 905 | /** |
---|
| 906 | * @return tip text for this property suitable for |
---|
| 907 | * displaying in the explorer/experimenter gui |
---|
| 908 | */ |
---|
| 909 | public String usePairwiseCouplingTipText() { |
---|
| 910 | return "Use pairwise coupling (only has an effect for 1-against-1)."; |
---|
| 911 | } |
---|
| 912 | |
---|
| 913 | /** |
---|
| 914 | * Implements pairwise coupling. |
---|
| 915 | * |
---|
| 916 | * @param n the sum of weights used to train each model |
---|
| 917 | * @param r the probability estimate from each model |
---|
| 918 | * @return the coupled estimates |
---|
| 919 | */ |
---|
| 920 | public static double[] pairwiseCoupling(double[][] n, double[][] r) { |
---|
| 921 | |
---|
| 922 | // Initialize p and u array |
---|
| 923 | double[] p = new double[r.length]; |
---|
| 924 | for (int i =0; i < p.length; i++) { |
---|
| 925 | p[i] = 1.0 / (double)p.length; |
---|
| 926 | } |
---|
| 927 | double[][] u = new double[r.length][r.length]; |
---|
| 928 | for (int i = 0; i < r.length; i++) { |
---|
| 929 | for (int j = i + 1; j < r.length; j++) { |
---|
| 930 | u[i][j] = 0.5; |
---|
| 931 | } |
---|
| 932 | } |
---|
| 933 | |
---|
| 934 | // firstSum doesn't change |
---|
| 935 | double[] firstSum = new double[p.length]; |
---|
| 936 | for (int i = 0; i < p.length; i++) { |
---|
| 937 | for (int j = i + 1; j < p.length; j++) { |
---|
| 938 | firstSum[i] += n[i][j] * r[i][j]; |
---|
| 939 | firstSum[j] += n[i][j] * (1 - r[i][j]); |
---|
| 940 | } |
---|
| 941 | } |
---|
| 942 | |
---|
| 943 | // Iterate until convergence |
---|
| 944 | boolean changed; |
---|
| 945 | do { |
---|
| 946 | changed = false; |
---|
| 947 | double[] secondSum = new double[p.length]; |
---|
| 948 | for (int i = 0; i < p.length; i++) { |
---|
| 949 | for (int j = i + 1; j < p.length; j++) { |
---|
| 950 | secondSum[i] += n[i][j] * u[i][j]; |
---|
| 951 | secondSum[j] += n[i][j] * (1 - u[i][j]); |
---|
| 952 | } |
---|
| 953 | } |
---|
| 954 | for (int i = 0; i < p.length; i++) { |
---|
| 955 | if ((firstSum[i] == 0) || (secondSum[i] == 0)) { |
---|
| 956 | if (p[i] > 0) { |
---|
| 957 | changed = true; |
---|
| 958 | } |
---|
| 959 | p[i] = 0; |
---|
| 960 | } else { |
---|
| 961 | double factor = firstSum[i] / secondSum[i]; |
---|
| 962 | double pOld = p[i]; |
---|
| 963 | p[i] *= factor; |
---|
| 964 | if (Math.abs(pOld - p[i]) > 1.0e-3) { |
---|
| 965 | changed = true; |
---|
| 966 | } |
---|
| 967 | } |
---|
| 968 | } |
---|
| 969 | Utils.normalize(p); |
---|
| 970 | for (int i = 0; i < r.length; i++) { |
---|
| 971 | for (int j = i + 1; j < r.length; j++) { |
---|
| 972 | u[i][j] = p[i] / (p[i] + p[j]); |
---|
| 973 | } |
---|
| 974 | } |
---|
| 975 | } while (changed); |
---|
| 976 | return p; |
---|
| 977 | } |
---|
| 978 | |
---|
| 979 | /** |
---|
| 980 | * Returns the revision string. |
---|
| 981 | * |
---|
| 982 | * @return the revision |
---|
| 983 | */ |
---|
| 984 | public String getRevision() { |
---|
| 985 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 986 | } |
---|
| 987 | |
---|
| 988 | /** |
---|
| 989 | * Main method for testing this class. |
---|
| 990 | * |
---|
| 991 | * @param argv the options |
---|
| 992 | */ |
---|
| 993 | public static void main(String [] argv) { |
---|
| 994 | runClassifier(new MultiClassClassifier(), argv); |
---|
| 995 | } |
---|
| 996 | } |
---|
| 997 | |
---|