[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * EnsembleSelection.java |
---|
| 19 | * Copyright (C) 2006 David Michael |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Evaluation; |
---|
| 26 | import weka.classifiers.RandomizableClassifier; |
---|
| 27 | import weka.classifiers.meta.ensembleSelection.EnsembleMetricHelper; |
---|
| 28 | import weka.classifiers.meta.ensembleSelection.EnsembleSelectionLibrary; |
---|
| 29 | import weka.classifiers.meta.ensembleSelection.EnsembleSelectionLibraryModel; |
---|
| 30 | import weka.classifiers.meta.ensembleSelection.ModelBag; |
---|
| 31 | import weka.classifiers.trees.REPTree; |
---|
| 32 | import weka.classifiers.xml.XMLClassifier; |
---|
| 33 | import weka.core.Capabilities; |
---|
| 34 | import weka.core.Instance; |
---|
| 35 | import weka.core.Instances; |
---|
| 36 | import weka.core.Option; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.SelectedTag; |
---|
| 39 | import weka.core.Tag; |
---|
| 40 | import weka.core.TechnicalInformation; |
---|
| 41 | import weka.core.TechnicalInformationHandler; |
---|
| 42 | import weka.core.Utils; |
---|
| 43 | import weka.core.Capabilities.Capability; |
---|
| 44 | import weka.core.TechnicalInformation.Field; |
---|
| 45 | import weka.core.TechnicalInformation.Type; |
---|
| 46 | import weka.core.xml.KOML; |
---|
| 47 | import weka.core.xml.XMLOptions; |
---|
| 48 | import weka.core.xml.XMLSerialization; |
---|
| 49 | |
---|
| 50 | import java.io.BufferedInputStream; |
---|
| 51 | import java.io.BufferedOutputStream; |
---|
| 52 | import java.io.BufferedReader; |
---|
| 53 | import java.io.File; |
---|
| 54 | import java.io.FileInputStream; |
---|
| 55 | import java.io.FileOutputStream; |
---|
| 56 | import java.io.FileReader; |
---|
| 57 | import java.io.InputStream; |
---|
| 58 | import java.io.ObjectInputStream; |
---|
| 59 | import java.io.ObjectOutputStream; |
---|
| 60 | import java.io.OutputStream; |
---|
| 61 | import java.util.Date; |
---|
| 62 | import java.util.Enumeration; |
---|
| 63 | import java.util.HashMap; |
---|
| 64 | import java.util.Iterator; |
---|
| 65 | import java.util.Map; |
---|
| 66 | import java.util.Random; |
---|
| 67 | import java.util.Set; |
---|
| 68 | import java.util.Vector; |
---|
| 69 | import java.util.zip.GZIPInputStream; |
---|
| 70 | import java.util.zip.GZIPOutputStream; |
---|
| 71 | |
---|
| 72 | /** |
---|
| 73 | <!-- globalinfo-start --> |
---|
| 74 | * Combines several classifiers using the ensemble selection method. For more information, see: Caruana, Rich, Niculescu, Alex, Crew, Geoff, and Ksikes, Alex, Ensemble Selection from Libraries of Models, The International Conference on Machine Learning (ICML'04), 2004. Implemented in Weka by Bob Jung and David Michael. |
---|
| 75 | * <p/> |
---|
| 76 | <!-- globalinfo-end --> |
---|
| 77 | * |
---|
| 78 | <!-- technical-bibtex-start --> |
---|
| 79 | * BibTeX: |
---|
| 80 | * <pre> |
---|
| 81 | * @inproceedings{RichCaruana2004, |
---|
| 82 | * author = {Rich Caruana, Alex Niculescu, Geoff Crew, and Alex Ksikes}, |
---|
| 83 | * booktitle = {21st International Conference on Machine Learning}, |
---|
| 84 | * title = {Ensemble Selection from Libraries of Models}, |
---|
| 85 | * year = {2004} |
---|
| 86 | * } |
---|
| 87 | * </pre> |
---|
| 88 | * <p/> |
---|
| 89 | <!-- technical-bibtex-end --> |
---|
| 90 | * |
---|
| 91 | * Our implementation of ensemble selection is a bit different from the other |
---|
| 92 | * classifiers because we assume that the list of models to be trained is too |
---|
| 93 | * large to fit in memory and that our base classifiers will need to be |
---|
| 94 | * serialized to the file system (in the directory listed in the "workingDirectory |
---|
| 95 | * option). We have adopted the term "model library" for this large set of |
---|
| 96 | * classifiers keeping in line with the original paper. |
---|
| 97 | * <p/> |
---|
| 98 | * |
---|
| 99 | * If you are planning to use this classifier, we highly recommend you take a |
---|
| 100 | * quick look at our FAQ/tutorial on the WIKI. There are a few things that |
---|
| 101 | * are unique to this classifier that could trip you up. Otherwise, this |
---|
| 102 | * method is a great way to get really great classifier performance without |
---|
| 103 | * having to do too much parameter tuning. What is nice is that in the worst |
---|
| 104 | * case you get a nice summary of how s large number of diverse models |
---|
| 105 | * performed on your data set. |
---|
| 106 | * <p/> |
---|
| 107 | * |
---|
| 108 | * This class relies on the package weka.classifiers.meta.ensembleSelection. |
---|
| 109 | * <p/> |
---|
| 110 | * |
---|
| 111 | * When run from the Explorer or another GUI, the classifier depends on the |
---|
| 112 | * package weka.gui.libraryEditor. |
---|
| 113 | * <p/> |
---|
| 114 | * |
---|
| 115 | <!-- options-start --> |
---|
| 116 | * Valid options are: <p/> |
---|
| 117 | * |
---|
| 118 | * <pre> -L </path/to/modelLibrary> |
---|
| 119 | * Specifies the Model Library File, continuing the list of all models.</pre> |
---|
| 120 | * |
---|
| 121 | * <pre> -W </path/to/working/directory> |
---|
| 122 | * Specifies the Working Directory, where all models will be stored.</pre> |
---|
| 123 | * |
---|
| 124 | * <pre> -B <numModelBags> |
---|
| 125 | * Set the number of bags, i.e., number of iterations to run |
---|
| 126 | * the ensemble selection algorithm.</pre> |
---|
| 127 | * |
---|
| 128 | * <pre> -E <modelRatio> |
---|
| 129 | * Set the ratio of library models that will be randomly chosen |
---|
| 130 | * to populate each bag of models.</pre> |
---|
| 131 | * |
---|
| 132 | * <pre> -V <validationRatio> |
---|
| 133 | * Set the ratio of the training data set that will be reserved |
---|
| 134 | * for validation.</pre> |
---|
| 135 | * |
---|
| 136 | * <pre> -H <hillClimbIterations> |
---|
| 137 | * Set the number of hillclimbing iterations to be performed |
---|
| 138 | * on each model bag.</pre> |
---|
| 139 | * |
---|
| 140 | * <pre> -I <sortInitialization> |
---|
| 141 | * Set the the ratio of the ensemble library that the sort |
---|
| 142 | * initialization algorithm will be able to choose from while |
---|
| 143 | * initializing the ensemble for each model bag</pre> |
---|
| 144 | * |
---|
| 145 | * <pre> -X <numFolds> |
---|
| 146 | * Sets the number of cross-validation folds.</pre> |
---|
| 147 | * |
---|
| 148 | * <pre> -P <hillclimbMettric> |
---|
| 149 | * Specify the metric that will be used for model selection |
---|
| 150 | * during the hillclimbing algorithm. |
---|
| 151 | * Valid metrics are: |
---|
| 152 | * accuracy, rmse, roc, precision, recall, fscore, all</pre> |
---|
| 153 | * |
---|
| 154 | * <pre> -A <algorithm> |
---|
| 155 | * Specifies the algorithm to be used for ensemble selection. |
---|
| 156 | * Valid algorithms are: |
---|
| 157 | * "forward" (default) for forward selection. |
---|
| 158 | * "backward" for backward elimination. |
---|
| 159 | * "both" for both forward and backward elimination. |
---|
| 160 | * "best" to simply print out top performer from the |
---|
| 161 | * ensemble library |
---|
| 162 | * "library" to only train the models in the ensemble |
---|
| 163 | * library</pre> |
---|
| 164 | * |
---|
| 165 | * <pre> -R |
---|
| 166 | * Flag whether or not models can be selected more than once |
---|
| 167 | * for an ensemble.</pre> |
---|
| 168 | * |
---|
| 169 | * <pre> -G |
---|
| 170 | * Whether sort initialization greedily stops adding models |
---|
| 171 | * when performance degrades.</pre> |
---|
| 172 | * |
---|
| 173 | * <pre> -O |
---|
| 174 | * Flag for verbose output. Prints out performance of all |
---|
| 175 | * selected models.</pre> |
---|
| 176 | * |
---|
| 177 | * <pre> -S <num> |
---|
| 178 | * Random number seed. |
---|
| 179 | * (default 1)</pre> |
---|
| 180 | * |
---|
| 181 | * <pre> -D |
---|
| 182 | * If set, classifier is run in debug mode and |
---|
| 183 | * may output additional info to the console</pre> |
---|
| 184 | * |
---|
| 185 | <!-- options-end --> |
---|
| 186 | * |
---|
| 187 | * @author Robert Jung |
---|
| 188 | * @author David Michael |
---|
| 189 | * @version $Revision: 5480 $ |
---|
| 190 | */ |
---|
| 191 | public class EnsembleSelection |
---|
| 192 | extends RandomizableClassifier |
---|
| 193 | implements TechnicalInformationHandler { |
---|
| 194 | |
---|
| 195 | /** for serialization */ |
---|
| 196 | private static final long serialVersionUID = -1744155148765058511L; |
---|
| 197 | |
---|
| 198 | /** |
---|
| 199 | * The Library of models, from which we can select our ensemble. Usually |
---|
| 200 | * loaded from a model list file (.mlf or .model.xml) using the -L |
---|
| 201 | * command-line option. |
---|
| 202 | */ |
---|
| 203 | protected EnsembleSelectionLibrary m_library = new EnsembleSelectionLibrary(); |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * List of models chosen by EnsembleSelection. Populated by buildClassifier. |
---|
| 207 | */ |
---|
| 208 | protected EnsembleSelectionLibraryModel[] m_chosen_models = null; |
---|
| 209 | |
---|
| 210 | /** |
---|
| 211 | * An array of weights for the chosen models. Elements are parallel to those |
---|
| 212 | * in m_chosen_models. That is, m_chosen_model_weights[i] is the weight |
---|
| 213 | * associated with the model at m_chosen_models[i]. |
---|
| 214 | */ |
---|
| 215 | protected int[] m_chosen_model_weights = null; |
---|
| 216 | |
---|
| 217 | /** Total weight of all chosen models. */ |
---|
| 218 | protected int m_total_weight = 0; |
---|
| 219 | |
---|
| 220 | /** |
---|
| 221 | * ratio of library models that will be randomly chosen to be used for each |
---|
| 222 | * model bag |
---|
| 223 | */ |
---|
| 224 | protected double m_modelRatio = 0.5; |
---|
| 225 | |
---|
| 226 | /** |
---|
| 227 | * Indicates the fraction of the given training set that should be used for |
---|
| 228 | * hillclimbing/validation. This fraction is set aside and not used for |
---|
| 229 | * training. It is assumed that any loaded models were also not trained on |
---|
| 230 | * set-aside data. (If the same percentage and random seed were used |
---|
| 231 | * previously to train the models in the library, this will work as expected - |
---|
| 232 | * i.e., those models will be valid) |
---|
| 233 | */ |
---|
| 234 | protected double m_validationRatio = 0.25; |
---|
| 235 | |
---|
| 236 | /** defines metrics that can be chosen for hillclimbing */ |
---|
| 237 | public static final Tag[] TAGS_METRIC = { |
---|
| 238 | new Tag(EnsembleMetricHelper.METRIC_ACCURACY, "Optimize with Accuracy"), |
---|
| 239 | new Tag(EnsembleMetricHelper.METRIC_RMSE, "Optimize with RMSE"), |
---|
| 240 | new Tag(EnsembleMetricHelper.METRIC_ROC, "Optimize with ROC"), |
---|
| 241 | new Tag(EnsembleMetricHelper.METRIC_PRECISION, "Optimize with precision"), |
---|
| 242 | new Tag(EnsembleMetricHelper.METRIC_RECALL, "Optimize with recall"), |
---|
| 243 | new Tag(EnsembleMetricHelper.METRIC_FSCORE, "Optimize with fscore"), |
---|
| 244 | new Tag(EnsembleMetricHelper.METRIC_ALL, "Optimize with all metrics"), }; |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | * The "enumeration" of the algorithms we can use. Forward - forward |
---|
| 248 | * selection. For hillclimb iterations, |
---|
| 249 | */ |
---|
| 250 | public static final int ALGORITHM_FORWARD = 0; |
---|
| 251 | |
---|
| 252 | public static final int ALGORITHM_BACKWARD = 1; |
---|
| 253 | |
---|
| 254 | public static final int ALGORITHM_FORWARD_BACKWARD = 2; |
---|
| 255 | |
---|
| 256 | public static final int ALGORITHM_BEST = 3; |
---|
| 257 | |
---|
| 258 | public static final int ALGORITHM_BUILD_LIBRARY = 4; |
---|
| 259 | |
---|
| 260 | /** defines metrics that can be chosen for hillclimbing */ |
---|
| 261 | public static final Tag[] TAGS_ALGORITHM = { |
---|
| 262 | new Tag(ALGORITHM_FORWARD, "Forward selection"), |
---|
| 263 | new Tag(ALGORITHM_BACKWARD, "Backward elimation"), |
---|
| 264 | new Tag(ALGORITHM_FORWARD_BACKWARD, "Forward Selection + Backward Elimination"), |
---|
| 265 | new Tag(ALGORITHM_BEST, "Best model"), |
---|
| 266 | new Tag(ALGORITHM_BUILD_LIBRARY, "Build Library Only") }; |
---|
| 267 | |
---|
| 268 | /** |
---|
| 269 | * this specifies the number of "Ensembl-X" directories that are allowed to |
---|
| 270 | * be created in the users home directory where X is the number of the |
---|
| 271 | * ensemble |
---|
| 272 | */ |
---|
| 273 | private static final int MAX_DEFAULT_DIRECTORIES = 1000; |
---|
| 274 | |
---|
| 275 | /** |
---|
| 276 | * The name of the Model Library File (if one is specified) which lists |
---|
| 277 | * models from which ensemble selection will choose. This is only used when |
---|
| 278 | * run from the command-line, as otherwise m_library is responsible for |
---|
| 279 | * this. |
---|
| 280 | */ |
---|
| 281 | protected String m_modelLibraryFileName = null; |
---|
| 282 | |
---|
| 283 | /** |
---|
| 284 | * The number of "model bags". Using 1 is equivalent to no bagging at all. |
---|
| 285 | */ |
---|
| 286 | protected int m_numModelBags = 10; |
---|
| 287 | |
---|
| 288 | /** The metric for which the ensemble will be optimized. */ |
---|
| 289 | protected int m_hillclimbMetric = EnsembleMetricHelper.METRIC_RMSE; |
---|
| 290 | |
---|
| 291 | /** The algorithm used for ensemble selection. */ |
---|
| 292 | protected int m_algorithm = ALGORITHM_FORWARD; |
---|
| 293 | |
---|
| 294 | /** |
---|
| 295 | * number of hillclimbing iterations for the ensemble selection algorithm |
---|
| 296 | */ |
---|
| 297 | protected int m_hillclimbIterations = 100; |
---|
| 298 | |
---|
| 299 | /** ratio of library models to be used for sort initialization */ |
---|
| 300 | protected double m_sortInitializationRatio = 1.0; |
---|
| 301 | |
---|
| 302 | /** |
---|
| 303 | * specifies whether or not the ensemble algorithm is allowed to include a |
---|
| 304 | * specific model in the library more than once in each ensemble |
---|
| 305 | */ |
---|
| 306 | protected boolean m_replacement = true; |
---|
| 307 | |
---|
| 308 | /** |
---|
| 309 | * specifies whether we use "greedy" sort initialization. If false, we |
---|
| 310 | * simply add the best m_sortInitializationRatio models of the bag blindly. |
---|
| 311 | * If true, we add the best models in order up to m_sortInitializationRatio |
---|
| 312 | * until adding the next model would not help performance. |
---|
| 313 | */ |
---|
| 314 | protected boolean m_greedySortInitialization = true; |
---|
| 315 | |
---|
| 316 | /** |
---|
| 317 | * Specifies whether or not we will output metrics for all models |
---|
| 318 | */ |
---|
| 319 | protected boolean m_verboseOutput = false; |
---|
| 320 | |
---|
| 321 | /** |
---|
| 322 | * Hash map of cached predictions. The key is a stringified Instance. Each |
---|
| 323 | * entry is a 2d array, first indexed by classifier index (i.e., the one |
---|
| 324 | * used in m_chosen_model). The second index is the usual "distribution" |
---|
| 325 | * index across classes. |
---|
| 326 | */ |
---|
| 327 | protected Map m_cachedPredictions = null; |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * This string will store the working directory where all models , temporary |
---|
| 331 | * prediction values, and modellist logs are to be built and stored. |
---|
| 332 | */ |
---|
| 333 | protected File m_workingDirectory = new File(getDefaultWorkingDirectory()); |
---|
| 334 | |
---|
| 335 | /** |
---|
| 336 | * Indicates the number of folds for cross-validation. A value of 1 |
---|
| 337 | * indicates there is no cross-validation. Cross validation is done in the |
---|
| 338 | * "embedded" fashion described by Caruana, Niculescu, and Munson |
---|
| 339 | * (unpublished work - tech report forthcoming) |
---|
| 340 | */ |
---|
| 341 | protected int m_NumFolds = 1; |
---|
| 342 | |
---|
| 343 | /** |
---|
| 344 | * Returns a string describing classifier |
---|
| 345 | * |
---|
| 346 | * @return a description suitable for displaying in the |
---|
| 347 | * explorer/experimenter gui |
---|
| 348 | */ |
---|
| 349 | public String globalInfo() { |
---|
| 350 | |
---|
| 351 | return "Combines several classifiers using the ensemble " |
---|
| 352 | + "selection method. For more information, see: " |
---|
| 353 | + "Caruana, Rich, Niculescu, Alex, Crew, Geoff, and Ksikes, Alex, " |
---|
| 354 | + "Ensemble Selection from Libraries of Models, " |
---|
| 355 | + "The International Conference on Machine Learning (ICML'04), 2004. " |
---|
| 356 | + "Implemented in Weka by Bob Jung and David Michael."; |
---|
| 357 | } |
---|
| 358 | |
---|
| 359 | /** |
---|
| 360 | * Returns an enumeration describing the available options. |
---|
| 361 | * |
---|
| 362 | * @return an enumeration of all the available options. |
---|
| 363 | */ |
---|
| 364 | public Enumeration listOptions() { |
---|
| 365 | Vector result = new Vector(); |
---|
| 366 | |
---|
| 367 | result.addElement(new Option( |
---|
| 368 | "\tSpecifies the Model Library File, continuing the list of all models.", |
---|
| 369 | "L", 1, "-L </path/to/modelLibrary>")); |
---|
| 370 | |
---|
| 371 | result.addElement(new Option( |
---|
| 372 | "\tSpecifies the Working Directory, where all models will be stored.", |
---|
| 373 | "W", 1, "-W </path/to/working/directory>")); |
---|
| 374 | |
---|
| 375 | result.addElement(new Option( |
---|
| 376 | "\tSet the number of bags, i.e., number of iterations to run \n" |
---|
| 377 | + "\tthe ensemble selection algorithm.", |
---|
| 378 | "B", 1, "-B <numModelBags>")); |
---|
| 379 | |
---|
| 380 | result.addElement(new Option( |
---|
| 381 | "\tSet the ratio of library models that will be randomly chosen \n" |
---|
| 382 | + "\tto populate each bag of models.", |
---|
| 383 | "E", 1, "-E <modelRatio>")); |
---|
| 384 | |
---|
| 385 | result.addElement(new Option( |
---|
| 386 | "\tSet the ratio of the training data set that will be reserved \n" |
---|
| 387 | + "\tfor validation.", |
---|
| 388 | "V", 1, "-V <validationRatio>")); |
---|
| 389 | |
---|
| 390 | result.addElement(new Option( |
---|
| 391 | "\tSet the number of hillclimbing iterations to be performed \n" |
---|
| 392 | + "\ton each model bag.", |
---|
| 393 | "H", 1, "-H <hillClimbIterations>")); |
---|
| 394 | |
---|
| 395 | result.addElement(new Option( |
---|
| 396 | "\tSet the the ratio of the ensemble library that the sort \n" |
---|
| 397 | + "\tinitialization algorithm will be able to choose from while \n" |
---|
| 398 | + "\tinitializing the ensemble for each model bag", |
---|
| 399 | "I", 1, "-I <sortInitialization>")); |
---|
| 400 | |
---|
| 401 | result.addElement(new Option( |
---|
| 402 | "\tSets the number of cross-validation folds.", |
---|
| 403 | "X", 1, "-X <numFolds>")); |
---|
| 404 | |
---|
| 405 | result.addElement(new Option( |
---|
| 406 | "\tSpecify the metric that will be used for model selection \n" |
---|
| 407 | + "\tduring the hillclimbing algorithm.\n" |
---|
| 408 | + "\tValid metrics are: \n" |
---|
| 409 | + "\t\taccuracy, rmse, roc, precision, recall, fscore, all", |
---|
| 410 | "P", 1, "-P <hillclimbMettric>")); |
---|
| 411 | |
---|
| 412 | result.addElement(new Option( |
---|
| 413 | "\tSpecifies the algorithm to be used for ensemble selection. \n" |
---|
| 414 | + "\tValid algorithms are:\n" |
---|
| 415 | + "\t\t\"forward\" (default) for forward selection.\n" |
---|
| 416 | + "\t\t\"backward\" for backward elimination.\n" |
---|
| 417 | + "\t\t\"both\" for both forward and backward elimination.\n" |
---|
| 418 | + "\t\t\"best\" to simply print out top performer from the \n" |
---|
| 419 | + "\t\t ensemble library\n" |
---|
| 420 | + "\t\t\"library\" to only train the models in the ensemble \n" |
---|
| 421 | + "\t\t library", |
---|
| 422 | "A", 1, "-A <algorithm>")); |
---|
| 423 | |
---|
| 424 | result.addElement(new Option( |
---|
| 425 | "\tFlag whether or not models can be selected more than once \n" |
---|
| 426 | + "\tfor an ensemble.", |
---|
| 427 | "R", 0, "-R")); |
---|
| 428 | |
---|
| 429 | result.addElement(new Option( |
---|
| 430 | "\tWhether sort initialization greedily stops adding models \n" |
---|
| 431 | + "\twhen performance degrades.", |
---|
| 432 | "G", 0, "-G")); |
---|
| 433 | |
---|
| 434 | result.addElement(new Option( |
---|
| 435 | "\tFlag for verbose output. Prints out performance of all \n" |
---|
| 436 | + "\tselected models.", |
---|
| 437 | "O", 0, "-O")); |
---|
| 438 | |
---|
| 439 | // TODO - Add more options here |
---|
| 440 | Enumeration enu = super.listOptions(); |
---|
| 441 | while (enu.hasMoreElements()) { |
---|
| 442 | result.addElement(enu.nextElement()); |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | return result.elements(); |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * We return true for basically everything except for Missing class values, |
---|
| 450 | * because we can't really answer for all the models in our library. If any of |
---|
| 451 | * them don't work with the supplied data then we just trap the exception. |
---|
| 452 | * |
---|
| 453 | * @return the capabilities of this classifier |
---|
| 454 | */ |
---|
| 455 | public Capabilities getCapabilities() { |
---|
| 456 | Capabilities result = super.getCapabilities(); // returns the object |
---|
| 457 | result.disableAll(); |
---|
| 458 | // from |
---|
| 459 | // weka.classifiers.Classifier |
---|
| 460 | |
---|
| 461 | // attributes |
---|
| 462 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 463 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 464 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 465 | result.enable(Capability.MISSING_VALUES); |
---|
| 466 | result.enable(Capability.BINARY_ATTRIBUTES); |
---|
| 467 | |
---|
| 468 | // class |
---|
| 469 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 470 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 471 | result.enable(Capability.BINARY_CLASS); |
---|
| 472 | |
---|
| 473 | return result; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /** |
---|
| 477 | <!-- options-start --> |
---|
| 478 | * Valid options are: <p/> |
---|
| 479 | * |
---|
| 480 | * <pre> -L </path/to/modelLibrary> |
---|
| 481 | * Specifies the Model Library File, continuing the list of all models.</pre> |
---|
| 482 | * |
---|
| 483 | * <pre> -W </path/to/working/directory> |
---|
| 484 | * Specifies the Working Directory, where all models will be stored.</pre> |
---|
| 485 | * |
---|
| 486 | * <pre> -B <numModelBags> |
---|
| 487 | * Set the number of bags, i.e., number of iterations to run |
---|
| 488 | * the ensemble selection algorithm.</pre> |
---|
| 489 | * |
---|
| 490 | * <pre> -E <modelRatio> |
---|
| 491 | * Set the ratio of library models that will be randomly chosen |
---|
| 492 | * to populate each bag of models.</pre> |
---|
| 493 | * |
---|
| 494 | * <pre> -V <validationRatio> |
---|
| 495 | * Set the ratio of the training data set that will be reserved |
---|
| 496 | * for validation.</pre> |
---|
| 497 | * |
---|
| 498 | * <pre> -H <hillClimbIterations> |
---|
| 499 | * Set the number of hillclimbing iterations to be performed |
---|
| 500 | * on each model bag.</pre> |
---|
| 501 | * |
---|
| 502 | * <pre> -I <sortInitialization> |
---|
| 503 | * Set the the ratio of the ensemble library that the sort |
---|
| 504 | * initialization algorithm will be able to choose from while |
---|
| 505 | * initializing the ensemble for each model bag</pre> |
---|
| 506 | * |
---|
| 507 | * <pre> -X <numFolds> |
---|
| 508 | * Sets the number of cross-validation folds.</pre> |
---|
| 509 | * |
---|
| 510 | * <pre> -P <hillclimbMettric> |
---|
| 511 | * Specify the metric that will be used for model selection |
---|
| 512 | * during the hillclimbing algorithm. |
---|
| 513 | * Valid metrics are: |
---|
| 514 | * accuracy, rmse, roc, precision, recall, fscore, all</pre> |
---|
| 515 | * |
---|
| 516 | * <pre> -A <algorithm> |
---|
| 517 | * Specifies the algorithm to be used for ensemble selection. |
---|
| 518 | * Valid algorithms are: |
---|
| 519 | * "forward" (default) for forward selection. |
---|
| 520 | * "backward" for backward elimination. |
---|
| 521 | * "both" for both forward and backward elimination. |
---|
| 522 | * "best" to simply print out top performer from the |
---|
| 523 | * ensemble library |
---|
| 524 | * "library" to only train the models in the ensemble |
---|
| 525 | * library</pre> |
---|
| 526 | * |
---|
| 527 | * <pre> -R |
---|
| 528 | * Flag whether or not models can be selected more than once |
---|
| 529 | * for an ensemble.</pre> |
---|
| 530 | * |
---|
| 531 | * <pre> -G |
---|
| 532 | * Whether sort initialization greedily stops adding models |
---|
| 533 | * when performance degrades.</pre> |
---|
| 534 | * |
---|
| 535 | * <pre> -O |
---|
| 536 | * Flag for verbose output. Prints out performance of all |
---|
| 537 | * selected models.</pre> |
---|
| 538 | * |
---|
| 539 | * <pre> -S <num> |
---|
| 540 | * Random number seed. |
---|
| 541 | * (default 1)</pre> |
---|
| 542 | * |
---|
| 543 | * <pre> -D |
---|
| 544 | * If set, classifier is run in debug mode and |
---|
| 545 | * may output additional info to the console</pre> |
---|
| 546 | * |
---|
| 547 | <!-- options-end --> |
---|
| 548 | * |
---|
| 549 | * @param options |
---|
| 550 | * the list of options as an array of strings |
---|
| 551 | * @throws Exception |
---|
| 552 | * if an option is not supported |
---|
| 553 | */ |
---|
| 554 | public void setOptions(String[] options) throws Exception { |
---|
| 555 | String tmpStr; |
---|
| 556 | |
---|
| 557 | tmpStr = Utils.getOption('L', options); |
---|
| 558 | if (tmpStr.length() != 0) { |
---|
| 559 | m_modelLibraryFileName = tmpStr; |
---|
| 560 | m_library = new EnsembleSelectionLibrary(m_modelLibraryFileName); |
---|
| 561 | } else { |
---|
| 562 | setLibrary(new EnsembleSelectionLibrary()); |
---|
| 563 | // setLibrary(new Library(super.m_Classifiers)); |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | tmpStr = Utils.getOption('W', options); |
---|
| 567 | if (tmpStr.length() != 0 && validWorkingDirectory(tmpStr)) { |
---|
| 568 | m_workingDirectory = new File(tmpStr); |
---|
| 569 | } else { |
---|
| 570 | m_workingDirectory = new File(getDefaultWorkingDirectory()); |
---|
| 571 | } |
---|
| 572 | m_library.setWorkingDirectory(m_workingDirectory); |
---|
| 573 | |
---|
| 574 | tmpStr = Utils.getOption('E', options); |
---|
| 575 | if (tmpStr.length() != 0) { |
---|
| 576 | setModelRatio(Double.parseDouble(tmpStr)); |
---|
| 577 | } else { |
---|
| 578 | setModelRatio(1.0); |
---|
| 579 | } |
---|
| 580 | |
---|
| 581 | tmpStr = Utils.getOption('V', options); |
---|
| 582 | if (tmpStr.length() != 0) { |
---|
| 583 | setValidationRatio(Double.parseDouble(tmpStr)); |
---|
| 584 | } else { |
---|
| 585 | setValidationRatio(0.25); |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | tmpStr = Utils.getOption('B', options); |
---|
| 589 | if (tmpStr.length() != 0) { |
---|
| 590 | setNumModelBags(Integer.parseInt(tmpStr)); |
---|
| 591 | } else { |
---|
| 592 | setNumModelBags(10); |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | tmpStr = Utils.getOption('H', options); |
---|
| 596 | if (tmpStr.length() != 0) { |
---|
| 597 | setHillclimbIterations(Integer.parseInt(tmpStr)); |
---|
| 598 | } else { |
---|
| 599 | setHillclimbIterations(100); |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | tmpStr = Utils.getOption('I', options); |
---|
| 603 | if (tmpStr.length() != 0) { |
---|
| 604 | setSortInitializationRatio(Double.parseDouble(tmpStr)); |
---|
| 605 | } else { |
---|
| 606 | setSortInitializationRatio(1.0); |
---|
| 607 | } |
---|
| 608 | |
---|
| 609 | tmpStr = Utils.getOption('X', options); |
---|
| 610 | if (tmpStr.length() != 0) { |
---|
| 611 | setNumFolds(Integer.parseInt(tmpStr)); |
---|
| 612 | } else { |
---|
| 613 | setNumFolds(10); |
---|
| 614 | } |
---|
| 615 | |
---|
| 616 | setReplacement(Utils.getFlag('R', options)); |
---|
| 617 | |
---|
| 618 | setGreedySortInitialization(Utils.getFlag('G', options)); |
---|
| 619 | |
---|
| 620 | setVerboseOutput(Utils.getFlag('O', options)); |
---|
| 621 | |
---|
| 622 | tmpStr = Utils.getOption('P', options); |
---|
| 623 | // if (hillclimbMetricString.length() != 0) { |
---|
| 624 | |
---|
| 625 | if (tmpStr.toLowerCase().equals("accuracy")) { |
---|
| 626 | setHillclimbMetric(new SelectedTag( |
---|
| 627 | EnsembleMetricHelper.METRIC_ACCURACY, TAGS_METRIC)); |
---|
| 628 | } else if (tmpStr.toLowerCase().equals("rmse")) { |
---|
| 629 | setHillclimbMetric(new SelectedTag( |
---|
| 630 | EnsembleMetricHelper.METRIC_RMSE, TAGS_METRIC)); |
---|
| 631 | } else if (tmpStr.toLowerCase().equals("roc")) { |
---|
| 632 | setHillclimbMetric(new SelectedTag( |
---|
| 633 | EnsembleMetricHelper.METRIC_ROC, TAGS_METRIC)); |
---|
| 634 | } else if (tmpStr.toLowerCase().equals("precision")) { |
---|
| 635 | setHillclimbMetric(new SelectedTag( |
---|
| 636 | EnsembleMetricHelper.METRIC_PRECISION, TAGS_METRIC)); |
---|
| 637 | } else if (tmpStr.toLowerCase().equals("recall")) { |
---|
| 638 | setHillclimbMetric(new SelectedTag( |
---|
| 639 | EnsembleMetricHelper.METRIC_RECALL, TAGS_METRIC)); |
---|
| 640 | } else if (tmpStr.toLowerCase().equals("fscore")) { |
---|
| 641 | setHillclimbMetric(new SelectedTag( |
---|
| 642 | EnsembleMetricHelper.METRIC_FSCORE, TAGS_METRIC)); |
---|
| 643 | } else if (tmpStr.toLowerCase().equals("all")) { |
---|
| 644 | setHillclimbMetric(new SelectedTag( |
---|
| 645 | EnsembleMetricHelper.METRIC_ALL, TAGS_METRIC)); |
---|
| 646 | } else { |
---|
| 647 | setHillclimbMetric(new SelectedTag( |
---|
| 648 | EnsembleMetricHelper.METRIC_RMSE, TAGS_METRIC)); |
---|
| 649 | } |
---|
| 650 | |
---|
| 651 | tmpStr = Utils.getOption('A', options); |
---|
| 652 | if (tmpStr.toLowerCase().equals("forward")) { |
---|
| 653 | setAlgorithm(new SelectedTag(ALGORITHM_FORWARD, TAGS_ALGORITHM)); |
---|
| 654 | } else if (tmpStr.toLowerCase().equals("backward")) { |
---|
| 655 | setAlgorithm(new SelectedTag(ALGORITHM_BACKWARD, TAGS_ALGORITHM)); |
---|
| 656 | } else if (tmpStr.toLowerCase().equals("both")) { |
---|
| 657 | setAlgorithm(new SelectedTag(ALGORITHM_FORWARD_BACKWARD, TAGS_ALGORITHM)); |
---|
| 658 | } else if (tmpStr.toLowerCase().equals("forward")) { |
---|
| 659 | setAlgorithm(new SelectedTag(ALGORITHM_FORWARD, TAGS_ALGORITHM)); |
---|
| 660 | } else if (tmpStr.toLowerCase().equals("best")) { |
---|
| 661 | setAlgorithm(new SelectedTag(ALGORITHM_BEST, TAGS_ALGORITHM)); |
---|
| 662 | } else if (tmpStr.toLowerCase().equals("library")) { |
---|
| 663 | setAlgorithm(new SelectedTag(ALGORITHM_BUILD_LIBRARY, TAGS_ALGORITHM)); |
---|
| 664 | } else { |
---|
| 665 | setAlgorithm(new SelectedTag(ALGORITHM_FORWARD, TAGS_ALGORITHM)); |
---|
| 666 | } |
---|
| 667 | |
---|
| 668 | super.setOptions(options); |
---|
| 669 | |
---|
| 670 | m_library.setDebug(m_Debug); |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | |
---|
| 674 | /** |
---|
| 675 | * Gets the current settings of the Classifier. |
---|
| 676 | * |
---|
| 677 | * @return an array of strings suitable for passing to setOptions |
---|
| 678 | */ |
---|
| 679 | public String[] getOptions() { |
---|
| 680 | Vector result; |
---|
| 681 | String[] options; |
---|
| 682 | int i; |
---|
| 683 | |
---|
| 684 | result = new Vector(); |
---|
| 685 | |
---|
| 686 | if (m_library.getModelListFile() != null) { |
---|
| 687 | result.add("-L"); |
---|
| 688 | result.add("" + m_library.getModelListFile()); |
---|
| 689 | } |
---|
| 690 | |
---|
| 691 | if (!m_workingDirectory.equals("")) { |
---|
| 692 | result.add("-W"); |
---|
| 693 | result.add("" + getWorkingDirectory()); |
---|
| 694 | } |
---|
| 695 | |
---|
| 696 | result.add("-P"); |
---|
| 697 | switch (getHillclimbMetric().getSelectedTag().getID()) { |
---|
| 698 | case (EnsembleMetricHelper.METRIC_ACCURACY): |
---|
| 699 | result.add("accuracy"); |
---|
| 700 | break; |
---|
| 701 | case (EnsembleMetricHelper.METRIC_RMSE): |
---|
| 702 | result.add("rmse"); |
---|
| 703 | break; |
---|
| 704 | case (EnsembleMetricHelper.METRIC_ROC): |
---|
| 705 | result.add("roc"); |
---|
| 706 | break; |
---|
| 707 | case (EnsembleMetricHelper.METRIC_PRECISION): |
---|
| 708 | result.add("precision"); |
---|
| 709 | break; |
---|
| 710 | case (EnsembleMetricHelper.METRIC_RECALL): |
---|
| 711 | result.add("recall"); |
---|
| 712 | break; |
---|
| 713 | case (EnsembleMetricHelper.METRIC_FSCORE): |
---|
| 714 | result.add("fscore"); |
---|
| 715 | break; |
---|
| 716 | case (EnsembleMetricHelper.METRIC_ALL): |
---|
| 717 | result.add("all"); |
---|
| 718 | break; |
---|
| 719 | } |
---|
| 720 | |
---|
| 721 | result.add("-A"); |
---|
| 722 | switch (getAlgorithm().getSelectedTag().getID()) { |
---|
| 723 | case (ALGORITHM_FORWARD): |
---|
| 724 | result.add("forward"); |
---|
| 725 | break; |
---|
| 726 | case (ALGORITHM_BACKWARD): |
---|
| 727 | result.add("backward"); |
---|
| 728 | break; |
---|
| 729 | case (ALGORITHM_FORWARD_BACKWARD): |
---|
| 730 | result.add("both"); |
---|
| 731 | break; |
---|
| 732 | case (ALGORITHM_BEST): |
---|
| 733 | result.add("best"); |
---|
| 734 | break; |
---|
| 735 | case (ALGORITHM_BUILD_LIBRARY): |
---|
| 736 | result.add("library"); |
---|
| 737 | break; |
---|
| 738 | } |
---|
| 739 | |
---|
| 740 | result.add("-B"); |
---|
| 741 | result.add("" + getNumModelBags()); |
---|
| 742 | result.add("-V"); |
---|
| 743 | result.add("" + getValidationRatio()); |
---|
| 744 | result.add("-E"); |
---|
| 745 | result.add("" + getModelRatio()); |
---|
| 746 | result.add("-H"); |
---|
| 747 | result.add("" + getHillclimbIterations()); |
---|
| 748 | result.add("-I"); |
---|
| 749 | result.add("" + getSortInitializationRatio()); |
---|
| 750 | result.add("-X"); |
---|
| 751 | result.add("" + getNumFolds()); |
---|
| 752 | |
---|
| 753 | if (m_replacement) |
---|
| 754 | result.add("-R"); |
---|
| 755 | if (m_greedySortInitialization) |
---|
| 756 | result.add("-G"); |
---|
| 757 | if (m_verboseOutput) |
---|
| 758 | result.add("-O"); |
---|
| 759 | |
---|
| 760 | options = super.getOptions(); |
---|
| 761 | for (i = 0; i < options.length; i++) |
---|
| 762 | result.add(options[i]); |
---|
| 763 | |
---|
| 764 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 765 | } |
---|
| 766 | |
---|
| 767 | /** |
---|
| 768 | * Returns the tip text for this property |
---|
| 769 | * |
---|
| 770 | * @return tip text for this property suitable for displaying in the |
---|
| 771 | * explorer/experimenter gui |
---|
| 772 | */ |
---|
| 773 | public String numFoldsTipText() { |
---|
| 774 | return "The number of folds used for cross-validation."; |
---|
| 775 | } |
---|
| 776 | |
---|
| 777 | /** |
---|
| 778 | * Gets the number of folds for the cross-validation. |
---|
| 779 | * |
---|
| 780 | * @return the number of folds for the cross-validation |
---|
| 781 | */ |
---|
| 782 | public int getNumFolds() { |
---|
| 783 | return m_NumFolds; |
---|
| 784 | } |
---|
| 785 | |
---|
| 786 | /** |
---|
| 787 | * Sets the number of folds for the cross-validation. |
---|
| 788 | * |
---|
| 789 | * @param numFolds |
---|
| 790 | * the number of folds for the cross-validation |
---|
| 791 | * @throws Exception |
---|
| 792 | * if parameter illegal |
---|
| 793 | */ |
---|
| 794 | public void setNumFolds(int numFolds) throws Exception { |
---|
| 795 | if (numFolds < 0) { |
---|
| 796 | throw new IllegalArgumentException( |
---|
| 797 | "EnsembleSelection: Number of cross-validation " |
---|
| 798 | + "folds must be positive."); |
---|
| 799 | } |
---|
| 800 | m_NumFolds = numFolds; |
---|
| 801 | } |
---|
| 802 | |
---|
| 803 | /** |
---|
| 804 | * Returns the tip text for this property |
---|
| 805 | * |
---|
| 806 | * @return tip text for this property suitable for displaying in the |
---|
| 807 | * explorer/experimenter gui |
---|
| 808 | */ |
---|
| 809 | public String libraryTipText() { |
---|
| 810 | return "An ensemble library."; |
---|
| 811 | } |
---|
| 812 | |
---|
| 813 | /** |
---|
| 814 | * Gets the ensemble library. |
---|
| 815 | * |
---|
| 816 | * @return the ensemble library |
---|
| 817 | */ |
---|
| 818 | public EnsembleSelectionLibrary getLibrary() { |
---|
| 819 | return m_library; |
---|
| 820 | } |
---|
| 821 | |
---|
| 822 | /** |
---|
| 823 | * Sets the ensemble library. |
---|
| 824 | * |
---|
| 825 | * @param newLibrary |
---|
| 826 | * the ensemble library |
---|
| 827 | */ |
---|
| 828 | public void setLibrary(EnsembleSelectionLibrary newLibrary) { |
---|
| 829 | m_library = newLibrary; |
---|
| 830 | m_library.setDebug(m_Debug); |
---|
| 831 | } |
---|
| 832 | |
---|
| 833 | /** |
---|
| 834 | * Returns the tip text for this property |
---|
| 835 | * |
---|
| 836 | * @return tip text for this property suitable for displaying in the |
---|
| 837 | * explorer/experimenter gui |
---|
| 838 | */ |
---|
| 839 | public String modelRatioTipText() { |
---|
| 840 | return "The ratio of library models that will be randomly chosen to be used for each iteration."; |
---|
| 841 | } |
---|
| 842 | |
---|
| 843 | /** |
---|
| 844 | * Get the value of modelRatio. |
---|
| 845 | * |
---|
| 846 | * @return Value of modelRatio. |
---|
| 847 | */ |
---|
| 848 | public double getModelRatio() { |
---|
| 849 | return m_modelRatio; |
---|
| 850 | } |
---|
| 851 | |
---|
| 852 | /** |
---|
| 853 | * Set the value of modelRatio. |
---|
| 854 | * |
---|
| 855 | * @param v |
---|
| 856 | * Value to assign to modelRatio. |
---|
| 857 | */ |
---|
| 858 | public void setModelRatio(double v) { |
---|
| 859 | m_modelRatio = v; |
---|
| 860 | } |
---|
| 861 | |
---|
| 862 | /** |
---|
| 863 | * Returns the tip text for this property |
---|
| 864 | * |
---|
| 865 | * @return tip text for this property suitable for displaying in the |
---|
| 866 | * explorer/experimenter gui |
---|
| 867 | */ |
---|
| 868 | public String validationRatioTipText() { |
---|
| 869 | return "The ratio of the training data set that will be reserved for validation."; |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | /** |
---|
| 873 | * Get the value of validationRatio. |
---|
| 874 | * |
---|
| 875 | * @return Value of validationRatio. |
---|
| 876 | */ |
---|
| 877 | public double getValidationRatio() { |
---|
| 878 | return m_validationRatio; |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | /** |
---|
| 882 | * Set the value of validationRatio. |
---|
| 883 | * |
---|
| 884 | * @param v |
---|
| 885 | * Value to assign to validationRatio. |
---|
| 886 | */ |
---|
| 887 | public void setValidationRatio(double v) { |
---|
| 888 | m_validationRatio = v; |
---|
| 889 | } |
---|
| 890 | |
---|
| 891 | /** |
---|
| 892 | * Returns the tip text for this property |
---|
| 893 | * |
---|
| 894 | * @return tip text for this property suitable for displaying in the |
---|
| 895 | * explorer/experimenter gui |
---|
| 896 | */ |
---|
| 897 | public String hillclimbMetricTipText() { |
---|
| 898 | return "the metric that will be used to optimizer the chosen ensemble.."; |
---|
| 899 | } |
---|
| 900 | |
---|
| 901 | /** |
---|
| 902 | * Gets the hill climbing metric. Will be one of METRIC_ACCURACY, |
---|
| 903 | * METRIC_RMSE, METRIC_ROC, METRIC_PRECISION, METRIC_RECALL, METRIC_FSCORE, |
---|
| 904 | * METRIC_ALL |
---|
| 905 | * |
---|
| 906 | * @return the hillclimbMetric |
---|
| 907 | */ |
---|
| 908 | public SelectedTag getHillclimbMetric() { |
---|
| 909 | return new SelectedTag(m_hillclimbMetric, TAGS_METRIC); |
---|
| 910 | } |
---|
| 911 | |
---|
| 912 | /** |
---|
| 913 | * Sets the hill climbing metric. Will be one of METRIC_ACCURACY, |
---|
| 914 | * METRIC_RMSE, METRIC_ROC, METRIC_PRECISION, METRIC_RECALL, METRIC_FSCORE, |
---|
| 915 | * METRIC_ALL |
---|
| 916 | * |
---|
| 917 | * @param newType |
---|
| 918 | * the new hillclimbMetric |
---|
| 919 | */ |
---|
| 920 | public void setHillclimbMetric(SelectedTag newType) { |
---|
| 921 | if (newType.getTags() == TAGS_METRIC) { |
---|
| 922 | m_hillclimbMetric = newType.getSelectedTag().getID(); |
---|
| 923 | } |
---|
| 924 | } |
---|
| 925 | |
---|
| 926 | /** |
---|
| 927 | * Returns the tip text for this property |
---|
| 928 | * |
---|
| 929 | * @return tip text for this property suitable for displaying in the |
---|
| 930 | * explorer/experimenter gui |
---|
| 931 | */ |
---|
| 932 | public String algorithmTipText() { |
---|
| 933 | return "the algorithm used to optimizer the ensemble"; |
---|
| 934 | } |
---|
| 935 | |
---|
| 936 | /** |
---|
| 937 | * Gets the algorithm |
---|
| 938 | * |
---|
| 939 | * @return the algorithm |
---|
| 940 | */ |
---|
| 941 | public SelectedTag getAlgorithm() { |
---|
| 942 | return new SelectedTag(m_algorithm, TAGS_ALGORITHM); |
---|
| 943 | } |
---|
| 944 | |
---|
| 945 | /** |
---|
| 946 | * Sets the Algorithm to use |
---|
| 947 | * |
---|
| 948 | * @param newType |
---|
| 949 | * the new algorithm |
---|
| 950 | */ |
---|
| 951 | public void setAlgorithm(SelectedTag newType) { |
---|
| 952 | if (newType.getTags() == TAGS_ALGORITHM) { |
---|
| 953 | m_algorithm = newType.getSelectedTag().getID(); |
---|
| 954 | } |
---|
| 955 | } |
---|
| 956 | |
---|
| 957 | /** |
---|
| 958 | * Returns the tip text for this property |
---|
| 959 | * |
---|
| 960 | * @return tip text for this property suitable for displaying in the |
---|
| 961 | * explorer/experimenter gui |
---|
| 962 | */ |
---|
| 963 | public String hillclimbIterationsTipText() { |
---|
| 964 | return "The number of hillclimbing iterations for the ensemble selection algorithm."; |
---|
| 965 | } |
---|
| 966 | |
---|
| 967 | /** |
---|
| 968 | * Gets the number of hillclimbIterations. |
---|
| 969 | * |
---|
| 970 | * @return the number of hillclimbIterations |
---|
| 971 | */ |
---|
| 972 | public int getHillclimbIterations() { |
---|
| 973 | return m_hillclimbIterations; |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | /** |
---|
| 977 | * Sets the number of hillclimbIterations. |
---|
| 978 | * |
---|
| 979 | * @param n |
---|
| 980 | * the number of hillclimbIterations |
---|
| 981 | * @throws Exception |
---|
| 982 | * if parameter illegal |
---|
| 983 | */ |
---|
| 984 | public void setHillclimbIterations(int n) throws Exception { |
---|
| 985 | if (n < 0) { |
---|
| 986 | throw new IllegalArgumentException( |
---|
| 987 | "EnsembleSelection: Number of hillclimb iterations " |
---|
| 988 | + "must be positive."); |
---|
| 989 | } |
---|
| 990 | m_hillclimbIterations = n; |
---|
| 991 | } |
---|
| 992 | |
---|
| 993 | /** |
---|
| 994 | * Returns the tip text for this property |
---|
| 995 | * |
---|
| 996 | * @return tip text for this property suitable for displaying in the |
---|
| 997 | * explorer/experimenter gui |
---|
| 998 | */ |
---|
| 999 | public String numModelBagsTipText() { |
---|
| 1000 | return "The number of \"model bags\" used in the ensemble selection algorithm."; |
---|
| 1001 | } |
---|
| 1002 | |
---|
| 1003 | /** |
---|
| 1004 | * Gets numModelBags. |
---|
| 1005 | * |
---|
| 1006 | * @return numModelBags |
---|
| 1007 | */ |
---|
| 1008 | public int getNumModelBags() { |
---|
| 1009 | return m_numModelBags; |
---|
| 1010 | } |
---|
| 1011 | |
---|
| 1012 | /** |
---|
| 1013 | * Sets numModelBags. |
---|
| 1014 | * |
---|
| 1015 | * @param n |
---|
| 1016 | * the new value for numModelBags |
---|
| 1017 | * @throws Exception |
---|
| 1018 | * if parameter illegal |
---|
| 1019 | */ |
---|
| 1020 | public void setNumModelBags(int n) throws Exception { |
---|
| 1021 | if (n <= 0) { |
---|
| 1022 | throw new IllegalArgumentException( |
---|
| 1023 | "EnsembleSelection: Number of model bags " |
---|
| 1024 | + "must be positive."); |
---|
| 1025 | } |
---|
| 1026 | m_numModelBags = n; |
---|
| 1027 | } |
---|
| 1028 | |
---|
| 1029 | /** |
---|
| 1030 | * Returns the tip text for this property |
---|
| 1031 | * |
---|
| 1032 | * @return tip text for this property suitable for displaying in the |
---|
| 1033 | * explorer/experimenter gui |
---|
| 1034 | */ |
---|
| 1035 | public String sortInitializationRatioTipText() { |
---|
| 1036 | return "The ratio of library models to be used for sort initialization."; |
---|
| 1037 | } |
---|
| 1038 | |
---|
| 1039 | /** |
---|
| 1040 | * Get the value of sortInitializationRatio. |
---|
| 1041 | * |
---|
| 1042 | * @return Value of sortInitializationRatio. |
---|
| 1043 | */ |
---|
| 1044 | public double getSortInitializationRatio() { |
---|
| 1045 | return m_sortInitializationRatio; |
---|
| 1046 | } |
---|
| 1047 | |
---|
| 1048 | /** |
---|
| 1049 | * Set the value of sortInitializationRatio. |
---|
| 1050 | * |
---|
| 1051 | * @param v |
---|
| 1052 | * Value to assign to sortInitializationRatio. |
---|
| 1053 | */ |
---|
| 1054 | public void setSortInitializationRatio(double v) { |
---|
| 1055 | m_sortInitializationRatio = v; |
---|
| 1056 | } |
---|
| 1057 | |
---|
| 1058 | /** |
---|
| 1059 | * Returns the tip text for this property |
---|
| 1060 | * |
---|
| 1061 | * @return tip text for this property suitable for displaying in the |
---|
| 1062 | * explorer/experimenter gui |
---|
| 1063 | */ |
---|
| 1064 | public String replacementTipText() { |
---|
| 1065 | return "Whether models in the library can be included more than once in an ensemble."; |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | /** |
---|
| 1069 | * Get the value of replacement. |
---|
| 1070 | * |
---|
| 1071 | * @return Value of replacement. |
---|
| 1072 | */ |
---|
| 1073 | public boolean getReplacement() { |
---|
| 1074 | return m_replacement; |
---|
| 1075 | } |
---|
| 1076 | |
---|
| 1077 | /** |
---|
| 1078 | * Set the value of replacement. |
---|
| 1079 | * |
---|
| 1080 | * @param newReplacement |
---|
| 1081 | * Value to assign to replacement. |
---|
| 1082 | */ |
---|
| 1083 | public void setReplacement(boolean newReplacement) { |
---|
| 1084 | m_replacement = newReplacement; |
---|
| 1085 | } |
---|
| 1086 | |
---|
| 1087 | /** |
---|
| 1088 | * Returns the tip text for this property |
---|
| 1089 | * |
---|
| 1090 | * @return tip text for this property suitable for displaying in the |
---|
| 1091 | * explorer/experimenter gui |
---|
| 1092 | */ |
---|
| 1093 | public String greedySortInitializationTipText() { |
---|
| 1094 | return "Whether sort initialization greedily stops adding models when performance degrades."; |
---|
| 1095 | } |
---|
| 1096 | |
---|
| 1097 | /** |
---|
| 1098 | * Get the value of greedySortInitialization. |
---|
| 1099 | * |
---|
| 1100 | * @return Value of replacement. |
---|
| 1101 | */ |
---|
| 1102 | public boolean getGreedySortInitialization() { |
---|
| 1103 | return m_greedySortInitialization; |
---|
| 1104 | } |
---|
| 1105 | |
---|
| 1106 | /** |
---|
| 1107 | * Set the value of greedySortInitialization. |
---|
| 1108 | * |
---|
| 1109 | * @param newGreedySortInitialization |
---|
| 1110 | * Value to assign to replacement. |
---|
| 1111 | */ |
---|
| 1112 | public void setGreedySortInitialization(boolean newGreedySortInitialization) { |
---|
| 1113 | m_greedySortInitialization = newGreedySortInitialization; |
---|
| 1114 | } |
---|
| 1115 | |
---|
| 1116 | /** |
---|
| 1117 | * Returns the tip text for this property |
---|
| 1118 | * |
---|
| 1119 | * @return tip text for this property suitable for displaying in the |
---|
| 1120 | * explorer/experimenter gui |
---|
| 1121 | */ |
---|
| 1122 | public String verboseOutputTipText() { |
---|
| 1123 | return "Whether metrics are printed for each model."; |
---|
| 1124 | } |
---|
| 1125 | |
---|
| 1126 | /** |
---|
| 1127 | * Get the value of verboseOutput. |
---|
| 1128 | * |
---|
| 1129 | * @return Value of verboseOutput. |
---|
| 1130 | */ |
---|
| 1131 | public boolean getVerboseOutput() { |
---|
| 1132 | return m_verboseOutput; |
---|
| 1133 | } |
---|
| 1134 | |
---|
| 1135 | /** |
---|
| 1136 | * Set the value of verboseOutput. |
---|
| 1137 | * |
---|
| 1138 | * @param newVerboseOutput |
---|
| 1139 | * Value to assign to verboseOutput. |
---|
| 1140 | */ |
---|
| 1141 | public void setVerboseOutput(boolean newVerboseOutput) { |
---|
| 1142 | m_verboseOutput = newVerboseOutput; |
---|
| 1143 | } |
---|
| 1144 | |
---|
| 1145 | /** |
---|
| 1146 | * Returns the tip text for this property |
---|
| 1147 | * |
---|
| 1148 | * @return tip text for this property suitable for displaying in the |
---|
| 1149 | * explorer/experimenter gui |
---|
| 1150 | */ |
---|
| 1151 | public String workingDirectoryTipText() { |
---|
| 1152 | return "The working directory of the ensemble - where trained models will be stored."; |
---|
| 1153 | } |
---|
| 1154 | |
---|
| 1155 | /** |
---|
| 1156 | * Get the value of working directory. |
---|
| 1157 | * |
---|
| 1158 | * @return Value of working directory. |
---|
| 1159 | */ |
---|
| 1160 | public File getWorkingDirectory() { |
---|
| 1161 | return m_workingDirectory; |
---|
| 1162 | } |
---|
| 1163 | |
---|
| 1164 | /** |
---|
| 1165 | * Set the value of working directory. |
---|
| 1166 | * |
---|
| 1167 | * @param newWorkingDirectory directory Value. |
---|
| 1168 | */ |
---|
| 1169 | public void setWorkingDirectory(File newWorkingDirectory) { |
---|
| 1170 | if (m_Debug) { |
---|
| 1171 | System.out.println("working directory changed to: " |
---|
| 1172 | + newWorkingDirectory); |
---|
| 1173 | } |
---|
| 1174 | m_library.setWorkingDirectory(newWorkingDirectory); |
---|
| 1175 | |
---|
| 1176 | m_workingDirectory = newWorkingDirectory; |
---|
| 1177 | } |
---|
| 1178 | |
---|
| 1179 | /** |
---|
| 1180 | * Buildclassifier selects a classifier from the set of classifiers by |
---|
| 1181 | * minimising error on the training data. |
---|
| 1182 | * |
---|
| 1183 | * @param trainData the training data to be used for generating the boosted |
---|
| 1184 | * classifier. |
---|
| 1185 | * @throws Exception if the classifier could not be built successfully |
---|
| 1186 | */ |
---|
| 1187 | public void buildClassifier(Instances trainData) throws Exception { |
---|
| 1188 | |
---|
| 1189 | getCapabilities().testWithFail(trainData); |
---|
| 1190 | |
---|
| 1191 | // First we need to make sure that some library models |
---|
| 1192 | // were specified. If not, then use the default list |
---|
| 1193 | if (m_library.m_Models.size() == 0) { |
---|
| 1194 | |
---|
| 1195 | System.out |
---|
| 1196 | .println("WARNING: No library file specified. Using some default models."); |
---|
| 1197 | System.out |
---|
| 1198 | .println("You should specify a model list with -L <file> from the command line."); |
---|
| 1199 | System.out |
---|
| 1200 | .println("Or edit the list directly with the LibraryEditor from the GUI"); |
---|
| 1201 | |
---|
| 1202 | for (int i = 0; i < 10; i++) { |
---|
| 1203 | |
---|
| 1204 | REPTree tree = new REPTree(); |
---|
| 1205 | tree.setSeed(i); |
---|
| 1206 | m_library.addModel(new EnsembleSelectionLibraryModel(tree)); |
---|
| 1207 | |
---|
| 1208 | } |
---|
| 1209 | |
---|
| 1210 | } |
---|
| 1211 | |
---|
| 1212 | if (m_library == null) { |
---|
| 1213 | m_library = new EnsembleSelectionLibrary(); |
---|
| 1214 | m_library.setDebug(m_Debug); |
---|
| 1215 | } |
---|
| 1216 | |
---|
| 1217 | m_library.setNumFolds(getNumFolds()); |
---|
| 1218 | m_library.setValidationRatio(getValidationRatio()); |
---|
| 1219 | // train all untrained models, and set "data" to the hillclimbing set. |
---|
| 1220 | Instances data = m_library.trainAll(trainData, m_workingDirectory.getAbsolutePath(), |
---|
| 1221 | m_algorithm); |
---|
| 1222 | // We cache the hillclimb predictions from all of the models in |
---|
| 1223 | // the library so that we can evaluate their performances when we |
---|
| 1224 | // combine them |
---|
| 1225 | // in various ways (without needing to keep the classifiers in memory). |
---|
| 1226 | double predictions[][][] = m_library.getHillclimbPredictions(); |
---|
| 1227 | int numModels = predictions.length; |
---|
| 1228 | int modelWeights[] = new int[numModels]; |
---|
| 1229 | m_total_weight = 0; |
---|
| 1230 | Random rand = new Random(m_Seed); |
---|
| 1231 | |
---|
| 1232 | if (m_algorithm == ALGORITHM_BUILD_LIBRARY) { |
---|
| 1233 | return; |
---|
| 1234 | |
---|
| 1235 | } else if (m_algorithm == ALGORITHM_BEST) { |
---|
| 1236 | // If we want to choose the best model, just make a model bag that |
---|
| 1237 | // includes all the models, then sort initialize to find the 1 that |
---|
| 1238 | // performs best. |
---|
| 1239 | ModelBag model_bag = new ModelBag(predictions, 1.0, m_Debug); |
---|
| 1240 | int[] modelPicked = model_bag.sortInitialize(1, false, data, |
---|
| 1241 | m_hillclimbMetric); |
---|
| 1242 | // Then give it a weight of 1, while all others remain 0. |
---|
| 1243 | modelWeights[modelPicked[0]] = 1; |
---|
| 1244 | } else { |
---|
| 1245 | |
---|
| 1246 | if (m_Debug) |
---|
| 1247 | System.out.println("Starting hillclimbing algorithm: " |
---|
| 1248 | + m_algorithm); |
---|
| 1249 | |
---|
| 1250 | for (int i = 0; i < getNumModelBags(); ++i) { |
---|
| 1251 | // For the number of bags, |
---|
| 1252 | if (m_Debug) |
---|
| 1253 | System.out.println("Starting on ensemble bag: " + i); |
---|
| 1254 | // Create a new bag of the appropriate size |
---|
| 1255 | ModelBag modelBag = new ModelBag(predictions, getModelRatio(), |
---|
| 1256 | m_Debug); |
---|
| 1257 | // And shuffle it. |
---|
| 1258 | modelBag.shuffle(rand); |
---|
| 1259 | if (getSortInitializationRatio() > 0.0) { |
---|
| 1260 | // Sort initialize, if the ratio greater than 0. |
---|
| 1261 | modelBag.sortInitialize((int) (getSortInitializationRatio() |
---|
| 1262 | * getModelRatio() * numModels), |
---|
| 1263 | getGreedySortInitialization(), data, |
---|
| 1264 | m_hillclimbMetric); |
---|
| 1265 | } |
---|
| 1266 | |
---|
| 1267 | if (m_algorithm == ALGORITHM_BACKWARD) { |
---|
| 1268 | // If we're doing backwards elimination, we just give all |
---|
| 1269 | // models |
---|
| 1270 | // a weight of 1 initially. If the # of hillclimb iterations |
---|
| 1271 | // is too high, we'll end up with just one model in the end |
---|
| 1272 | // (we never delete all models from a bag). TODO - it might |
---|
| 1273 | // be |
---|
| 1274 | // smarter to base this weight off of how many models we |
---|
| 1275 | // have. |
---|
| 1276 | modelBag.weightAll(1); // for now at least, I'm just |
---|
| 1277 | // assuming 1. |
---|
| 1278 | } |
---|
| 1279 | // Now the bag is initialized, and we're ready to hillclimb. |
---|
| 1280 | for (int j = 0; j < getHillclimbIterations(); ++j) { |
---|
| 1281 | if (m_algorithm == ALGORITHM_FORWARD) { |
---|
| 1282 | modelBag.forwardSelect(getReplacement(), data, |
---|
| 1283 | m_hillclimbMetric); |
---|
| 1284 | } else if (m_algorithm == ALGORITHM_BACKWARD) { |
---|
| 1285 | modelBag.backwardEliminate(data, m_hillclimbMetric); |
---|
| 1286 | } else if (m_algorithm == ALGORITHM_FORWARD_BACKWARD) { |
---|
| 1287 | modelBag.forwardSelectOrBackwardEliminate( |
---|
| 1288 | getReplacement(), data, m_hillclimbMetric); |
---|
| 1289 | } |
---|
| 1290 | } |
---|
| 1291 | // Now that we've done all the hillclimbing steps, we can just |
---|
| 1292 | // get |
---|
| 1293 | // the model weights that the bag determined, and add them to |
---|
| 1294 | // our |
---|
| 1295 | // running total. |
---|
| 1296 | int[] bagWeights = modelBag.getModelWeights(); |
---|
| 1297 | for (int j = 0; j < bagWeights.length; ++j) { |
---|
| 1298 | modelWeights[j] += bagWeights[j]; |
---|
| 1299 | } |
---|
| 1300 | } |
---|
| 1301 | } |
---|
| 1302 | // Now we've done the hard work of actually learning the ensemble. Now |
---|
| 1303 | // we set up the appropriate data structures so that Ensemble Selection |
---|
| 1304 | // can |
---|
| 1305 | // make predictions for future test examples. |
---|
| 1306 | Set modelNames = m_library.getModelNames(); |
---|
| 1307 | String[] modelNamesArray = new String[m_library.size()]; |
---|
| 1308 | Iterator iter = modelNames.iterator(); |
---|
| 1309 | // libraryIndex indexes over all the models in the library (not just |
---|
| 1310 | // those |
---|
| 1311 | // which we chose for the ensemble). |
---|
| 1312 | int libraryIndex = 0; |
---|
| 1313 | // chosenModels will count the total number of models which were |
---|
| 1314 | // selected |
---|
| 1315 | // by EnsembleSelection (those that have non-zero weight). |
---|
| 1316 | int chosenModels = 0; |
---|
| 1317 | while (iter.hasNext()) { |
---|
| 1318 | // Note that we have to be careful of order. Our model_weights array |
---|
| 1319 | // is in the same order as our list of models in m_library. |
---|
| 1320 | |
---|
| 1321 | // Get the name of the model, |
---|
| 1322 | modelNamesArray[libraryIndex] = (String) iter.next(); |
---|
| 1323 | // and its weight. |
---|
| 1324 | int weightOfModel = modelWeights[libraryIndex++]; |
---|
| 1325 | m_total_weight += weightOfModel; |
---|
| 1326 | if (weightOfModel > 0) { |
---|
| 1327 | // If the model was chosen at least once, increment the |
---|
| 1328 | // number of chosen models. |
---|
| 1329 | ++chosenModels; |
---|
| 1330 | } |
---|
| 1331 | } |
---|
| 1332 | if (m_verboseOutput) { |
---|
| 1333 | // Output every model and its performance with respect to the |
---|
| 1334 | // validation |
---|
| 1335 | // data. |
---|
| 1336 | ModelBag bag = new ModelBag(predictions, 1.0, m_Debug); |
---|
| 1337 | int modelIndexes[] = bag.sortInitialize(modelNamesArray.length, |
---|
| 1338 | false, data, m_hillclimbMetric); |
---|
| 1339 | double modelPerformance[] = bag.getIndividualPerformance(data, |
---|
| 1340 | m_hillclimbMetric); |
---|
| 1341 | for (int i = 0; i < modelIndexes.length; ++i) { |
---|
| 1342 | // TODO - Could do this in a more readable way. |
---|
| 1343 | System.out.println("" + modelPerformance[i] + " " |
---|
| 1344 | + modelNamesArray[modelIndexes[i]]); |
---|
| 1345 | } |
---|
| 1346 | } |
---|
| 1347 | // We're now ready to build our array of the models which were chosen |
---|
| 1348 | // and there associated weights. |
---|
| 1349 | m_chosen_models = new EnsembleSelectionLibraryModel[chosenModels]; |
---|
| 1350 | m_chosen_model_weights = new int[chosenModels]; |
---|
| 1351 | |
---|
| 1352 | libraryIndex = 0; |
---|
| 1353 | // chosenIndex indexes over the models which were chosen by |
---|
| 1354 | // EnsembleSelection |
---|
| 1355 | // (those which have non-zero weight). |
---|
| 1356 | int chosenIndex = 0; |
---|
| 1357 | iter = m_library.getModels().iterator(); |
---|
| 1358 | while (iter.hasNext()) { |
---|
| 1359 | int weightOfModel = modelWeights[libraryIndex++]; |
---|
| 1360 | |
---|
| 1361 | EnsembleSelectionLibraryModel model = (EnsembleSelectionLibraryModel) iter |
---|
| 1362 | .next(); |
---|
| 1363 | |
---|
| 1364 | if (weightOfModel > 0) { |
---|
| 1365 | // If the model was chosen at least once, add it to our array |
---|
| 1366 | // of chosen models and weights. |
---|
| 1367 | m_chosen_models[chosenIndex] = model; |
---|
| 1368 | m_chosen_model_weights[chosenIndex] = weightOfModel; |
---|
| 1369 | // Note that the EnsembleSelectionLibraryModel may not be |
---|
| 1370 | // "loaded" - |
---|
| 1371 | // that is, its classifier(s) may be null pointers. That's okay |
---|
| 1372 | // - |
---|
| 1373 | // we'll "rehydrate" them later, if and when we need to. |
---|
| 1374 | ++chosenIndex; |
---|
| 1375 | } |
---|
| 1376 | } |
---|
| 1377 | } |
---|
| 1378 | |
---|
| 1379 | /** |
---|
| 1380 | * Calculates the class membership probabilities for the given test instance. |
---|
| 1381 | * |
---|
| 1382 | * @param instance the instance to be classified |
---|
| 1383 | * @return predicted class probability distribution |
---|
| 1384 | * @throws Exception if instance could not be classified |
---|
| 1385 | * successfully |
---|
| 1386 | */ |
---|
| 1387 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 1388 | String stringInstance = instance.toString(); |
---|
| 1389 | double cachedPreds[][] = null; |
---|
| 1390 | |
---|
| 1391 | if (m_cachedPredictions != null) { |
---|
| 1392 | // If we have any cached predictions (i.e., if cachePredictions was |
---|
| 1393 | // called), look for a cached set of predictions for this instance. |
---|
| 1394 | if (m_cachedPredictions.containsKey(stringInstance)) { |
---|
| 1395 | cachedPreds = (double[][]) m_cachedPredictions.get(stringInstance); |
---|
| 1396 | } |
---|
| 1397 | } |
---|
| 1398 | double[] prediction = new double[instance.numClasses()]; |
---|
| 1399 | for (int i = 0; i < prediction.length; ++i) { |
---|
| 1400 | prediction[i] = 0.0; |
---|
| 1401 | } |
---|
| 1402 | |
---|
| 1403 | // Now do a weighted average of the predictions of each of our models. |
---|
| 1404 | for (int i = 0; i < m_chosen_models.length; ++i) { |
---|
| 1405 | double[] predictionForThisModel = null; |
---|
| 1406 | if (cachedPreds == null) { |
---|
| 1407 | // If there are no predictions cached, we'll load the model's |
---|
| 1408 | // classifier(s) in to memory and get the predictions. |
---|
| 1409 | m_chosen_models[i].rehydrateModel(m_workingDirectory.getAbsolutePath()); |
---|
| 1410 | predictionForThisModel = m_chosen_models[i].getAveragePrediction(instance); |
---|
| 1411 | // We could release the model here to save memory, but we assume |
---|
| 1412 | // that there is enough available since we're not using the |
---|
| 1413 | // prediction caching functionality. If we load and release a |
---|
| 1414 | // model |
---|
| 1415 | // every time we need to get a prediction for an instance, it |
---|
| 1416 | // can be |
---|
| 1417 | // prohibitively slow. |
---|
| 1418 | } else { |
---|
| 1419 | // If it's cached, just get it from the array of cached preds |
---|
| 1420 | // for this instance. |
---|
| 1421 | predictionForThisModel = cachedPreds[i]; |
---|
| 1422 | } |
---|
| 1423 | // We have encountered a bug where MultilayerPerceptron returns a |
---|
| 1424 | // null |
---|
| 1425 | // prediction array. If that happens, we just don't count that model |
---|
| 1426 | // in |
---|
| 1427 | // our ensemble prediction. |
---|
| 1428 | if (predictionForThisModel != null) { |
---|
| 1429 | // Okay, the model returned a valid prediction array, so we'll |
---|
| 1430 | // add the appropriate fraction of this model's prediction. |
---|
| 1431 | for (int j = 0; j < prediction.length; ++j) { |
---|
| 1432 | prediction[j] += m_chosen_model_weights[i] * predictionForThisModel[j] / m_total_weight; |
---|
| 1433 | } |
---|
| 1434 | } |
---|
| 1435 | } |
---|
| 1436 | // normalize to add up to 1. |
---|
| 1437 | if (instance.classAttribute().isNominal()) { |
---|
| 1438 | if (Utils.sum(prediction) > 0) |
---|
| 1439 | Utils.normalize(prediction); |
---|
| 1440 | } |
---|
| 1441 | return prediction; |
---|
| 1442 | } |
---|
| 1443 | |
---|
| 1444 | /** |
---|
| 1445 | * This function tests whether or not a given path is appropriate for being |
---|
| 1446 | * the working directory. Specifically, we care that we can write to the |
---|
| 1447 | * path and that it doesn't point to a "non-directory" file handle. |
---|
| 1448 | * |
---|
| 1449 | * @param dir the directory to test |
---|
| 1450 | * @return true if the directory is valid |
---|
| 1451 | */ |
---|
| 1452 | private boolean validWorkingDirectory(String dir) { |
---|
| 1453 | |
---|
| 1454 | boolean valid = false; |
---|
| 1455 | |
---|
| 1456 | File f = new File((dir)); |
---|
| 1457 | |
---|
| 1458 | if (f.exists()) { |
---|
| 1459 | if (f.isDirectory() && f.canWrite()) |
---|
| 1460 | valid = true; |
---|
| 1461 | } else { |
---|
| 1462 | if (f.canWrite()) |
---|
| 1463 | valid = true; |
---|
| 1464 | } |
---|
| 1465 | |
---|
| 1466 | return valid; |
---|
| 1467 | |
---|
| 1468 | } |
---|
| 1469 | |
---|
| 1470 | /** |
---|
| 1471 | * This method tries to find a reasonable path name for the ensemble working |
---|
| 1472 | * directory where models and files will be stored. |
---|
| 1473 | * |
---|
| 1474 | * |
---|
| 1475 | * @return true if m_workingDirectory now has a valid file name |
---|
| 1476 | */ |
---|
| 1477 | public static String getDefaultWorkingDirectory() { |
---|
| 1478 | |
---|
| 1479 | String defaultDirectory = new String(""); |
---|
| 1480 | |
---|
| 1481 | boolean success = false; |
---|
| 1482 | |
---|
| 1483 | int i = 1; |
---|
| 1484 | |
---|
| 1485 | while (i < MAX_DEFAULT_DIRECTORIES && !success) { |
---|
| 1486 | |
---|
| 1487 | File f = new File(System.getProperty("user.home"), "Ensemble-" + i); |
---|
| 1488 | |
---|
| 1489 | if (!f.exists() && f.getParentFile().canWrite()) { |
---|
| 1490 | defaultDirectory = f.getPath(); |
---|
| 1491 | success = true; |
---|
| 1492 | } |
---|
| 1493 | i++; |
---|
| 1494 | |
---|
| 1495 | } |
---|
| 1496 | |
---|
| 1497 | if (!success) { |
---|
| 1498 | defaultDirectory = new String(""); |
---|
| 1499 | // should we print an error or something? |
---|
| 1500 | } |
---|
| 1501 | |
---|
| 1502 | return defaultDirectory; |
---|
| 1503 | } |
---|
| 1504 | |
---|
| 1505 | /** |
---|
| 1506 | * Output a representation of this classifier |
---|
| 1507 | * |
---|
| 1508 | * @return a string representation of the classifier |
---|
| 1509 | */ |
---|
| 1510 | public String toString() { |
---|
| 1511 | // We just print out the models which were selected, and the number |
---|
| 1512 | // of times each was selected. |
---|
| 1513 | String result = new String(); |
---|
| 1514 | if (m_chosen_models != null) { |
---|
| 1515 | for (int i = 0; i < m_chosen_models.length; ++i) { |
---|
| 1516 | result += m_chosen_model_weights[i]; |
---|
| 1517 | result += " " + m_chosen_models[i].getStringRepresentation() |
---|
| 1518 | + "\n"; |
---|
| 1519 | } |
---|
| 1520 | } else { |
---|
| 1521 | result = "No models selected."; |
---|
| 1522 | } |
---|
| 1523 | return result; |
---|
| 1524 | } |
---|
| 1525 | |
---|
| 1526 | /** |
---|
| 1527 | * Cache predictions for the individual base classifiers in the ensemble |
---|
| 1528 | * with respect to the given dataset. This is used so that when testing a |
---|
| 1529 | * large ensemble on a test set, we don't have to keep the models in memory. |
---|
| 1530 | * |
---|
| 1531 | * @param test The instances for which to cache predictions. |
---|
| 1532 | * @throws Exception if somethng goes wrong |
---|
| 1533 | */ |
---|
| 1534 | private void cachePredictions(Instances test) throws Exception { |
---|
| 1535 | m_cachedPredictions = new HashMap(); |
---|
| 1536 | Evaluation evalModel = null; |
---|
| 1537 | Instances originalInstances = null; |
---|
| 1538 | // If the verbose flag is set, we'll also print out the performances of |
---|
| 1539 | // all the individual models w.r.t. this test set while we're at it. |
---|
| 1540 | boolean printModelPerformances = getVerboseOutput(); |
---|
| 1541 | if (printModelPerformances) { |
---|
| 1542 | // To get performances, we need to keep the class attribute. |
---|
| 1543 | originalInstances = new Instances(test); |
---|
| 1544 | } |
---|
| 1545 | |
---|
| 1546 | // For each model, we'll go through the dataset and get predictions. |
---|
| 1547 | // The idea is we want to only have one model in memory at a time, so |
---|
| 1548 | // we'll |
---|
| 1549 | // load one model in to memory, get all its predictions, and add them to |
---|
| 1550 | // the |
---|
| 1551 | // hash map. Then we can release it from memory and move on to the next. |
---|
| 1552 | for (int i = 0; i < m_chosen_models.length; ++i) { |
---|
| 1553 | if (printModelPerformances) { |
---|
| 1554 | // If we're going to print predictions, we need to make a new |
---|
| 1555 | // Evaluation object. |
---|
| 1556 | evalModel = new Evaluation(originalInstances); |
---|
| 1557 | } |
---|
| 1558 | |
---|
| 1559 | Date startTime = new Date(); |
---|
| 1560 | |
---|
| 1561 | // Load the model in to memory. |
---|
| 1562 | m_chosen_models[i].rehydrateModel(m_workingDirectory.getAbsolutePath()); |
---|
| 1563 | // Now loop through all the instances and get the model's |
---|
| 1564 | // predictions. |
---|
| 1565 | for (int j = 0; j < test.numInstances(); ++j) { |
---|
| 1566 | Instance currentInstance = test.instance(j); |
---|
| 1567 | // When we're looking for a cached prediction later, we'll only |
---|
| 1568 | // have the non-class attributes, so we set the class missing |
---|
| 1569 | // here |
---|
| 1570 | // in order to make the string match up properly. |
---|
| 1571 | currentInstance.setClassMissing(); |
---|
| 1572 | String stringInstance = currentInstance.toString(); |
---|
| 1573 | |
---|
| 1574 | // When we come in here with the first model, the instance will |
---|
| 1575 | // not |
---|
| 1576 | // yet be part of the map. |
---|
| 1577 | if (!m_cachedPredictions.containsKey(stringInstance)) { |
---|
| 1578 | // The instance isn't in the map yet, so add it. |
---|
| 1579 | // For each instance, we store a two-dimensional array - the |
---|
| 1580 | // first |
---|
| 1581 | // index is over all the models in the ensemble, and the |
---|
| 1582 | // second |
---|
| 1583 | // index is over the (i.e., typical prediction array). |
---|
| 1584 | int predSize = test.classAttribute().isNumeric() ? 1 : test |
---|
| 1585 | .classAttribute().numValues(); |
---|
| 1586 | double predictionArray[][] = new double[m_chosen_models.length][predSize]; |
---|
| 1587 | m_cachedPredictions.put(stringInstance, predictionArray); |
---|
| 1588 | } |
---|
| 1589 | // Get the array from the map which is associated with this |
---|
| 1590 | // instance |
---|
| 1591 | double predictions[][] = (double[][]) m_cachedPredictions |
---|
| 1592 | .get(stringInstance); |
---|
| 1593 | // And add our model's prediction for it. |
---|
| 1594 | predictions[i] = m_chosen_models[i].getAveragePrediction(test |
---|
| 1595 | .instance(j)); |
---|
| 1596 | |
---|
| 1597 | if (printModelPerformances) { |
---|
| 1598 | evalModel.evaluateModelOnceAndRecordPrediction( |
---|
| 1599 | predictions[i], originalInstances.instance(j)); |
---|
| 1600 | } |
---|
| 1601 | } |
---|
| 1602 | // Now we're done with model #i, so we can release it. |
---|
| 1603 | m_chosen_models[i].releaseModel(); |
---|
| 1604 | |
---|
| 1605 | Date endTime = new Date(); |
---|
| 1606 | long diff = endTime.getTime() - startTime.getTime(); |
---|
| 1607 | |
---|
| 1608 | if (m_Debug) |
---|
| 1609 | System.out.println("Test time for " |
---|
| 1610 | + m_chosen_models[i].getStringRepresentation() |
---|
| 1611 | + " was: " + diff); |
---|
| 1612 | |
---|
| 1613 | if (printModelPerformances) { |
---|
| 1614 | String output = new String(m_chosen_models[i] |
---|
| 1615 | .getStringRepresentation() |
---|
| 1616 | + ": "); |
---|
| 1617 | output += "\tRMSE:" + evalModel.rootMeanSquaredError(); |
---|
| 1618 | output += "\tACC:" + evalModel.pctCorrect(); |
---|
| 1619 | if (test.numClasses() == 2) { |
---|
| 1620 | // For multiclass problems, we could print these too, but |
---|
| 1621 | // it's |
---|
| 1622 | // not clear which class we should use in that case... so |
---|
| 1623 | // instead |
---|
| 1624 | // we only print these metrics for binary classification |
---|
| 1625 | // problems. |
---|
| 1626 | output += "\tROC:" + evalModel.areaUnderROC(1); |
---|
| 1627 | output += "\tPREC:" + evalModel.precision(1); |
---|
| 1628 | output += "\tFSCR:" + evalModel.fMeasure(1); |
---|
| 1629 | } |
---|
| 1630 | System.out.println(output); |
---|
| 1631 | } |
---|
| 1632 | } |
---|
| 1633 | } |
---|
| 1634 | |
---|
| 1635 | /** |
---|
| 1636 | * Return the technical information. There is actually another |
---|
| 1637 | * paper that describes our current method of CV for this classifier |
---|
| 1638 | * TODO: Cite Technical report when published |
---|
| 1639 | * |
---|
| 1640 | * @return the technical information about this class |
---|
| 1641 | */ |
---|
| 1642 | public TechnicalInformation getTechnicalInformation() { |
---|
| 1643 | |
---|
| 1644 | TechnicalInformation result; |
---|
| 1645 | |
---|
| 1646 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 1647 | result.setValue(Field.AUTHOR, "Rich Caruana, Alex Niculescu, Geoff Crew, and Alex Ksikes"); |
---|
| 1648 | result.setValue(Field.TITLE, "Ensemble Selection from Libraries of Models"); |
---|
| 1649 | result.setValue(Field.BOOKTITLE, "21st International Conference on Machine Learning"); |
---|
| 1650 | result.setValue(Field.YEAR, "2004"); |
---|
| 1651 | |
---|
| 1652 | return result; |
---|
| 1653 | } |
---|
| 1654 | |
---|
| 1655 | /** |
---|
| 1656 | * Returns the revision string. |
---|
| 1657 | * |
---|
| 1658 | * @return the revision |
---|
| 1659 | */ |
---|
| 1660 | public String getRevision() { |
---|
| 1661 | return RevisionUtils.extract("$Revision: 5480 $"); |
---|
| 1662 | } |
---|
| 1663 | |
---|
| 1664 | /** |
---|
| 1665 | * Executes the classifier from commandline. |
---|
| 1666 | * |
---|
| 1667 | * @param argv |
---|
| 1668 | * should contain the following arguments: -t training file [-T |
---|
| 1669 | * test file] [-c class index] |
---|
| 1670 | */ |
---|
| 1671 | public static void main(String[] argv) { |
---|
| 1672 | |
---|
| 1673 | try { |
---|
| 1674 | |
---|
| 1675 | String options[] = (String[]) argv.clone(); |
---|
| 1676 | |
---|
| 1677 | // do we get the input from XML instead of normal parameters? |
---|
| 1678 | String xml = Utils.getOption("xml", options); |
---|
| 1679 | if (!xml.equals("")) |
---|
| 1680 | options = new XMLOptions(xml).toArray(); |
---|
| 1681 | |
---|
| 1682 | String trainFileName = Utils.getOption('t', options); |
---|
| 1683 | String objectInputFileName = Utils.getOption('l', options); |
---|
| 1684 | String testFileName = Utils.getOption('T', options); |
---|
| 1685 | |
---|
| 1686 | if (testFileName.length() != 0 && objectInputFileName.length() != 0 |
---|
| 1687 | && trainFileName.length() == 0) { |
---|
| 1688 | |
---|
| 1689 | System.out.println("Caching predictions"); |
---|
| 1690 | |
---|
| 1691 | EnsembleSelection classifier = null; |
---|
| 1692 | |
---|
| 1693 | BufferedReader testReader = new BufferedReader(new FileReader( |
---|
| 1694 | testFileName)); |
---|
| 1695 | |
---|
| 1696 | // Set up the Instances Object |
---|
| 1697 | Instances test; |
---|
| 1698 | int classIndex = -1; |
---|
| 1699 | String classIndexString = Utils.getOption('c', options); |
---|
| 1700 | if (classIndexString.length() != 0) { |
---|
| 1701 | classIndex = Integer.parseInt(classIndexString); |
---|
| 1702 | } |
---|
| 1703 | |
---|
| 1704 | test = new Instances(testReader, 1); |
---|
| 1705 | if (classIndex != -1) { |
---|
| 1706 | test.setClassIndex(classIndex - 1); |
---|
| 1707 | } else { |
---|
| 1708 | test.setClassIndex(test.numAttributes() - 1); |
---|
| 1709 | } |
---|
| 1710 | if (classIndex > test.numAttributes()) { |
---|
| 1711 | throw new Exception("Index of class attribute too large."); |
---|
| 1712 | } |
---|
| 1713 | |
---|
| 1714 | while (test.readInstance(testReader)) { |
---|
| 1715 | |
---|
| 1716 | } |
---|
| 1717 | testReader.close(); |
---|
| 1718 | |
---|
| 1719 | // Now yoink the EnsembleSelection Object from the fileSystem |
---|
| 1720 | |
---|
| 1721 | InputStream is = new FileInputStream(objectInputFileName); |
---|
| 1722 | if (objectInputFileName.endsWith(".gz")) { |
---|
| 1723 | is = new GZIPInputStream(is); |
---|
| 1724 | } |
---|
| 1725 | |
---|
| 1726 | // load from KOML? |
---|
| 1727 | if (!(objectInputFileName.endsWith("UpdateableClassifier.koml") && KOML |
---|
| 1728 | .isPresent())) { |
---|
| 1729 | ObjectInputStream objectInputStream = new ObjectInputStream( |
---|
| 1730 | is); |
---|
| 1731 | classifier = (EnsembleSelection) objectInputStream |
---|
| 1732 | .readObject(); |
---|
| 1733 | objectInputStream.close(); |
---|
| 1734 | } else { |
---|
| 1735 | BufferedInputStream xmlInputStream = new BufferedInputStream( |
---|
| 1736 | is); |
---|
| 1737 | classifier = (EnsembleSelection) KOML.read(xmlInputStream); |
---|
| 1738 | xmlInputStream.close(); |
---|
| 1739 | } |
---|
| 1740 | |
---|
| 1741 | String workingDir = Utils.getOption('W', argv); |
---|
| 1742 | if (!workingDir.equals("")) { |
---|
| 1743 | classifier.setWorkingDirectory(new File(workingDir)); |
---|
| 1744 | } |
---|
| 1745 | |
---|
| 1746 | classifier.setDebug(Utils.getFlag('D', argv)); |
---|
| 1747 | classifier.setVerboseOutput(Utils.getFlag('O', argv)); |
---|
| 1748 | |
---|
| 1749 | classifier.cachePredictions(test); |
---|
| 1750 | |
---|
| 1751 | // Now we write the model back out to the file system. |
---|
| 1752 | String objectOutputFileName = objectInputFileName; |
---|
| 1753 | OutputStream os = new FileOutputStream(objectOutputFileName); |
---|
| 1754 | // binary |
---|
| 1755 | if (!(objectOutputFileName.endsWith(".xml") || (objectOutputFileName |
---|
| 1756 | .endsWith(".koml") && KOML.isPresent()))) { |
---|
| 1757 | if (objectOutputFileName.endsWith(".gz")) { |
---|
| 1758 | os = new GZIPOutputStream(os); |
---|
| 1759 | } |
---|
| 1760 | ObjectOutputStream objectOutputStream = new ObjectOutputStream( |
---|
| 1761 | os); |
---|
| 1762 | objectOutputStream.writeObject(classifier); |
---|
| 1763 | objectOutputStream.flush(); |
---|
| 1764 | objectOutputStream.close(); |
---|
| 1765 | } |
---|
| 1766 | // KOML/XML |
---|
| 1767 | else { |
---|
| 1768 | BufferedOutputStream xmlOutputStream = new BufferedOutputStream( |
---|
| 1769 | os); |
---|
| 1770 | if (objectOutputFileName.endsWith(".xml")) { |
---|
| 1771 | XMLSerialization xmlSerial = new XMLClassifier(); |
---|
| 1772 | xmlSerial.write(xmlOutputStream, classifier); |
---|
| 1773 | } else |
---|
| 1774 | // whether KOML is present has already been checked |
---|
| 1775 | // if not present -> ".koml" is interpreted as binary - see |
---|
| 1776 | // above |
---|
| 1777 | if (objectOutputFileName.endsWith(".koml")) { |
---|
| 1778 | KOML.write(xmlOutputStream, classifier); |
---|
| 1779 | } |
---|
| 1780 | xmlOutputStream.close(); |
---|
| 1781 | } |
---|
| 1782 | |
---|
| 1783 | } |
---|
| 1784 | |
---|
| 1785 | System.out.println(Evaluation.evaluateModel( |
---|
| 1786 | new EnsembleSelection(), argv)); |
---|
| 1787 | |
---|
| 1788 | } catch (Exception e) { |
---|
| 1789 | if ( (e.getMessage() != null) |
---|
| 1790 | && (e.getMessage().indexOf("General options") == -1) ) |
---|
| 1791 | e.printStackTrace(); |
---|
| 1792 | else |
---|
| 1793 | System.err.println(e.getMessage()); |
---|
| 1794 | } |
---|
| 1795 | } |
---|
| 1796 | } |
---|