1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Dagging.java |
---|
19 | * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.RandomizableSingleClassifierEnhancer; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.TechnicalInformation; |
---|
33 | import weka.core.TechnicalInformationHandler; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformation.Type; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Vector; |
---|
40 | |
---|
41 | /** |
---|
42 | <!-- globalinfo-start --> |
---|
43 | * This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier. Predictions are made via majority vote, since all the generated base classifiers are put into the Vote meta classifier. <br/> |
---|
44 | * Useful for base classifiers that are quadratic or worse in time behavior, regarding number of instances in the training data. <br/> |
---|
45 | * <br/> |
---|
46 | * For more information, see: <br/> |
---|
47 | * Ting, K. M., Witten, I. H.: Stacking Bagged and Dagged Models. In: Fourteenth international Conference on Machine Learning, San Francisco, CA, 367-375, 1997. |
---|
48 | * <p/> |
---|
49 | <!-- globalinfo-end --> |
---|
50 | * |
---|
51 | <!-- technical-bibtex-start --> |
---|
52 | * BibTeX: |
---|
53 | * <pre> |
---|
54 | * @inproceedings{Ting1997, |
---|
55 | * address = {San Francisco, CA}, |
---|
56 | * author = {Ting, K. M. and Witten, I. H.}, |
---|
57 | * booktitle = {Fourteenth international Conference on Machine Learning}, |
---|
58 | * editor = {D. H. Fisher}, |
---|
59 | * pages = {367-375}, |
---|
60 | * publisher = {Morgan Kaufmann Publishers}, |
---|
61 | * title = {Stacking Bagged and Dagged Models}, |
---|
62 | * year = {1997} |
---|
63 | * } |
---|
64 | * </pre> |
---|
65 | * <p/> |
---|
66 | <!-- technical-bibtex-end --> |
---|
67 | * |
---|
68 | <!-- options-start --> |
---|
69 | * Valid options are: <p/> |
---|
70 | * |
---|
71 | * <pre> -F <folds> |
---|
72 | * The number of folds for splitting the training set into |
---|
73 | * smaller chunks for the base classifier. |
---|
74 | * (default 10)</pre> |
---|
75 | * |
---|
76 | * <pre> -verbose |
---|
77 | * Whether to print some more information during building the |
---|
78 | * classifier. |
---|
79 | * (default is off)</pre> |
---|
80 | * |
---|
81 | * <pre> -S <num> |
---|
82 | * Random number seed. |
---|
83 | * (default 1)</pre> |
---|
84 | * |
---|
85 | * <pre> -D |
---|
86 | * If set, classifier is run in debug mode and |
---|
87 | * may output additional info to the console</pre> |
---|
88 | * |
---|
89 | * <pre> -W |
---|
90 | * Full name of base classifier. |
---|
91 | * (default: weka.classifiers.functions.SMO)</pre> |
---|
92 | * |
---|
93 | * <pre> |
---|
94 | * Options specific to classifier weka.classifiers.functions.SMO: |
---|
95 | * </pre> |
---|
96 | * |
---|
97 | * <pre> -D |
---|
98 | * If set, classifier is run in debug mode and |
---|
99 | * may output additional info to the console</pre> |
---|
100 | * |
---|
101 | * <pre> -no-checks |
---|
102 | * Turns off all checks - use with caution! |
---|
103 | * Turning them off assumes that data is purely numeric, doesn't |
---|
104 | * contain any missing values, and has a nominal class. Turning them |
---|
105 | * off also means that no header information will be stored if the |
---|
106 | * machine is linear. Finally, it also assumes that no instance has |
---|
107 | * a weight equal to 0. |
---|
108 | * (default: checks on)</pre> |
---|
109 | * |
---|
110 | * <pre> -C <double> |
---|
111 | * The complexity constant C. (default 1)</pre> |
---|
112 | * |
---|
113 | * <pre> -N |
---|
114 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre> |
---|
115 | * |
---|
116 | * <pre> -L <double> |
---|
117 | * The tolerance parameter. (default 1.0e-3)</pre> |
---|
118 | * |
---|
119 | * <pre> -P <double> |
---|
120 | * The epsilon for round-off error. (default 1.0e-12)</pre> |
---|
121 | * |
---|
122 | * <pre> -M |
---|
123 | * Fit logistic models to SVM outputs. </pre> |
---|
124 | * |
---|
125 | * <pre> -V <double> |
---|
126 | * The number of folds for the internal |
---|
127 | * cross-validation. (default -1, use training data)</pre> |
---|
128 | * |
---|
129 | * <pre> -W <double> |
---|
130 | * The random number seed. (default 1)</pre> |
---|
131 | * |
---|
132 | * <pre> -K <classname and parameters> |
---|
133 | * The Kernel to use. |
---|
134 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
135 | * |
---|
136 | * <pre> |
---|
137 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
138 | * </pre> |
---|
139 | * |
---|
140 | * <pre> -D |
---|
141 | * Enables debugging output (if available) to be printed. |
---|
142 | * (default: off)</pre> |
---|
143 | * |
---|
144 | * <pre> -no-checks |
---|
145 | * Turns off all checks - use with caution! |
---|
146 | * (default: checks on)</pre> |
---|
147 | * |
---|
148 | * <pre> -C <num> |
---|
149 | * The size of the cache (a prime number), 0 for full cache and |
---|
150 | * -1 to turn it off. |
---|
151 | * (default: 250007)</pre> |
---|
152 | * |
---|
153 | * <pre> -E <num> |
---|
154 | * The Exponent to use. |
---|
155 | * (default: 1.0)</pre> |
---|
156 | * |
---|
157 | * <pre> -L |
---|
158 | * Use lower-order terms. |
---|
159 | * (default: no)</pre> |
---|
160 | * |
---|
161 | <!-- options-end --> |
---|
162 | * |
---|
163 | * Options after -- are passed to the designated classifier.<p/> |
---|
164 | * |
---|
165 | * @author Bernhard Pfahringer (bernhard at cs dot waikato dot ac dot nz) |
---|
166 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
167 | * @version $Revision: 5928 $ |
---|
168 | * @see Vote |
---|
169 | */ |
---|
170 | public class Dagging |
---|
171 | extends RandomizableSingleClassifierEnhancer |
---|
172 | implements TechnicalInformationHandler { |
---|
173 | |
---|
174 | /** for serialization */ |
---|
175 | static final long serialVersionUID = 4560165876570074309L; |
---|
176 | |
---|
177 | /** the number of folds to use to split the training data */ |
---|
178 | protected int m_NumFolds = 10; |
---|
179 | |
---|
180 | /** the classifier used for voting */ |
---|
181 | protected Vote m_Vote = null; |
---|
182 | |
---|
183 | /** whether to output some progress information during building */ |
---|
184 | protected boolean m_Verbose = false; |
---|
185 | |
---|
186 | /** |
---|
187 | * Returns a string describing classifier |
---|
188 | * @return a description suitable for |
---|
189 | * displaying in the explorer/experimenter gui |
---|
190 | */ |
---|
191 | public String globalInfo() { |
---|
192 | return |
---|
193 | "This meta classifier creates a number of disjoint, stratified folds out " |
---|
194 | + "of the data and feeds each chunk of data to a copy of the supplied " |
---|
195 | + "base classifier. Predictions are made via averaging, since all the " |
---|
196 | + "generated base classifiers are put into the Vote meta classifier. \n" |
---|
197 | + "Useful for base classifiers that are quadratic or worse in time " |
---|
198 | + "behavior, regarding number of instances in the training data. \n" |
---|
199 | + "\n" |
---|
200 | + "For more information, see: \n" |
---|
201 | + getTechnicalInformation().toString(); |
---|
202 | } |
---|
203 | |
---|
204 | /** |
---|
205 | * Returns an instance of a TechnicalInformation object, containing |
---|
206 | * detailed information about the technical background of this class, |
---|
207 | * e.g., paper reference or book this class is based on. |
---|
208 | * |
---|
209 | * @return the technical information about this class |
---|
210 | */ |
---|
211 | public TechnicalInformation getTechnicalInformation() { |
---|
212 | TechnicalInformation result; |
---|
213 | |
---|
214 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
215 | result.setValue(Field.AUTHOR, "Ting, K. M. and Witten, I. H."); |
---|
216 | result.setValue(Field.TITLE, "Stacking Bagged and Dagged Models"); |
---|
217 | result.setValue(Field.BOOKTITLE, "Fourteenth international Conference on Machine Learning"); |
---|
218 | result.setValue(Field.EDITOR, "D. H. Fisher"); |
---|
219 | result.setValue(Field.YEAR, "1997"); |
---|
220 | result.setValue(Field.PAGES, "367-375"); |
---|
221 | result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); |
---|
222 | result.setValue(Field.ADDRESS, "San Francisco, CA"); |
---|
223 | |
---|
224 | return result; |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Constructor. |
---|
229 | */ |
---|
230 | public Dagging() { |
---|
231 | m_Classifier = new weka.classifiers.functions.SMO(); |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * String describing default classifier. |
---|
236 | * |
---|
237 | * @return the default classifier classname |
---|
238 | */ |
---|
239 | protected String defaultClassifierString() { |
---|
240 | return weka.classifiers.functions.SMO.class.getName(); |
---|
241 | } |
---|
242 | |
---|
243 | /** |
---|
244 | * Returns an enumeration describing the available options. |
---|
245 | * |
---|
246 | * @return an enumeration of all the available options. |
---|
247 | */ |
---|
248 | public Enumeration listOptions() { |
---|
249 | Vector result = new Vector(); |
---|
250 | |
---|
251 | result.addElement(new Option( |
---|
252 | "\tThe number of folds for splitting the training set into\n" |
---|
253 | + "\tsmaller chunks for the base classifier.\n" |
---|
254 | + "\t(default 10)", |
---|
255 | "F", 1, "-F <folds>")); |
---|
256 | |
---|
257 | result.addElement(new Option( |
---|
258 | "\tWhether to print some more information during building the\n" |
---|
259 | + "\tclassifier.\n" |
---|
260 | + "\t(default is off)", |
---|
261 | "verbose", 0, "-verbose")); |
---|
262 | |
---|
263 | Enumeration en = super.listOptions(); |
---|
264 | while (en.hasMoreElements()) |
---|
265 | result.addElement(en.nextElement()); |
---|
266 | |
---|
267 | return result.elements(); |
---|
268 | } |
---|
269 | |
---|
270 | |
---|
271 | /** |
---|
272 | * Parses a given list of options. <p/> |
---|
273 | * |
---|
274 | <!-- options-start --> |
---|
275 | * Valid options are: <p/> |
---|
276 | * |
---|
277 | * <pre> -F <folds> |
---|
278 | * The number of folds for splitting the training set into |
---|
279 | * smaller chunks for the base classifier. |
---|
280 | * (default 10)</pre> |
---|
281 | * |
---|
282 | * <pre> -verbose |
---|
283 | * Whether to print some more information during building the |
---|
284 | * classifier. |
---|
285 | * (default is off)</pre> |
---|
286 | * |
---|
287 | * <pre> -S <num> |
---|
288 | * Random number seed. |
---|
289 | * (default 1)</pre> |
---|
290 | * |
---|
291 | * <pre> -D |
---|
292 | * If set, classifier is run in debug mode and |
---|
293 | * may output additional info to the console</pre> |
---|
294 | * |
---|
295 | * <pre> -W |
---|
296 | * Full name of base classifier. |
---|
297 | * (default: weka.classifiers.functions.SMO)</pre> |
---|
298 | * |
---|
299 | * <pre> |
---|
300 | * Options specific to classifier weka.classifiers.functions.SMO: |
---|
301 | * </pre> |
---|
302 | * |
---|
303 | * <pre> -D |
---|
304 | * If set, classifier is run in debug mode and |
---|
305 | * may output additional info to the console</pre> |
---|
306 | * |
---|
307 | * <pre> -no-checks |
---|
308 | * Turns off all checks - use with caution! |
---|
309 | * Turning them off assumes that data is purely numeric, doesn't |
---|
310 | * contain any missing values, and has a nominal class. Turning them |
---|
311 | * off also means that no header information will be stored if the |
---|
312 | * machine is linear. Finally, it also assumes that no instance has |
---|
313 | * a weight equal to 0. |
---|
314 | * (default: checks on)</pre> |
---|
315 | * |
---|
316 | * <pre> -C <double> |
---|
317 | * The complexity constant C. (default 1)</pre> |
---|
318 | * |
---|
319 | * <pre> -N |
---|
320 | * Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre> |
---|
321 | * |
---|
322 | * <pre> -L <double> |
---|
323 | * The tolerance parameter. (default 1.0e-3)</pre> |
---|
324 | * |
---|
325 | * <pre> -P <double> |
---|
326 | * The epsilon for round-off error. (default 1.0e-12)</pre> |
---|
327 | * |
---|
328 | * <pre> -M |
---|
329 | * Fit logistic models to SVM outputs. </pre> |
---|
330 | * |
---|
331 | * <pre> -V <double> |
---|
332 | * The number of folds for the internal |
---|
333 | * cross-validation. (default -1, use training data)</pre> |
---|
334 | * |
---|
335 | * <pre> -W <double> |
---|
336 | * The random number seed. (default 1)</pre> |
---|
337 | * |
---|
338 | * <pre> -K <classname and parameters> |
---|
339 | * The Kernel to use. |
---|
340 | * (default: weka.classifiers.functions.supportVector.PolyKernel)</pre> |
---|
341 | * |
---|
342 | * <pre> |
---|
343 | * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel: |
---|
344 | * </pre> |
---|
345 | * |
---|
346 | * <pre> -D |
---|
347 | * Enables debugging output (if available) to be printed. |
---|
348 | * (default: off)</pre> |
---|
349 | * |
---|
350 | * <pre> -no-checks |
---|
351 | * Turns off all checks - use with caution! |
---|
352 | * (default: checks on)</pre> |
---|
353 | * |
---|
354 | * <pre> -C <num> |
---|
355 | * The size of the cache (a prime number), 0 for full cache and |
---|
356 | * -1 to turn it off. |
---|
357 | * (default: 250007)</pre> |
---|
358 | * |
---|
359 | * <pre> -E <num> |
---|
360 | * The Exponent to use. |
---|
361 | * (default: 1.0)</pre> |
---|
362 | * |
---|
363 | * <pre> -L |
---|
364 | * Use lower-order terms. |
---|
365 | * (default: no)</pre> |
---|
366 | * |
---|
367 | <!-- options-end --> |
---|
368 | * |
---|
369 | * Options after -- are passed to the designated classifier.<p> |
---|
370 | * |
---|
371 | * @param options the list of options as an array of strings |
---|
372 | * @throws Exception if an option is not supported |
---|
373 | */ |
---|
374 | public void setOptions(String[] options) throws Exception { |
---|
375 | String tmpStr; |
---|
376 | |
---|
377 | tmpStr = Utils.getOption('F', options); |
---|
378 | if (tmpStr.length() != 0) |
---|
379 | setNumFolds(Integer.parseInt(tmpStr)); |
---|
380 | else |
---|
381 | setNumFolds(10); |
---|
382 | |
---|
383 | setVerbose(Utils.getFlag("verbose", options)); |
---|
384 | |
---|
385 | super.setOptions(options); |
---|
386 | } |
---|
387 | |
---|
388 | /** |
---|
389 | * Gets the current settings of the Classifier. |
---|
390 | * |
---|
391 | * @return an array of strings suitable for passing to setOptions |
---|
392 | */ |
---|
393 | public String[] getOptions() { |
---|
394 | Vector result; |
---|
395 | String[] options; |
---|
396 | int i; |
---|
397 | |
---|
398 | result = new Vector(); |
---|
399 | |
---|
400 | result.add("-F"); |
---|
401 | result.add("" + getNumFolds()); |
---|
402 | |
---|
403 | if (getVerbose()) |
---|
404 | result.add("-verbose"); |
---|
405 | |
---|
406 | options = super.getOptions(); |
---|
407 | for (i = 0; i < options.length; i++) |
---|
408 | result.add(options[i]); |
---|
409 | |
---|
410 | return (String[]) result.toArray(new String[result.size()]); |
---|
411 | } |
---|
412 | |
---|
413 | /** |
---|
414 | * Gets the number of folds to use for splitting the training set. |
---|
415 | * |
---|
416 | * @return the number of folds |
---|
417 | */ |
---|
418 | public int getNumFolds() { |
---|
419 | return m_NumFolds; |
---|
420 | } |
---|
421 | |
---|
422 | /** |
---|
423 | * Sets the number of folds to use for splitting the training set. |
---|
424 | * |
---|
425 | * @param value the new number of folds |
---|
426 | */ |
---|
427 | public void setNumFolds(int value) { |
---|
428 | if (value > 0) |
---|
429 | m_NumFolds = value; |
---|
430 | else |
---|
431 | System.out.println( |
---|
432 | "At least 1 fold is necessary (provided: " + value + ")!"); |
---|
433 | } |
---|
434 | |
---|
435 | /** |
---|
436 | * Returns the tip text for this property |
---|
437 | * |
---|
438 | * @return tip text for this property suitable for |
---|
439 | * displaying in the explorer/experimenter gui |
---|
440 | */ |
---|
441 | public String numFoldsTipText() { |
---|
442 | return "The number of folds to use for splitting the training set into smaller chunks for the base classifier."; |
---|
443 | } |
---|
444 | |
---|
445 | /** |
---|
446 | * Set the verbose state. |
---|
447 | * |
---|
448 | * @param value the verbose state |
---|
449 | */ |
---|
450 | public void setVerbose(boolean value) { |
---|
451 | m_Verbose = value; |
---|
452 | } |
---|
453 | |
---|
454 | /** |
---|
455 | * Gets the verbose state |
---|
456 | * |
---|
457 | * @return the verbose state |
---|
458 | */ |
---|
459 | public boolean getVerbose() { |
---|
460 | return m_Verbose; |
---|
461 | } |
---|
462 | |
---|
463 | /** |
---|
464 | * Returns the tip text for this property |
---|
465 | * @return tip text for this property suitable for |
---|
466 | * displaying in the explorer/experimenter gui |
---|
467 | */ |
---|
468 | public String verboseTipText() { |
---|
469 | return "Whether to ouput some additional information during building."; |
---|
470 | } |
---|
471 | |
---|
472 | /** |
---|
473 | * Bagging method. |
---|
474 | * |
---|
475 | * @param data the training data to be used for generating the |
---|
476 | * bagged classifier. |
---|
477 | * @throws Exception if the classifier could not be built successfully |
---|
478 | */ |
---|
479 | public void buildClassifier(Instances data) throws Exception { |
---|
480 | Classifier[] base; |
---|
481 | int i; |
---|
482 | int n; |
---|
483 | int fromIndex; |
---|
484 | int toIndex; |
---|
485 | Instances train; |
---|
486 | double chunkSize; |
---|
487 | |
---|
488 | // can classifier handle the data? |
---|
489 | getCapabilities().testWithFail(data); |
---|
490 | |
---|
491 | // remove instances with missing class |
---|
492 | data = new Instances(data); |
---|
493 | data.deleteWithMissingClass(); |
---|
494 | |
---|
495 | m_Vote = new Vote(); |
---|
496 | base = new Classifier[getNumFolds()]; |
---|
497 | chunkSize = (double) data.numInstances() / (double) getNumFolds(); |
---|
498 | |
---|
499 | // stratify data |
---|
500 | if (getNumFolds() > 1) { |
---|
501 | data.randomize(data.getRandomNumberGenerator(getSeed())); |
---|
502 | data.stratify(getNumFolds()); |
---|
503 | } |
---|
504 | |
---|
505 | // generate <folds> classifiers |
---|
506 | for (i = 0; i < getNumFolds(); i++) { |
---|
507 | base[i] = makeCopy(getClassifier()); |
---|
508 | |
---|
509 | // generate training data |
---|
510 | if (getNumFolds() > 1) { |
---|
511 | // some progress information |
---|
512 | if (getVerbose()) |
---|
513 | System.out.print("."); |
---|
514 | |
---|
515 | train = data.testCV(getNumFolds(), i); |
---|
516 | } |
---|
517 | else { |
---|
518 | train = data; |
---|
519 | } |
---|
520 | |
---|
521 | // train classifier |
---|
522 | base[i].buildClassifier(train); |
---|
523 | } |
---|
524 | |
---|
525 | // init vote |
---|
526 | m_Vote.setClassifiers(base); |
---|
527 | |
---|
528 | if (getVerbose()) |
---|
529 | System.out.println(); |
---|
530 | } |
---|
531 | |
---|
532 | /** |
---|
533 | * Calculates the class membership probabilities for the given test |
---|
534 | * instance. |
---|
535 | * |
---|
536 | * @param instance the instance to be classified |
---|
537 | * @return preedicted class probability distribution |
---|
538 | * @throws Exception if distribution can't be computed successfully |
---|
539 | */ |
---|
540 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
541 | return m_Vote.distributionForInstance(instance); |
---|
542 | } |
---|
543 | |
---|
544 | /** |
---|
545 | * Returns description of the classifier. |
---|
546 | * |
---|
547 | * @return description of the classifier as a string |
---|
548 | */ |
---|
549 | public String toString() { |
---|
550 | if (m_Vote == null) |
---|
551 | return this.getClass().getName().replaceAll(".*\\.", "") |
---|
552 | + ": No model built yet."; |
---|
553 | else |
---|
554 | return m_Vote.toString(); |
---|
555 | } |
---|
556 | |
---|
557 | /** |
---|
558 | * Returns the revision string. |
---|
559 | * |
---|
560 | * @return the revision |
---|
561 | */ |
---|
562 | public String getRevision() { |
---|
563 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
564 | } |
---|
565 | |
---|
566 | /** |
---|
567 | * Main method for testing this class. |
---|
568 | * |
---|
569 | * @param args the options |
---|
570 | */ |
---|
571 | public static void main(String[] args) { |
---|
572 | runClassifier(new Dagging(), args); |
---|
573 | } |
---|
574 | } |
---|