1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ClassificationViaRegression.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.meta; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.SingleClassifierEnhancer; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.TechnicalInformation; |
---|
33 | import weka.core.TechnicalInformationHandler; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.Capabilities.Capability; |
---|
36 | import weka.core.TechnicalInformation.Field; |
---|
37 | import weka.core.TechnicalInformation.Type; |
---|
38 | import weka.filters.Filter; |
---|
39 | import weka.filters.unsupervised.attribute.MakeIndicator; |
---|
40 | |
---|
41 | /** |
---|
42 | <!-- globalinfo-start --> |
---|
43 | * Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example<br/> |
---|
44 | * <br/> |
---|
45 | * E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76. |
---|
46 | * <p/> |
---|
47 | <!-- globalinfo-end --> |
---|
48 | * |
---|
49 | <!-- technical-bibtex-start --> |
---|
50 | * BibTeX: |
---|
51 | * <pre> |
---|
52 | * @article{Frank1998, |
---|
53 | * author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten}, |
---|
54 | * journal = {Machine Learning}, |
---|
55 | * number = {1}, |
---|
56 | * pages = {63-76}, |
---|
57 | * title = {Using model trees for classification}, |
---|
58 | * volume = {32}, |
---|
59 | * year = {1998} |
---|
60 | * } |
---|
61 | * </pre> |
---|
62 | * <p/> |
---|
63 | <!-- technical-bibtex-end --> |
---|
64 | * |
---|
65 | <!-- options-start --> |
---|
66 | * Valid options are: <p/> |
---|
67 | * |
---|
68 | * <pre> -D |
---|
69 | * If set, classifier is run in debug mode and |
---|
70 | * may output additional info to the console</pre> |
---|
71 | * |
---|
72 | * <pre> -W |
---|
73 | * Full name of base classifier. |
---|
74 | * (default: weka.classifiers.trees.M5P)</pre> |
---|
75 | * |
---|
76 | * <pre> |
---|
77 | * Options specific to classifier weka.classifiers.trees.M5P: |
---|
78 | * </pre> |
---|
79 | * |
---|
80 | * <pre> -N |
---|
81 | * Use unpruned tree/rules</pre> |
---|
82 | * |
---|
83 | * <pre> -U |
---|
84 | * Use unsmoothed predictions</pre> |
---|
85 | * |
---|
86 | * <pre> -R |
---|
87 | * Build regression tree/rule rather than a model tree/rule</pre> |
---|
88 | * |
---|
89 | * <pre> -M <minimum number of instances> |
---|
90 | * Set minimum number of instances per leaf |
---|
91 | * (default 4)</pre> |
---|
92 | * |
---|
93 | * <pre> -L |
---|
94 | * Save instances at the nodes in |
---|
95 | * the tree (for visualization purposes)</pre> |
---|
96 | * |
---|
97 | <!-- options-end --> |
---|
98 | * |
---|
99 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
100 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
101 | * @version $Revision: 5928 $ |
---|
102 | */ |
---|
103 | public class ClassificationViaRegression |
---|
104 | extends SingleClassifierEnhancer |
---|
105 | implements TechnicalInformationHandler { |
---|
106 | |
---|
107 | /** for serialization */ |
---|
108 | static final long serialVersionUID = 4500023123618669859L; |
---|
109 | |
---|
110 | /** The classifiers. (One for each class.) */ |
---|
111 | private Classifier[] m_Classifiers; |
---|
112 | |
---|
113 | /** The filters used to transform the class. */ |
---|
114 | private MakeIndicator[] m_ClassFilters; |
---|
115 | |
---|
116 | /** |
---|
117 | * Default constructor. |
---|
118 | */ |
---|
119 | public ClassificationViaRegression() { |
---|
120 | |
---|
121 | m_Classifier = new weka.classifiers.trees.M5P(); |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Returns a string describing classifier |
---|
126 | * @return a description suitable for |
---|
127 | * displaying in the explorer/experimenter gui |
---|
128 | */ |
---|
129 | public String globalInfo() { |
---|
130 | |
---|
131 | return "Class for doing classification using regression methods. Class is " |
---|
132 | + "binarized and one regression model is built for each class value. For more " |
---|
133 | + "information, see, for example\n\n" |
---|
134 | + getTechnicalInformation().toString(); |
---|
135 | } |
---|
136 | |
---|
137 | /** |
---|
138 | * Returns an instance of a TechnicalInformation object, containing |
---|
139 | * detailed information about the technical background of this class, |
---|
140 | * e.g., paper reference or book this class is based on. |
---|
141 | * |
---|
142 | * @return the technical information about this class |
---|
143 | */ |
---|
144 | public TechnicalInformation getTechnicalInformation() { |
---|
145 | TechnicalInformation result; |
---|
146 | |
---|
147 | result = new TechnicalInformation(Type.ARTICLE); |
---|
148 | result.setValue(Field.AUTHOR, "E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten"); |
---|
149 | result.setValue(Field.YEAR, "1998"); |
---|
150 | result.setValue(Field.TITLE, "Using model trees for classification"); |
---|
151 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
152 | result.setValue(Field.VOLUME, "32"); |
---|
153 | result.setValue(Field.NUMBER, "1"); |
---|
154 | result.setValue(Field.PAGES, "63-76"); |
---|
155 | |
---|
156 | return result; |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * String describing default classifier. |
---|
161 | * |
---|
162 | * @return the default classifier classname |
---|
163 | */ |
---|
164 | protected String defaultClassifierString() { |
---|
165 | |
---|
166 | return "weka.classifiers.trees.M5P"; |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Returns default capabilities of the classifier. |
---|
171 | * |
---|
172 | * @return the capabilities of this classifier |
---|
173 | */ |
---|
174 | public Capabilities getCapabilities() { |
---|
175 | Capabilities result = super.getCapabilities(); |
---|
176 | |
---|
177 | // class |
---|
178 | result.disableAllClasses(); |
---|
179 | result.disableAllClassDependencies(); |
---|
180 | result.enable(Capability.NOMINAL_CLASS); |
---|
181 | |
---|
182 | return result; |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Builds the classifiers. |
---|
187 | * |
---|
188 | * @param insts the training data. |
---|
189 | * @throws Exception if a classifier can't be built |
---|
190 | */ |
---|
191 | public void buildClassifier(Instances insts) throws Exception { |
---|
192 | |
---|
193 | Instances newInsts; |
---|
194 | |
---|
195 | // can classifier handle the data? |
---|
196 | getCapabilities().testWithFail(insts); |
---|
197 | |
---|
198 | // remove instances with missing class |
---|
199 | insts = new Instances(insts); |
---|
200 | insts.deleteWithMissingClass(); |
---|
201 | |
---|
202 | m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, insts.numClasses()); |
---|
203 | m_ClassFilters = new MakeIndicator[insts.numClasses()]; |
---|
204 | for (int i = 0; i < insts.numClasses(); i++) { |
---|
205 | m_ClassFilters[i] = new MakeIndicator(); |
---|
206 | m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1)); |
---|
207 | m_ClassFilters[i].setValueIndex(i); |
---|
208 | m_ClassFilters[i].setNumeric(true); |
---|
209 | m_ClassFilters[i].setInputFormat(insts); |
---|
210 | newInsts = Filter.useFilter(insts, m_ClassFilters[i]); |
---|
211 | m_Classifiers[i].buildClassifier(newInsts); |
---|
212 | } |
---|
213 | } |
---|
214 | |
---|
215 | /** |
---|
216 | * Returns the distribution for an instance. |
---|
217 | * |
---|
218 | * @param inst the instance to get the distribution for |
---|
219 | * @return the computed distribution |
---|
220 | * @throws Exception if the distribution can't be computed successfully |
---|
221 | */ |
---|
222 | public double[] distributionForInstance(Instance inst) throws Exception { |
---|
223 | |
---|
224 | double[] probs = new double[inst.numClasses()]; |
---|
225 | Instance newInst; |
---|
226 | double sum = 0; |
---|
227 | |
---|
228 | for (int i = 0; i < inst.numClasses(); i++) { |
---|
229 | m_ClassFilters[i].input(inst); |
---|
230 | m_ClassFilters[i].batchFinished(); |
---|
231 | newInst = m_ClassFilters[i].output(); |
---|
232 | probs[i] = m_Classifiers[i].classifyInstance(newInst); |
---|
233 | if (probs[i] > 1) { |
---|
234 | probs[i] = 1; |
---|
235 | } |
---|
236 | if (probs[i] < 0){ |
---|
237 | probs[i] = 0; |
---|
238 | } |
---|
239 | sum += probs[i]; |
---|
240 | } |
---|
241 | if (sum != 0) { |
---|
242 | Utils.normalize(probs, sum); |
---|
243 | } |
---|
244 | return probs; |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Prints the classifiers. |
---|
249 | * |
---|
250 | * @return a string representation of the classifier |
---|
251 | */ |
---|
252 | public String toString() { |
---|
253 | |
---|
254 | if (m_Classifiers == null) { |
---|
255 | return "Classification via Regression: No model built yet."; |
---|
256 | } |
---|
257 | StringBuffer text = new StringBuffer(); |
---|
258 | text.append("Classification via Regression\n\n"); |
---|
259 | for (int i = 0; i < m_Classifiers.length; i++) { |
---|
260 | text.append("Classifier for class with index " + i + ":\n\n"); |
---|
261 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
262 | } |
---|
263 | return text.toString(); |
---|
264 | } |
---|
265 | |
---|
266 | /** |
---|
267 | * Returns the revision string. |
---|
268 | * |
---|
269 | * @return the revision |
---|
270 | */ |
---|
271 | public String getRevision() { |
---|
272 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
273 | } |
---|
274 | |
---|
275 | /** |
---|
276 | * Main method for testing this class. |
---|
277 | * |
---|
278 | * @param argv the options for the learner |
---|
279 | */ |
---|
280 | public static void main(String [] argv){ |
---|
281 | runClassifier(new ClassificationViaRegression(), argv); |
---|
282 | } |
---|
283 | } |
---|