[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Bagging.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.meta; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer; |
---|
| 26 | import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer; |
---|
| 27 | import weka.core.AdditionalMeasureProducer; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.Instances; |
---|
| 30 | import weka.core.Option; |
---|
| 31 | import weka.core.Randomizable; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.TechnicalInformation; |
---|
| 34 | import weka.core.TechnicalInformationHandler; |
---|
| 35 | import weka.core.Utils; |
---|
| 36 | import weka.core.WeightedInstancesHandler; |
---|
| 37 | import weka.core.TechnicalInformation.Field; |
---|
| 38 | import weka.core.TechnicalInformation.Type; |
---|
| 39 | |
---|
| 40 | import java.util.Enumeration; |
---|
| 41 | import java.util.Random; |
---|
| 42 | import java.util.Vector; |
---|
| 43 | |
---|
| 44 | /** |
---|
| 45 | <!-- globalinfo-start --> |
---|
| 46 | * Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/> |
---|
| 47 | * <br/> |
---|
| 48 | * For more information, see<br/> |
---|
| 49 | * <br/> |
---|
| 50 | * Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140. |
---|
| 51 | * <p/> |
---|
| 52 | <!-- globalinfo-end --> |
---|
| 53 | * |
---|
| 54 | <!-- technical-bibtex-start --> |
---|
| 55 | * BibTeX: |
---|
| 56 | * <pre> |
---|
| 57 | * @article{Breiman1996, |
---|
| 58 | * author = {Leo Breiman}, |
---|
| 59 | * journal = {Machine Learning}, |
---|
| 60 | * number = {2}, |
---|
| 61 | * pages = {123-140}, |
---|
| 62 | * title = {Bagging predictors}, |
---|
| 63 | * volume = {24}, |
---|
| 64 | * year = {1996} |
---|
| 65 | * } |
---|
| 66 | * </pre> |
---|
| 67 | * <p/> |
---|
| 68 | <!-- technical-bibtex-end --> |
---|
| 69 | * |
---|
| 70 | <!-- options-start --> |
---|
| 71 | * Valid options are: <p/> |
---|
| 72 | * |
---|
| 73 | * <pre> -P |
---|
| 74 | * Size of each bag, as a percentage of the |
---|
| 75 | * training set size. (default 100)</pre> |
---|
| 76 | * |
---|
| 77 | * <pre> -O |
---|
| 78 | * Calculate the out of bag error.</pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -S <num> |
---|
| 81 | * Random number seed. |
---|
| 82 | * (default 1)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -I <num> |
---|
| 85 | * Number of iterations. |
---|
| 86 | * (default 10)</pre> |
---|
| 87 | * |
---|
| 88 | * <pre> -D |
---|
| 89 | * If set, classifier is run in debug mode and |
---|
| 90 | * may output additional info to the console</pre> |
---|
| 91 | * |
---|
| 92 | * <pre> -W |
---|
| 93 | * Full name of base classifier. |
---|
| 94 | * (default: weka.classifiers.trees.REPTree)</pre> |
---|
| 95 | * |
---|
| 96 | * <pre> |
---|
| 97 | * Options specific to classifier weka.classifiers.trees.REPTree: |
---|
| 98 | * </pre> |
---|
| 99 | * |
---|
| 100 | * <pre> -M <minimum number of instances> |
---|
| 101 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
| 102 | * |
---|
| 103 | * <pre> -V <minimum variance for split> |
---|
| 104 | * Set minimum numeric class variance proportion |
---|
| 105 | * of train variance for split (default 1e-3).</pre> |
---|
| 106 | * |
---|
| 107 | * <pre> -N <number of folds> |
---|
| 108 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
| 109 | * |
---|
| 110 | * <pre> -S <seed> |
---|
| 111 | * Seed for random data shuffling (default 1).</pre> |
---|
| 112 | * |
---|
| 113 | * <pre> -P |
---|
| 114 | * No pruning.</pre> |
---|
| 115 | * |
---|
| 116 | * <pre> -L |
---|
| 117 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
| 118 | * |
---|
| 119 | <!-- options-end --> |
---|
| 120 | * |
---|
| 121 | * Options after -- are passed to the designated classifier.<p> |
---|
| 122 | * |
---|
| 123 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 124 | * @author Len Trigg (len@reeltwo.com) |
---|
| 125 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
| 126 | * @version $Revision: 5801 $ |
---|
| 127 | */ |
---|
| 128 | public class Bagging |
---|
| 129 | extends RandomizableParallelIteratedSingleClassifierEnhancer |
---|
| 130 | implements WeightedInstancesHandler, AdditionalMeasureProducer, |
---|
| 131 | TechnicalInformationHandler { |
---|
| 132 | |
---|
| 133 | /** for serialization */ |
---|
| 134 | static final long serialVersionUID = -505879962237199703L; |
---|
| 135 | |
---|
| 136 | /** The size of each bag sample, as a percentage of the training size */ |
---|
| 137 | protected int m_BagSizePercent = 100; |
---|
| 138 | |
---|
| 139 | /** Whether to calculate the out of bag error */ |
---|
| 140 | protected boolean m_CalcOutOfBag = false; |
---|
| 141 | |
---|
| 142 | /** The out of bag error that has been calculated */ |
---|
| 143 | protected double m_OutOfBagError; |
---|
| 144 | |
---|
| 145 | /** |
---|
| 146 | * Constructor. |
---|
| 147 | */ |
---|
| 148 | public Bagging() { |
---|
| 149 | |
---|
| 150 | m_Classifier = new weka.classifiers.trees.REPTree(); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | /** |
---|
| 154 | * Returns a string describing classifier |
---|
| 155 | * @return a description suitable for |
---|
| 156 | * displaying in the explorer/experimenter gui |
---|
| 157 | */ |
---|
| 158 | public String globalInfo() { |
---|
| 159 | |
---|
| 160 | return "Class for bagging a classifier to reduce variance. Can do classification " |
---|
| 161 | + "and regression depending on the base learner. \n\n" |
---|
| 162 | + "For more information, see\n\n" |
---|
| 163 | + getTechnicalInformation().toString(); |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | /** |
---|
| 167 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 168 | * detailed information about the technical background of this class, |
---|
| 169 | * e.g., paper reference or book this class is based on. |
---|
| 170 | * |
---|
| 171 | * @return the technical information about this class |
---|
| 172 | */ |
---|
| 173 | public TechnicalInformation getTechnicalInformation() { |
---|
| 174 | TechnicalInformation result; |
---|
| 175 | |
---|
| 176 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 177 | result.setValue(Field.AUTHOR, "Leo Breiman"); |
---|
| 178 | result.setValue(Field.YEAR, "1996"); |
---|
| 179 | result.setValue(Field.TITLE, "Bagging predictors"); |
---|
| 180 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
| 181 | result.setValue(Field.VOLUME, "24"); |
---|
| 182 | result.setValue(Field.NUMBER, "2"); |
---|
| 183 | result.setValue(Field.PAGES, "123-140"); |
---|
| 184 | |
---|
| 185 | return result; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * String describing default classifier. |
---|
| 190 | * |
---|
| 191 | * @return the default classifier classname |
---|
| 192 | */ |
---|
| 193 | protected String defaultClassifierString() { |
---|
| 194 | |
---|
| 195 | return "weka.classifiers.trees.REPTree"; |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | /** |
---|
| 199 | * Returns an enumeration describing the available options. |
---|
| 200 | * |
---|
| 201 | * @return an enumeration of all the available options. |
---|
| 202 | */ |
---|
| 203 | public Enumeration listOptions() { |
---|
| 204 | |
---|
| 205 | Vector newVector = new Vector(2); |
---|
| 206 | |
---|
| 207 | newVector.addElement(new Option( |
---|
| 208 | "\tSize of each bag, as a percentage of the\n" |
---|
| 209 | + "\ttraining set size. (default 100)", |
---|
| 210 | "P", 1, "-P")); |
---|
| 211 | newVector.addElement(new Option( |
---|
| 212 | "\tCalculate the out of bag error.", |
---|
| 213 | "O", 0, "-O")); |
---|
| 214 | |
---|
| 215 | Enumeration enu = super.listOptions(); |
---|
| 216 | while (enu.hasMoreElements()) { |
---|
| 217 | newVector.addElement(enu.nextElement()); |
---|
| 218 | } |
---|
| 219 | return newVector.elements(); |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | /** |
---|
| 224 | * Parses a given list of options. <p/> |
---|
| 225 | * |
---|
| 226 | <!-- options-start --> |
---|
| 227 | * Valid options are: <p/> |
---|
| 228 | * |
---|
| 229 | * <pre> -P |
---|
| 230 | * Size of each bag, as a percentage of the |
---|
| 231 | * training set size. (default 100)</pre> |
---|
| 232 | * |
---|
| 233 | * <pre> -O |
---|
| 234 | * Calculate the out of bag error.</pre> |
---|
| 235 | * |
---|
| 236 | * <pre> -S <num> |
---|
| 237 | * Random number seed. |
---|
| 238 | * (default 1)</pre> |
---|
| 239 | * |
---|
| 240 | * <pre> -I <num> |
---|
| 241 | * Number of iterations. |
---|
| 242 | * (default 10)</pre> |
---|
| 243 | * |
---|
| 244 | * <pre> -D |
---|
| 245 | * If set, classifier is run in debug mode and |
---|
| 246 | * may output additional info to the console</pre> |
---|
| 247 | * |
---|
| 248 | * <pre> -W |
---|
| 249 | * Full name of base classifier. |
---|
| 250 | * (default: weka.classifiers.trees.REPTree)</pre> |
---|
| 251 | * |
---|
| 252 | * <pre> |
---|
| 253 | * Options specific to classifier weka.classifiers.trees.REPTree: |
---|
| 254 | * </pre> |
---|
| 255 | * |
---|
| 256 | * <pre> -M <minimum number of instances> |
---|
| 257 | * Set minimum number of instances per leaf (default 2).</pre> |
---|
| 258 | * |
---|
| 259 | * <pre> -V <minimum variance for split> |
---|
| 260 | * Set minimum numeric class variance proportion |
---|
| 261 | * of train variance for split (default 1e-3).</pre> |
---|
| 262 | * |
---|
| 263 | * <pre> -N <number of folds> |
---|
| 264 | * Number of folds for reduced error pruning (default 3).</pre> |
---|
| 265 | * |
---|
| 266 | * <pre> -S <seed> |
---|
| 267 | * Seed for random data shuffling (default 1).</pre> |
---|
| 268 | * |
---|
| 269 | * <pre> -P |
---|
| 270 | * No pruning.</pre> |
---|
| 271 | * |
---|
| 272 | * <pre> -L |
---|
| 273 | * Maximum tree depth (default -1, no maximum)</pre> |
---|
| 274 | * |
---|
| 275 | <!-- options-end --> |
---|
| 276 | * |
---|
| 277 | * Options after -- are passed to the designated classifier.<p> |
---|
| 278 | * |
---|
| 279 | * @param options the list of options as an array of strings |
---|
| 280 | * @throws Exception if an option is not supported |
---|
| 281 | */ |
---|
| 282 | public void setOptions(String[] options) throws Exception { |
---|
| 283 | |
---|
| 284 | String bagSize = Utils.getOption('P', options); |
---|
| 285 | if (bagSize.length() != 0) { |
---|
| 286 | setBagSizePercent(Integer.parseInt(bagSize)); |
---|
| 287 | } else { |
---|
| 288 | setBagSizePercent(100); |
---|
| 289 | } |
---|
| 290 | |
---|
| 291 | setCalcOutOfBag(Utils.getFlag('O', options)); |
---|
| 292 | |
---|
| 293 | super.setOptions(options); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | /** |
---|
| 297 | * Gets the current settings of the Classifier. |
---|
| 298 | * |
---|
| 299 | * @return an array of strings suitable for passing to setOptions |
---|
| 300 | */ |
---|
| 301 | public String [] getOptions() { |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | String [] superOptions = super.getOptions(); |
---|
| 305 | String [] options = new String [superOptions.length + 3]; |
---|
| 306 | |
---|
| 307 | int current = 0; |
---|
| 308 | options[current++] = "-P"; |
---|
| 309 | options[current++] = "" + getBagSizePercent(); |
---|
| 310 | |
---|
| 311 | if (getCalcOutOfBag()) { |
---|
| 312 | options[current++] = "-O"; |
---|
| 313 | } |
---|
| 314 | |
---|
| 315 | System.arraycopy(superOptions, 0, options, current, |
---|
| 316 | superOptions.length); |
---|
| 317 | |
---|
| 318 | current += superOptions.length; |
---|
| 319 | while (current < options.length) { |
---|
| 320 | options[current++] = ""; |
---|
| 321 | } |
---|
| 322 | return options; |
---|
| 323 | } |
---|
| 324 | |
---|
| 325 | /** |
---|
| 326 | * Returns the tip text for this property |
---|
| 327 | * @return tip text for this property suitable for |
---|
| 328 | * displaying in the explorer/experimenter gui |
---|
| 329 | */ |
---|
| 330 | public String bagSizePercentTipText() { |
---|
| 331 | return "Size of each bag, as a percentage of the training set size."; |
---|
| 332 | } |
---|
| 333 | |
---|
| 334 | /** |
---|
| 335 | * Gets the size of each bag, as a percentage of the training set size. |
---|
| 336 | * |
---|
| 337 | * @return the bag size, as a percentage. |
---|
| 338 | */ |
---|
| 339 | public int getBagSizePercent() { |
---|
| 340 | |
---|
| 341 | return m_BagSizePercent; |
---|
| 342 | } |
---|
| 343 | |
---|
| 344 | /** |
---|
| 345 | * Sets the size of each bag, as a percentage of the training set size. |
---|
| 346 | * |
---|
| 347 | * @param newBagSizePercent the bag size, as a percentage. |
---|
| 348 | */ |
---|
| 349 | public void setBagSizePercent(int newBagSizePercent) { |
---|
| 350 | |
---|
| 351 | m_BagSizePercent = newBagSizePercent; |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | /** |
---|
| 355 | * Returns the tip text for this property |
---|
| 356 | * @return tip text for this property suitable for |
---|
| 357 | * displaying in the explorer/experimenter gui |
---|
| 358 | */ |
---|
| 359 | public String calcOutOfBagTipText() { |
---|
| 360 | return "Whether the out-of-bag error is calculated."; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /** |
---|
| 364 | * Set whether the out of bag error is calculated. |
---|
| 365 | * |
---|
| 366 | * @param calcOutOfBag whether to calculate the out of bag error |
---|
| 367 | */ |
---|
| 368 | public void setCalcOutOfBag(boolean calcOutOfBag) { |
---|
| 369 | |
---|
| 370 | m_CalcOutOfBag = calcOutOfBag; |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | /** |
---|
| 374 | * Get whether the out of bag error is calculated. |
---|
| 375 | * |
---|
| 376 | * @return whether the out of bag error is calculated |
---|
| 377 | */ |
---|
| 378 | public boolean getCalcOutOfBag() { |
---|
| 379 | |
---|
| 380 | return m_CalcOutOfBag; |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | /** |
---|
| 384 | * Gets the out of bag error that was calculated as the classifier |
---|
| 385 | * was built. |
---|
| 386 | * |
---|
| 387 | * @return the out of bag error |
---|
| 388 | */ |
---|
| 389 | public double measureOutOfBagError() { |
---|
| 390 | |
---|
| 391 | return m_OutOfBagError; |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | /** |
---|
| 395 | * Returns an enumeration of the additional measure names. |
---|
| 396 | * |
---|
| 397 | * @return an enumeration of the measure names |
---|
| 398 | */ |
---|
| 399 | public Enumeration enumerateMeasures() { |
---|
| 400 | |
---|
| 401 | Vector newVector = new Vector(1); |
---|
| 402 | newVector.addElement("measureOutOfBagError"); |
---|
| 403 | return newVector.elements(); |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | /** |
---|
| 407 | * Returns the value of the named measure. |
---|
| 408 | * |
---|
| 409 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 410 | * @return the value of the named measure |
---|
| 411 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 412 | */ |
---|
| 413 | public double getMeasure(String additionalMeasureName) { |
---|
| 414 | |
---|
| 415 | if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { |
---|
| 416 | return measureOutOfBagError(); |
---|
| 417 | } |
---|
| 418 | else {throw new IllegalArgumentException(additionalMeasureName |
---|
| 419 | + " not supported (Bagging)"); |
---|
| 420 | } |
---|
| 421 | } |
---|
| 422 | |
---|
| 423 | /** |
---|
| 424 | * Creates a new dataset of the same size using random sampling |
---|
| 425 | * with replacement according to the given weight vector. The |
---|
| 426 | * weights of the instances in the new dataset are set to one. |
---|
| 427 | * The length of the weight vector has to be the same as the |
---|
| 428 | * number of instances in the dataset, and all weights have to |
---|
| 429 | * be positive. |
---|
| 430 | * |
---|
| 431 | * @param data the data to be sampled from |
---|
| 432 | * @param random a random number generator |
---|
| 433 | * @param sampled indicating which instance has been sampled |
---|
| 434 | * @return the new dataset |
---|
| 435 | * @throws IllegalArgumentException if the weights array is of the wrong |
---|
| 436 | * length or contains negative weights. |
---|
| 437 | */ |
---|
| 438 | public final Instances resampleWithWeights(Instances data, |
---|
| 439 | Random random, |
---|
| 440 | boolean[] sampled) { |
---|
| 441 | |
---|
| 442 | double[] weights = new double[data.numInstances()]; |
---|
| 443 | for (int i = 0; i < weights.length; i++) { |
---|
| 444 | weights[i] = data.instance(i).weight(); |
---|
| 445 | } |
---|
| 446 | Instances newData = new Instances(data, data.numInstances()); |
---|
| 447 | if (data.numInstances() == 0) { |
---|
| 448 | return newData; |
---|
| 449 | } |
---|
| 450 | double[] probabilities = new double[data.numInstances()]; |
---|
| 451 | double sumProbs = 0, sumOfWeights = Utils.sum(weights); |
---|
| 452 | for (int i = 0; i < data.numInstances(); i++) { |
---|
| 453 | sumProbs += random.nextDouble(); |
---|
| 454 | probabilities[i] = sumProbs; |
---|
| 455 | } |
---|
| 456 | Utils.normalize(probabilities, sumProbs / sumOfWeights); |
---|
| 457 | |
---|
| 458 | // Make sure that rounding errors don't mess things up |
---|
| 459 | probabilities[data.numInstances() - 1] = sumOfWeights; |
---|
| 460 | int k = 0; int l = 0; |
---|
| 461 | sumProbs = 0; |
---|
| 462 | while ((k < data.numInstances() && (l < data.numInstances()))) { |
---|
| 463 | if (weights[l] < 0) { |
---|
| 464 | throw new IllegalArgumentException("Weights have to be positive."); |
---|
| 465 | } |
---|
| 466 | sumProbs += weights[l]; |
---|
| 467 | while ((k < data.numInstances()) && |
---|
| 468 | (probabilities[k] <= sumProbs)) { |
---|
| 469 | newData.add(data.instance(l)); |
---|
| 470 | sampled[l] = true; |
---|
| 471 | newData.instance(k).setWeight(1); |
---|
| 472 | k++; |
---|
| 473 | } |
---|
| 474 | l++; |
---|
| 475 | } |
---|
| 476 | return newData; |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | protected Random m_random; |
---|
| 480 | protected boolean[][] m_inBag; |
---|
| 481 | protected Instances m_data; |
---|
| 482 | |
---|
| 483 | /** |
---|
| 484 | * Returns a training set for a particular iteration. |
---|
| 485 | * |
---|
| 486 | * @param iteration the number of the iteration for the requested training set. |
---|
| 487 | * @return the training set for the supplied iteration number |
---|
| 488 | * @throws Exception if something goes wrong when generating a training set. |
---|
| 489 | */ |
---|
| 490 | protected synchronized Instances getTrainingSet(int iteration) throws Exception { |
---|
| 491 | int bagSize = m_data.numInstances() * m_BagSizePercent / 100; |
---|
| 492 | Instances bagData = null; |
---|
| 493 | |
---|
| 494 | // create the in-bag dataset |
---|
| 495 | if (m_CalcOutOfBag) { |
---|
| 496 | m_inBag[iteration] = new boolean[m_data.numInstances()]; |
---|
| 497 | bagData = resampleWithWeights(m_data, m_random, m_inBag[iteration]); |
---|
| 498 | } else { |
---|
| 499 | bagData = m_data.resampleWithWeights(m_random); |
---|
| 500 | if (bagSize < m_data.numInstances()) { |
---|
| 501 | bagData.randomize(m_random); |
---|
| 502 | Instances newBagData = new Instances(bagData, 0, bagSize); |
---|
| 503 | bagData = newBagData; |
---|
| 504 | } |
---|
| 505 | } |
---|
| 506 | |
---|
| 507 | return bagData; |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | /** |
---|
| 511 | * Bagging method. |
---|
| 512 | * |
---|
| 513 | * @param data the training data to be used for generating the |
---|
| 514 | * bagged classifier. |
---|
| 515 | * @throws Exception if the classifier could not be built successfully |
---|
| 516 | */ |
---|
| 517 | public void buildClassifier(Instances data) throws Exception { |
---|
| 518 | |
---|
| 519 | // can classifier handle the data? |
---|
| 520 | getCapabilities().testWithFail(data); |
---|
| 521 | |
---|
| 522 | // remove instances with missing class |
---|
| 523 | m_data = new Instances(data); |
---|
| 524 | m_data.deleteWithMissingClass(); |
---|
| 525 | |
---|
| 526 | super.buildClassifier(m_data); |
---|
| 527 | |
---|
| 528 | if (m_CalcOutOfBag && (m_BagSizePercent != 100)) { |
---|
| 529 | throw new IllegalArgumentException("Bag size needs to be 100% if " + |
---|
| 530 | "out-of-bag error is to be calculated!"); |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | int bagSize = m_data.numInstances() * m_BagSizePercent / 100; |
---|
| 534 | m_random = new Random(m_Seed); |
---|
| 535 | |
---|
| 536 | m_inBag = null; |
---|
| 537 | if (m_CalcOutOfBag) |
---|
| 538 | m_inBag = new boolean[m_Classifiers.length][]; |
---|
| 539 | |
---|
| 540 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
| 541 | if (m_Classifier instanceof Randomizable) { |
---|
| 542 | ((Randomizable) m_Classifiers[j]).setSeed(m_random.nextInt()); |
---|
| 543 | } |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | buildClassifiers(); |
---|
| 547 | |
---|
| 548 | // calc OOB error? |
---|
| 549 | if (getCalcOutOfBag()) { |
---|
| 550 | double outOfBagCount = 0.0; |
---|
| 551 | double errorSum = 0.0; |
---|
| 552 | boolean numeric = m_data.classAttribute().isNumeric(); |
---|
| 553 | |
---|
| 554 | for (int i = 0; i < m_data.numInstances(); i++) { |
---|
| 555 | double vote; |
---|
| 556 | double[] votes; |
---|
| 557 | if (numeric) |
---|
| 558 | votes = new double[1]; |
---|
| 559 | else |
---|
| 560 | votes = new double[m_data.numClasses()]; |
---|
| 561 | |
---|
| 562 | // determine predictions for instance |
---|
| 563 | int voteCount = 0; |
---|
| 564 | for (int j = 0; j < m_Classifiers.length; j++) { |
---|
| 565 | if (m_inBag[j][i]) |
---|
| 566 | continue; |
---|
| 567 | |
---|
| 568 | voteCount++; |
---|
| 569 | double pred = m_Classifiers[j].classifyInstance(m_data.instance(i)); |
---|
| 570 | if (numeric) |
---|
| 571 | votes[0] += pred; |
---|
| 572 | else |
---|
| 573 | votes[(int) pred]++; |
---|
| 574 | } |
---|
| 575 | |
---|
| 576 | // "vote" |
---|
| 577 | if (numeric) { |
---|
| 578 | vote = votes[0]; |
---|
| 579 | if (voteCount > 0) { |
---|
| 580 | vote /= voteCount; // average |
---|
| 581 | } |
---|
| 582 | } else { |
---|
| 583 | vote = Utils.maxIndex(votes); // majority vote |
---|
| 584 | } |
---|
| 585 | |
---|
| 586 | // error for instance |
---|
| 587 | outOfBagCount += m_data.instance(i).weight(); |
---|
| 588 | if (numeric) { |
---|
| 589 | errorSum += StrictMath.abs(vote - m_data.instance(i).classValue()) |
---|
| 590 | * m_data.instance(i).weight(); |
---|
| 591 | } |
---|
| 592 | else { |
---|
| 593 | if (vote != m_data.instance(i).classValue()) |
---|
| 594 | errorSum += m_data.instance(i).weight(); |
---|
| 595 | } |
---|
| 596 | } |
---|
| 597 | |
---|
| 598 | m_OutOfBagError = errorSum / outOfBagCount; |
---|
| 599 | } |
---|
| 600 | else { |
---|
| 601 | m_OutOfBagError = 0; |
---|
| 602 | } |
---|
| 603 | |
---|
| 604 | // save memory |
---|
| 605 | m_data = null; |
---|
| 606 | } |
---|
| 607 | |
---|
| 608 | /** |
---|
| 609 | * Calculates the class membership probabilities for the given test |
---|
| 610 | * instance. |
---|
| 611 | * |
---|
| 612 | * @param instance the instance to be classified |
---|
| 613 | * @return preedicted class probability distribution |
---|
| 614 | * @throws Exception if distribution can't be computed successfully |
---|
| 615 | */ |
---|
| 616 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 617 | |
---|
| 618 | double [] sums = new double [instance.numClasses()], newProbs; |
---|
| 619 | |
---|
| 620 | for (int i = 0; i < m_NumIterations; i++) { |
---|
| 621 | if (instance.classAttribute().isNumeric() == true) { |
---|
| 622 | sums[0] += m_Classifiers[i].classifyInstance(instance); |
---|
| 623 | } else { |
---|
| 624 | newProbs = m_Classifiers[i].distributionForInstance(instance); |
---|
| 625 | for (int j = 0; j < newProbs.length; j++) |
---|
| 626 | sums[j] += newProbs[j]; |
---|
| 627 | } |
---|
| 628 | } |
---|
| 629 | if (instance.classAttribute().isNumeric() == true) { |
---|
| 630 | sums[0] /= (double)m_NumIterations; |
---|
| 631 | return sums; |
---|
| 632 | } else if (Utils.eq(Utils.sum(sums), 0)) { |
---|
| 633 | return sums; |
---|
| 634 | } else { |
---|
| 635 | Utils.normalize(sums); |
---|
| 636 | return sums; |
---|
| 637 | } |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | /** |
---|
| 641 | * Returns description of the bagged classifier. |
---|
| 642 | * |
---|
| 643 | * @return description of the bagged classifier as a string |
---|
| 644 | */ |
---|
| 645 | public String toString() { |
---|
| 646 | |
---|
| 647 | if (m_Classifiers == null) { |
---|
| 648 | return "Bagging: No model built yet."; |
---|
| 649 | } |
---|
| 650 | StringBuffer text = new StringBuffer(); |
---|
| 651 | text.append("All the base classifiers: \n\n"); |
---|
| 652 | for (int i = 0; i < m_Classifiers.length; i++) |
---|
| 653 | text.append(m_Classifiers[i].toString() + "\n\n"); |
---|
| 654 | |
---|
| 655 | if (m_CalcOutOfBag) { |
---|
| 656 | text.append("Out of bag error: " |
---|
| 657 | + Utils.doubleToString(m_OutOfBagError, 4) |
---|
| 658 | + "\n\n"); |
---|
| 659 | } |
---|
| 660 | |
---|
| 661 | return text.toString(); |
---|
| 662 | } |
---|
| 663 | |
---|
| 664 | /** |
---|
| 665 | * Returns the revision string. |
---|
| 666 | * |
---|
| 667 | * @return the revision |
---|
| 668 | */ |
---|
| 669 | public String getRevision() { |
---|
| 670 | return RevisionUtils.extract("$Revision: 5801 $"); |
---|
| 671 | } |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Main method for testing this class. |
---|
| 675 | * |
---|
| 676 | * @param argv the options |
---|
| 677 | */ |
---|
| 678 | public static void main(String [] argv) { |
---|
| 679 | runClassifier(new Bagging(), argv); |
---|
| 680 | } |
---|
| 681 | } |
---|